<<

Looking for on with the Rosalind Franklin Rover Andrew Coates and the PanCam team Mullard Space Science Laboratory University College London www.ucl.ac.uk/mssl 1. Introduction 2. Mars 3.8 billion years ago & now 3. Water and life 4. ExoMars Mars 3.8 by ago ESA Water on surface

Magnetic field

NASA Volcanism Mars now •Extinct volcanoes •No large-scale magnetic field, only remanent regions

•7 mbar, CO2-rich atmosphere •Cold, dry

NASA Evidence for ancient lake and stream deposits – conditions for microbial life NASA

Science, Dec 2013 Context map: NASA/Viking; THEMIS background: NASA/JPL-Caltech/Arizona State University; MARSIS data: ESA/NASA/JPL/ASI/Univ. Rome; R. Orosei et al 2018 Future missions to Mars

• ESA-Russia – (2016) – ExoMars rover – Rosalind Franklin (2020)

• NASA – InSight (2018) – (2020)

• UAE – Orbiter (2020)

• China – Orbiter, rover (2020) MEPAG Pasteur Payload E X O M A R S

PanCam Geological context Wide-angle stereo camera pair Rover traverse planning High-resolution camera Atmospheric studies

WAC: 35 FOV, HRC: 5 FOV

ISEM Bulk mineralogy of outcrops Target selection IR spectrometer on mast Analytical Laboratory Drawer λ = 1.15 – 3.3 μm, 1 FOV Mineralogy characterisation MicrOmega of crushed sample material Geological deposition environment VIS + IR spectrometer Pointing for other instruments CLUPI Microtexture of rocks Close-up imager Morphological λ = 0.9 – 3.5 μm, 256 x 256, 20-μm/pixel, 500 steps

20-μm resolution at 50-cm distance, focus: 20 cm to ∞ RLS Geochemical composition Raman spectrometer Detection of organic pigments WISDOM Mapping of subsurface stratigraphy Ground-penetrating spectral shift range 200–3800 cm–1, resolution ≤ 6 cm–1 3 – 5-m penetration, 2-cm resolution Broad-range organic molecules MOMA with high sensitivity (ppb) ADRON Mapping of subsurface water LDMS + Pyr-Dev GCMS Chirality determination Passive neutron detector and hydrated minerals Laser desorption extraction and mass spectroscopy

Pyrolisis extraction in the presence of derivatisation Drill + Ma_MISS agents, coupled with chiral gas chromatography, In-situ mineralogy information IR borehole spectrometer and mass spectroscopy

λ = 0.4 – 2.2 μm 8 ESA Why Rosalind Franklin?

• Brilliant X-ray crystallographer • Photograph (Photo 51) of a fibre of DNA • Critical to Watson and Wellcome library Crick's discovery of the double helix • Other important work on structure of carbon, viruses

Photo 51 Working notes on DNA

• 3km below Martian mean level • Clay bearing rocks 3.9 bya

• Remnants of a fan or delta near the outlet of Coogoon Vallis

ESA E X O M A R Where to Search ? S

Penetration of Organic Outcrop Destructive Agents UV radiation ~ 1 mm Oxidants ~ 1 m Ionising radiation ~ 1.5 m

ExoMars exobiology strategy: ‣ Identify and study the appropriate type of outcrop;

Credit: 12Kees Veenenbos E X O M A R Where to Search ? S

Penetration of Organic Destructive Agents

UV radiation ~ 1 mm Oxidants ~ 1 m Subsurface Ionising radiation ~ 1.5 m

ExoMars exobiology strategy: ‣ Identify and study the appropriate type of outcrop;

‣ Collect samples below the degradation horizon and analyse them.

Credit: 13Kees Veenenbos 14 ExoMars 2020 PanCam Science ‘eyes’ of the Rosalind Franklin rover PI: Andrew Coates MSSL-UCL, PM: Mary Carter MSSL-UCL International team including DLR/OHB (D), Space-X/TAS-CH (CH), Joanneum Research (A), Aberystwyth U. (UK) + Intl Science Team

PanCam includes: • Wide Angle Camera (WAC) pair, for multi-spectral stereoscopic panoramic imaging, using a miniaturised filter wheel • High Resolution Camera (HRC) for high resolution colour images • Pancam Interface Unit (PIU) to provide a single electronic interface • PanCam Optical Bench (OB) to house PanCam and provide planetary and dust protection • ‘Small items’: PanCam Calibration Target (PCT), Fiducial Markers (FidM) Related hardware: Rover Inspection Mirror (RIM) to provide radiometric and geometric calibration checks and to observe areas not directly visible by WACs or HRC

14 PanCam science team Andrew Coates, Ralf Jaumann, Jean-Luc Josset, Andrew Griffiths, Matt Balme, Rob Barnes, Jean-Pierre Bibring, Tomaso Bontognali, John Bridges, Valerie Ciarletti, Claire Cousins, Ian Crawford, Joel Davis, Nadezda Evdokimova, Alberto Fairén, Peter Fawdon, Anna Fedorova, Bernard Foing, François Forget, Yang Gao, Stephan van Gasselt, Matt Golombek, John Grant, Peter Grindrod, Matt Gunn, Sanjeev Gupta, Klaus Gwinner, Ernst Hauber, Harald Hiesinger, Pat Irwin, Geraint Jones, Beda Anton Hofmann, Marie Josset, Christian Köberl, Ruslan Kuzmin, Mark Leese, Philippe Masson, Stefano Mottola, Peter Muller, Jürgen Oberst, Gordon (‘Oz’) Osinski, Gerhard Paar, Tim Parker, Manish Patel, Dirk Plettermeier, Louisa Preston, Frank Preusker, Cathy Quantin-Nataf, Peter Rueffer, Nicole Schmitz, Caroline Smith, Roger Stabbins, Mitko Tanevski, Nick Thomas, Roland Trautner, Frances Westall, Lyle Whyte, Rebecca Williams, Colin Wilson

PanCam MSSL hardware team Mary Carter, Tom Hunt, Bruce Yu, Barry Whiteside, Craig Theobald, Alan Spencer, Theo Brochant de Villiers, Peter Yuen, Graham Willis, Anna Nash, Mark Hailey, Craig Leff, Kirk Ruane, Alex Rousseau

+ DLR, OHB, TAS-CH, AU, JR… PanCam science team meeting, 4-5 Sep 2017 PanCam science and instrument overview The objectives of the ExoMars rover PanCam instrument PanCam performance (Coates et al., , 2017) are: WACs (x2) HRC 1. Provide context information for the rover and its FoV () 38.3 (edge) 4.88 environment, including digital elevation models and their Pixels 1024x1024 1024x1024 proper visualisation. Filter type Multispectral RGB 2. Geologically investigate and map the rover sites including drilling locations. Filter type Filter wheel Bayer Filter number 11 per ‘eye’ 1 3. Study the properties of the atmosphere and variable phenomena, including water and dust content of the IFOV (µrad/pixel) 653 83 atmosphere. Pixel scale (2m) 1.31mm 0.17 mm 4. Locate the landing site and the rover position with respect to local references, by comparison and data Focus Fixed Mechanical fusion with data from orbiters (1.0m-∞) autofocus (0.98m-∞) 5. Support rover track planning 6. Image the acquired sample The PanCam science team has developed a detailed science traceability matrix which links the high level goals to instrument * see also Coates et al., Planet Space Sci., 2012, performance (Jaumann et al., 2010). Griffiths et al., Int. J. Astrob., 2006

16 UCL-MSSL Courtesy Patrick Curry, MSSL

Courtesy Helen Miles, Aberystwyth 19

Examples of PanCam use and results • Many field tests • See Coates et al. (2017)

Harris et al. (Icarus 2015) Data from MURFI trial, Nov 2016 Balme et al., PSS, 2019 Rover in Utah desert

PanCam (AUPE) data Raman data ExoFit – Atacama desert • Airbus-run rover trial last week and this • Operations centre in Harwell, several PanCam team members participating

Courtesy ExoFit Courtesy Elyse Allender & PanCam team ExoFit PanCam team • PanCam 3D Vision Processing also being used for NavCam / LocCam Tactical Processing

• Visualization by PRo3D: Fostering VR for VRVis collaboration

Example Data: MSL Mastcam pcocessed by PanCam 3D Vision

Symbolic only! Some recent PanCam Engineering Model and other images Max Alexander, Airbus

Thales Alenia Space ExoMars 2020 PanCam PanCam integration at UCL-MSSL

UCL-MSSL 25 25 PanCam PFM images

UCL-MSSL Link to images on request – used as an example for all rover instruments PanCam calibration at MSSL, 4-11 May 2019

UCL-MSSL PanCam geometric calibration – Piluca Caballo-Perucha (JR) Astrobiology special issue June/July 2017

• Vago, J.L., F. Westall, A.J. Coates, et al., and the ExoMars project team, Habitability on Early Mars and the Search for with the ExoMars Rover, Astrobiology, 17(6-7), 471-510, doi:10.1089/ast.2016.1533, 2017. • Coates, A.J., R. Jaumann, A.D. Griffiths, C.E. Leff, N. Schmitz, J.-L. Josset, G. Paar, M. Gunn, E. Hauber, C.R. Cousins, R.E. Cross,, P. Grindrod, J.C. Bridges, M. Balme, S. Gupta, I.A. Crawford, P.Irwin, R. Stabbins, D. Tirsch, J.L. Vago, T. Theodorou, M.Caballo-Perucha, G.R. Osinski and the PanCam team, The PanCam instrument for the ExoMars rover, Astrobiology, 17 (6-7), 511-541, DOI: 10.1089/ast.2016.1548, 2017. • PanCam co-authors also on ISEM, CLUPI, WISDOM papers as part of co-I • We also plan measurements with TSPP, TGO UCL-MSSL

UCL-MSSL

ESA Summary

• Recent and current Mars missions providing important results • Future exploration will follow up with key new data • ExoMars 2020 (Rosalind Franklin) important new dimension on Mars: drill under surface

exploration.esa.int www.ucl.ac.uk/mssl