Downloaded from Brill.Com09/24/2021 07:42:43AM Via Free Access 4 IAWA Journal, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Brill.Com09/24/2021 07:42:43AM Via Free Access 4 IAWA Journal, Vol IAWA Journal, Vol. 15 (1), 1994: 3-45 SURVEY OF ENGLISH MACROSCOPIC BARK TERMINOLOGY by Leo Junikka 1 Department of Botany, P.O. Box 7 (Unioninkatu 44), 00014 University of Helsinki, Finland Summary Tenns of outer and inner bark characteris­ field characters of valuable timber trees with tics are critically surveyed. Different macro­ notes on barks. They were followed by Beard scopical tenns with their synonyms are listed (1944; Tobago), De Rosayro (1960; Ceylon), for a comparison of bark features. Sugges­ and Den Outer (1972; Ivory Coast). tions are given for a standardised usage of Whitmore (1962a, b, c), in his notable stud­ the tenns to stimulate a practice of pertinent ies on Dipterocarpaceae, described seven dis­ field notes and facilitate understanding of de­ tinct bark types and demonstrated that the scriptions. Preferred tenns are printed in bold bark may provide valuable taxonomic infor­ face and preferred definitions in italics. mation, and may shed light on a number of Key words: Bark morphology, tenninology. important taxonomic problems. Voorhoeve (1965) produced a comprehensive study of Introduction some Liberian high forest trees with a great Notes on the appearance of the bark or the deal of infonnation on bark characters. Roth fonn of a trunk are often wanting or inade­ (1981) summarised studies on tropical barks quate in most tropical floras. Only a minority in Venezuelan Guyana with some characters of plant collectors include various field char­ and definitions worthwhile to comment. In acters on the labels of herbarium sheets. How­ recent years good examples of tree floras ever, careful descriptions of mature barks using different bark features are Tailfer's and other vegetative parts, especially in rain (1989) work on tropical Africa and Polak's forest trees, may provide a valuable tool for (1992) work on Guyana. Thus good data are reliable and quick plant identification. Plant available, but only from a few areas and, vir­ collectors often cannot reach the crown can­ tually, only from a few plant groups such as opy of the rain forest emergents, or if they the genus Eucalyptus (Francis 1951) or the obtain a branch sample, there may be no family Dipterocarpaceae (Whitmore 1962c). flowers or fruits. Furthermore, the tedious In contrast to the strong standardisation in process of naming plants belonging to certain wood anatomical terms by the lAWA (1957, families or other taxonomic units which are 1964, 1989), bark anatomical terms were re­ notoriously difficult to identify in the herbar­ viewed to a certain extent by few authors ium might be greatly speeded up if good bark only, e.g. Esau (1969) and Martin & Crist characters were available. This, in turn, could (1970). Later a thorough discussion of vari­ prevent undue delay in publishing, for in­ ous tenns with references to relevant litera­ stance, the results of inventories of tropical ture and proposal of a list of bark anatomical forests. terms to be used was published by Trocken­ There have been several attempts to con­ brodt (1990). struct keys based on bark characters. Presum­ The present paper concentrates on bark ably, Lely (1925) from Northern Nigeria and morphology. As the anatomical composition Foxworthy (1927) from the Malay Peninsula of the bark highly contributes to the outer as­ were the first who carefully listed different pect and other characters of the bark, terms 1) Temporary: Herbarium, Department of Plant Ecology and Evolutionary Biology, University of Utrecht, The Netherlands. Downloaded from Brill.com09/24/2021 07:42:43AM via free access 4 IAWA Journal, Vol. 15 (1),1994 used in bark anatomy and those used in bark This paper is intended as a proposal to­ morphology overlap to a certain degree, par­ ward a consistent bark morphological termi­ ticularly those concerning bark tissues. nology. I have quoted 'representative' defi­ The first efforts to compile a descriptive nitions from the anatomical literature, from morphological terminology of barks were some field floras of different geographical made by Wood (1952), De Rosayro (1953), areas, and from common botanical textbooks and Wyatt-Smith (1954). These papers were written for tropical areas. Some well-known mainly concerned with bark features based terms have been omitted, although some syn­ on the authors' own experience from South­ onyms are accepted. I have restricted the east Asia. Also some terminological defini­ scope of this study to the English literature, tions of bark features are included in the but some common terms (e. g. rhytidome, glossaries of tree floras, such as Corner's phloeme) from French publications are in­ book 'Wayside trees of Malaya' (1940; 3rd cluded. ed. 1988). Various terminological notes can This tentative list of terms certainly does be found in textbooks of tropical botany. A not pretend to cover all the terms used in bot­ good example is Letouzey's (1986) book any and forestry. Hopefully, though, it will 'Manual of forest botany' in two volumes on bring more clarity in a rather confusing bark tropical Africa (translation from the original terminology, and thus contribute to a badly French, 1972). Among plant anatomical text­ needed standardization. books, Eames & MacDaniels (1947), Esau (1960, 1965, 1969, 1979), and Fahn (1990) have referred to macroscopical characteristics Structure, symbols, and abbreviations of barks. used in the list Rollet (1980, 1982) published a review about the variability of characters used in ma­ Structure croscopic bark analysis. Based on his survey This paper is divided into three main chap­ of field floras that contain notes on bark fea­ ters: 1) a list of accepted terms, 2) a survey of tures, and his own experience from the trop­ the terminology with the accepted definitions, ics, he described the potentiality of using synonyms and comments on relevant bark features, giving numerous examples. literature, and 3) a list of rejected terms with As Trockenbrodt (1990) has pointed out, many cross references. The accepted terms the large number of terms with partially or are printed in bold face, and the accepted def­ wholly overlapping meaning "reveals the lack initions in italics. The survey of the terminol­ of a concise and widely applicable terminol­ ogy (and the preceding list of accepted terms) ogy of bark structure." Not only are different is subdivided into five parts, dealing with: morphological terms applied to the same struc­ I bark and its component tissues ture but also, in some cases, a term is obscure­ II bark texture ly defined, thus allowing different meanings. III bark patterns The main difficulty with regard to bark mor­ a. bark patterns in tangential and cross phological descriptions is that features which sections are pure responses to the environment have b. fissuring to be distinguished from those which are in­ c. exfoliation herent to a particular species. One has to d. external markings know the variability of barks: between indi­ N exudation viduals of the same species variation is often V bark cutting considerable, and even in different parts of the same individual. Only efficient collecting Entries are printed in alphabetical order and of data from a large number of mature trees the attributes within an entry are arranged using accepted and standardised descriptive according to its meaning. Numbers between terms will enlarge the knowledge of bark parentheses, (1), (2), etc., indicate two or variation. A simple and well-defined termi­ more meanings of a particular term. The defi­ nology is, therefore, a prerequisite. nition of a term by its original author has been Downloaded from Brill.com09/24/2021 07:42:43AM via free access Junikka - Macroscopic bark terminology 5 maintained, as far as possible. Sometimes an Ed Edlin (1976) author did not define a term explicitly, so that EM Eames & MacDaniels (1947) its meaning had to be deduced from the origi- Esl Esau (1960) nal context. Often the original definitions had Es2 Esau (1965) to be abridged to save space. For practical Es3 Esau (1969) reasons some definitions are placed under en- Es4 Esau (1979) tries in the chapter on rejected terms, but they Fh Fahn (1990) are commented upon in the list of accepted Fo Ford-Robertson (1971) terms. Fs Francis (1951) GE G6mez-Vazquez & Engleman (1984) Symbols GJ Ghouse & Jamal (1978) Hi Hightshoe (1989) is placed after a reference showing a * HJC Hall et al. (1970) direct quotation from the source. Ho Howard (1971) ~ refers to the term under which an ex- IAWA lAWA, Committee on Nomenclature planation is given, and which is usually (1964) preferred. Ir Irvine (1952) an alternative term which is also accept- Ja Jackson (1928) Ji ed. Jimenez-Saa (1973) Kr KrUssmann (1984) the cited author has explicitly used the Ku Kunkel (1965) synonym in the sense given here. Le Letouzey (1986) Cf. confer = compare with. MC Martin & Crist (1970) Me Metcalfe (1979) Inc!. the term is included in the definition MET Macdonald Encyclopedia of Trees proposed for this entry. (1982) See an explanation is given under the indi- MW Meijer & Wood (1964) cated entry, which is not synonymous. Nu Nultsch (1971) Oul Outer, den (1967) Syn. rejected synonym(s). 0u2 Outer, den (1972) Po Polak (1992) PW Penford & Willis (1961) Abbreviations PZ Panshin & De Zeeuw (1980) AHDE American Heritage Dictionary of RDMB Radford et al. (1974) English language (1980) REC Raven et al. (1976) Ba Bena (1960) Ro Rollet (1980, 1982) BCFTl British Commonwealth forest termi- Rt Roth (1981) nology 1 (1953) Ry Rosayro, de (1953) BCFT2 British Commonwealth forest termi- Sa Srivastava (1964) nology 2 (1957) SAF Society of American Foresters, Be Beard (1944) Committee on Forestry Terminology BKI Brooker & Kleinig (1990a) (1950) BK2 Brooker & Kleinig (1990b) Ss Storrs (1979) BM Bi.isgen & Mi.inch (1929) Th Thrower (1988) Bo Bor (1953) Ti Timberlake (1980) Br Brown (1971) Vo Voorhoeve (1965) Cg Chang (1954) Whl Whitmore (1962a) Cha Chattaway (1953) Wh2 Whitmore (1972) Ck Craddock (1932) Wo Wood (1952) Co Comer (1988) WS Wyatt-Smith (1954) Dr Dirr (1977) Wy Wyk, van (1985) Ed Edlin (1976) YYI Yunus et al.
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Initial Environmental Examination
    Initial Environmental Examination September 2014 SRI: Integrated Road Investment Program – Project 2 Sabaragamuwa Province Prepared by Environmental and Social Development Division, Road Development Authority, Ministry of Highways, Ports and Shipping for the Asian Development Bank CURRENCY EQUIVALENTS (as of 12 September 2014) Currency unit – Sri Lanka rupee (SLRe/SLRs) SLRe1.00 = $ 0.00767 $1.00 = SLR 130.300 ABBREVIATIONS ABC - Aggregate Base Coarse AC - Asphalt Concrete ADB - Asian Development Bank CBO - Community Based Organizations CEA - Central Environmental Authority DoF - Department of Forest DSDs - Divisional Secretary Divisions DOFC - Department of Forest Conservation DWLC - Department of Wild Life Conservation EC - Environmental Checklsit EIA - Environmental Impact Assessment EMP - Environmental Management Plan EPL - Environmental Protection License ESDD - Environmental and Social Development Division FBO - Farmer Based Organizations GoSL - Government of Sri Lanka GRC - Grievance Redress Committee GRM - Grievance Redress Mechanism GSMB - Geological Survey and Mines Bureau IEE - Initial Environmental Examination LAA - Land Acquisition Act MER - Manage Elephant Range MOHPS - Ministry of Highways, Ports and Shipping NAAQS - National Ambient Air Quality Standards NBRO - National Building Research Organization NEA - National Environmental Act NWS&DB- National Water Supply and Drainage Board OPRC - Output and Performance - based Road Contract PIC - Project Implementation Consultant PIU - Project Implementation Unit PRDA - Provincial Road Development Authority PS - Pradeshiya Sabha RDA - Road Development Authority ROW - Right of Way TOR - Terms of Reference NOTE In this report, "$" refers to US dollars unless otherwise stated. This initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature.
    [Show full text]
  • Bark Anatomy and Cell Size Variation in Quercus Faginea
    Turkish Journal of Botany Turk J Bot (2013) 37: 561-570 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1201-54 Bark anatomy and cell size variation in Quercus faginea 1,2, 2 2 2 Teresa QUILHÓ *, Vicelina SOUSA , Fatima TAVARES , Helena PEREIRA 1 Centre of Forests and Forest Products, Tropical Research Institute, Tapada da Ajuda, 1347-017 Lisbon, Portugal 2 Centre of Forestry Research, School of Agronomy, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal Received: 30.01.2012 Accepted: 27.09.2012 Published Online: 15.05.2013 Printed: 30.05.2013 Abstract: The bark structure of Quercus faginea Lam. in trees 30–60 years old grown in Portugal is described. The rhytidome consists of 3–5 sequential periderms alternating with secondary phloem. The phellem is composed of 2–5 layers of cells with thin suberised walls and narrow (1–3 seriate) tangential band of lignified thick-walled cells. The phelloderm is thin (2–3 seriate). Secondary phloem is formed by a few tangential bands of fibres alternating with bands of sieve elements and axial parenchyma. Formation of conspicuous sclereids and the dilatation growth (proliferation and enlargement of parenchyma cells) affect the bark structure. Fused phloem rays give rise to broad rays. Crystals and druses were mostly seen in dilated axial parenchyma cells. Bark thickness, sieve tube element length, and secondary phloem fibre wall thickness decreased with tree height. The sieve tube width did not follow any regular trend. In general, the fibre length had a small increase toward breast height, followed by a decrease towards the top.
    [Show full text]
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • Dipterocarpaceae)
    DNA Sequence-Based Identification and Molecular Phylogeny Within Subfamily Dipterocarpoideae (Dipterocarpaceae) Dissertation Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) at Forest Genetics and Forest Tree Breeding, Büsgen Institute Faculty of Forest Sciences and Forest Ecology Georg-August-Universität Göttingen By Essy Harnelly (Born in Banda Aceh, Indonesia) Göttingen, 2013 Supervisor : Prof. Dr. Reiner Finkeldey Referee : Prof. Dr. Reiner Finkeldey Co-referee : Prof. Dr. Holger Kreft Date of Disputation : 09.01.2013 2 To My Family 3 Acknowledgments First of all, I would like to express my deepest gratitude to Prof. Dr. Reiner Finkeldey for accepting me as his PhD student, for his support, helpful advice and guidance throughout my study. I am very grateful that he gave me this valuable chance to join his highly motivated international working group. I would like to thank Prof. Dr. Holger Kreft and Prof. Dr. Raphl Mitlöhner, who agreed to be my co-referee and member of examination team. I am grateful to Dr. Kathleen Prinz for her guidance, advice and support throughout my research as well as during the writing process. My deepest thankfulness goes to Dr. Sarah Seifert (in memoriam) for valuable discussion of my topic, summary translation and proof reading. I would also acknowledge Dr. Barbara Vornam for her guidance and numerous valuable discussions about my research topic. I would present my deep appreciation to Dr. Amarylis Vidalis, for her brilliant ideas to improve my understanding of my project. My sincere thanks are to Prof. Dr. Elizabeth Gillet for various enlightening discussions not only about the statistical matter, but also my health issues.
    [Show full text]
  • Flora of China 12: 300–301. 2007. 2. BOMBAX Linnaeus, Sp. Pl. 1
    Flora of China 12: 300–301. 2007. 2. BOMBAX Linnaeus, Sp. Pl. 1: 511. 1753, nom. cons. 木棉属 mu mian shu Deciduous big trees; young trunk usually spiny. Leaf blade palmately compound; leaflets 5–9, sometimes petiolulate, with basal joint, margin entire. Flowers bisexual, solitary or fascicled, axillary or terminal. Flowers large, produced before leaf flush. Pedicel shorter than 10 cm. Bracteoles absent. Calyx tubular, campanulate, or cup-shaped, apex truncate to deeply lobed, sometimes with abaxial glands, leathery, falling with petals and stamens. Petals 5, usually red, sometimes yellow, orange, or white, obovate or obovate-lanceolate, asymmetrical, sometimes reflexed. Stamens 70–900, bases connate into short tube; filaments connate into 5–10 distinct phalanges, alternating with petals; anthers reniform. Ovary syncarpous, 5-locular; ovules many per locule; style filiform, longer than stamens; stigma stellately lobed. Capsule loculicidally dehiscent into 5 valves, valves woody or leathery, with silky wool inside. Seeds small, black, enclosed by wool. About 50 species: mostly in tropical America, also in tropical Africa, Asia, and Australasia; three species in China. 1a. Leaflets abaxially densely tomentose; petals white, ca. 4 cm ................................................................................ 3. B. cambodiense 1b. Leaflets abaxially glabrous or hairy only on veins; petals red or orange-red, 10–15 cm. 2a. Calyx 3.8–5 cm; petals adaxially glabrous; filaments linear; capsule 25–30 cm ..................................................... 1. B. insigne 2b. Calyx 2–3(–4.5) cm; petals adaxially stellate pilose; filaments thicker at base than apex; capsule 10–15 cm .......... 2. B. ceiba 1. Bombax insigne Wallich var. tenebrosum (Dunn) A. lobes 3–5, semi-orbicular, ca.
    [Show full text]
  • Anthocyanin Contains in Cratoxylum Formosum
    Theeranat Suwanaruang, AJAR, 2017; 2:14 Research Article AJAR (2017), 2:14 American Journal of Agricultural Research (ISSN:2475-2002) Anthocyanin contains in Cratoxylum formosum Theeranat Suwanaruang Environmental Science Program, Faculty of liberal arts and science, Kalasin University, Namon Dis- trict, Kalasin Province, Thailand 46231 ABSTRACT Cratoxylum formosum is an indigenous Thai vegetable, mostly *Correspondence to Author: grown in the North-East of Thailand., It has been reported that Theeranat Suwanaruang the leaf extract showed strongly antioxidant and antimutagenic Environmental Science Program, properties when compared with 108 species of indigenous Thai Faculty of liberal arts and science, plants. The point toward of this do research was analyzed antho- Kalasin University, Namon District, cyanin inhibit in Cratoxylum formosum. The means was assess- Kalasin Province, Thailand 46231 ment in dissimilarity exaction solutions (water, acetone, ethanol and methanol) and divergence era (0 minutes, 30 minutes and 60 minutes). The scrutinize chemically was weighed samples 5 g with modification exaction solutions and divergence era af- terward absorbance samples at 535 nm by spectrophotometer. How to cite this article: The fallout create that at 0 minutes in diversity exaction solutions Theeranat Suwanaruang.Anthocy- (water, acetone, ethanol and methanol) were 909.136±75.010, anin contains in Cratoxylum formo- 737.743±734.871, 704.216±2.313and 825.006±14.226 mg/L sum. American Journal of Agricul- respectively. At 30 minutes in modification exaction solutions tural Research, 2017,2:14. (water, acetone, ethanol and methanol) were 873.886±8.626, 788.503±17.094, 720.98±30.786 and 758.686±37.772 mg/L cor- respondingly and to finish period at 60 minutes in divergence exaction solutions (water, acetone, ethanol and methanol) were 903.96±75, 764.53±49.984, 735.236±45.783 and 824.38±14.718 eSciPub LLC, Houston, TX USA.
    [Show full text]
  • Pachira Aquatica, (Zapotón, Pumpo)
    How to Grow a Sacred Maya Flower Pachira aquatica, (Zapotón, Pumpo) Nicholas Hellmuth 1 Introduction: There are several thousand species of flowering plants in Guatemala. Actually there are several thousand flowering TREES in Guatemala. If you count all the bushes, shrubs, and vines, you add thousands more. Then count the grasses, water plants; that’s a lot of flowers to look at. Actually, if you count the orchids in Guatemala you would run out of numbers! Yet out of these “zillions” of beautiful tropical flowers, the Classic Maya, for thousands of years, picture less than 30 different species. It would be a challenge to find representations of a significant number of orchids in Maya art: strange, since they are beautiful, and there are orchids throughout the Maya homeland as well as in the Olmec homeland, plus orchids are common in the Izapa area of proto_Maya habitation in Chiapas. Yet other flowers are pictured in Maya yart, yet in the first 150 years of Maya studies, only one single solitary flower species was focused on: the sacred water lily flower! (I know this focus well, I wrote my PhD dissertation featuring this water lily). But already already 47 years ago, I had noticed flowers on Maya vases: there were several vases that I discovered myself in a royal burial at Tikal that pictured stylized 4-petaled flowers (Burial 196, the Tomb of the Jade Jaguar). Still, if you have XY-thousand flowers blooming around you, why did the Maya picture less than 30? In other words, why did the Maya select the water lily as their #1 flower? I know most of the reasons, but the point is, the Maya had XY-thousand.
    [Show full text]
  • Tree Identification: from Bark and Leaves Or Needles
    Tree Identification: from bark and leaves or needles A walk in the woods can be a lot of fun, especially if you bring your kids. How do you get them to come along with you? Tell them this. “Look at the bark on the trees. Can you can find any that look like burnt potato chips, warts, cat scratches, camouflage pants or rippling muscles?” Believe it or not, these are descriptions of different kinds of tree bark. Tree ID from bark:______________________________________________________ Black cherry: The bark looks like burnt potato chips. Hackberry: The bark is bumpy and warty. Ironwood: The bark has long thin strips. With a little imagination, an ironwood can look like it is used as a scratching post by cats. They can also be easily spotted in winter because their light brown dead leaves hang on well past the first snow. Sycamore: A tree with bark that looks like camouflaged pants. The largest tree in Illinois is a sycamore, a majestic 115-foot tree near Springfield. Musclewood: a tree with smooth gray bark covering a trunk with ridges that look like they are rippling muscles. Shagbark hickory: Long strips of shaggy bark peeling at both ends. Cottonwood: Has heavy ridges that make it look like Paul Bunyan’s corduroy pants. Bur oak: Thick and gnarly bark has deep craggy furrows. The corky bark allows it to easily withstand hot forest fires. Tree ID from leaves or needles:________________________________________ Willow Oak: Has elongated leaves similar to those of a willow tree. Red pine: Red has 3 letters; a red pine has groupings of 2-3 prickly needles.
    [Show full text]
  • Silk Cotton Vs. Bombax Vs. Banyan
    Ceiba pentandra Kopok tree, Silk-cotton tree Ta Prohm, Cambodia By Isabel Zucker Largest known specimen in Lal Bagh Gardens in Bangalore, India. http://scienceray.com/biology/botany/amazing-trees-from-around-the-world-the-seven-wonder-trees/ Ceiba pentandra Taxonomy • Family: Malvaceae • Sub family: Bombacaceae -Bombax spp. in same family - much online confusion as to which tree is primarily in Ta Praham, Cambodia. • Fig(Moraceae), banyan and kapok trees in Ta Praham • Often referred to as a banyan tree, which is quite confusing. Distribution • Originated in the American tropics, natural and human distribution. • Africa, Asia. – Especially Indonesia and Thailand • Indian ocean islands • Ornamental shade tree • Zone – Humid areas, rainforest, dry areas – Mean annual precipitation 60-224 inches per year – Temperatures ranging from 73-80 unaffected by frost – Elevation from 0-4,500 feet – Dry season ranging from 0-6 months Characteristics • Rapidly growing, deciduous • Reaches height up to 200 feet • Can grow 13 feet per year • Diameter up to 9 feet above buttress – Buttress can extend 10 feet from the trunk and be 10 feet tall • large umbrella-shaped canopies emerge above the forest canopy • http://www.flmnh.ufl.edu/caribarch/ceiba.htm • Home to many animals – Birds, frogs, insects – Flowers open in the evening, pollinated by bats • Epiphytes grow in branches • Compound leaves with 5-8 lance- shaped leaflets 3-8 inches long • Dense clusters of whitish to pink flowers December to February – 3-6 inch long, elliptical fruits. – Seeds of fruit surrounded by dense, cottony fibers. – Fibers almost pure cellulose, buoyant, impervious to water, low thermal conductivity, cannot be spun.
    [Show full text]
  • Inventaire Et Analyse Chimique Des Exsudats Des Plantes D'utilisation Courante Au Congo-Brazzaville
    Inventaire et analyse chimique des exsudats des plantes d’utilisation courante au Congo-Brazzaville Arnold Murphy Elouma Ndinga To cite this version: Arnold Murphy Elouma Ndinga. Inventaire et analyse chimique des exsudats des plantes d’utilisation courante au Congo-Brazzaville. Chimie analytique. Université Paris Sud - Paris XI; Université Marien- Ngouabi (Brazzaville), 2015. Français. NNT : 2015PA112023. tel-01269459 HAL Id: tel-01269459 https://tel.archives-ouvertes.fr/tel-01269459 Submitted on 5 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MARIEN NGOUABI UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 470: CHIMIE DE PARIS SUD Laboratoire d’Etude des Techniques et d’Instruments d’Analyse Moléculaire (LETIAM) THÈSE DE DOCTORAT CHIMIE par Arnold Murphy ELOUMA NDINGA INVENTAIRE ET ANALYSE CHIMIQUE DES EXSUDATS DES PLANTES D’UTILISATION COURANTE AU CONGO-BRAZZAVILLE Date de soutenance : 27/02/2015 Directeur de thèse : M. Pierre CHAMINADE, Professeur des Universités (France) Co-directeur de thèse : M. Jean-Maurille OUAMBA, Professeur Titulaire CAMES (Congo) Composition du jury : Président : M. Alain TCHAPLA, Professeur Emérite, Université Paris-Sud Rapporteurs : M. Zéphirin MOULOUNGUI, Directeur de Recherche INRA, INP-Toulouse M. Ange Antoine ABENA, Professeur Titulaire CAMES, Université Marien Ngouabi Examinateurs : M.
    [Show full text]
  • Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales)
    © 2020 The Japan Mendel Society Cytologia 85(2): 141–149 Karyomorphology and Its Evolution in Dipterocarpaceae (Malvales) Kazuo Oginuma1*, Shawn Y. K. Lum2 and Hiroshi Tobe3 1 The Community Center for the Advancement of Education and Research at the University of Kochi, 5–15 Eikokuji-cho, Kochi 780–8515, Japan 2 Asian School of the Environment, Nanyang Technological University, Singapore 639798 3 Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan Received January 16, 2020; accepted February 9, 2020 Summary Previous chromosome information is restricted to Dipterocarpoideae, one of the two subfamilies of Dipterocarpaceae, and no chromosome information is available for another subfamily Monotoideae. Here we present the first karyomorphology of Marquesia macroura (2n=22) (Monotoideae), as well as of four species (2n=22) of four genera in tribe Dipterocarpeae and five species (2n=14) of tribe Shoreae in Dipterocarpoideae. Comparisons within Dipterocarpaceae and with Sarcolaenaceae (2n=22) sister to Dipetrocarpaceae in the light of phylogenetic relationships show that the basic chromosome number x=11 is plesiomorphic and x=7 apomor- phic in Dipterocapaceae. Based on available information, tribe Shoreae (x=7) has a uniform karyotype where all chromosomes have a centromere at median position, while the rest of the family (x=11) have a diverse karyotype in terms of the frequency of chromosomes with a centromere at median, submedian and subterminal position. We discussed the meaning of lability of karyotype in chromosome evolution. Keywords Basic chromosome number, Chromosome evolution, Dipterocarpaceae, Karyomorphology. Dipterocarpaceae (Malvales) are a family of 16 gen- x=10, and five genera Dryobalanops, Hopea, Neobala- era and 680 species distributed in tropical regions of nocarpus, Parashorea and Shorea of tribe Shoreae all the Old World, especially in the rain forests of Malesia have x=7.
    [Show full text]