Ophioglossaceae) on the Young Volcanic Jejudo Island in Korea

Total Page:16

File Type:pdf, Size:1020Kb

Ophioglossaceae) on the Young Volcanic Jejudo Island in Korea pISSN 1225-8318 − Korean J. Pl. Taxon. 48(1): 1 8 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.1.1 Korean Journal of ORIGINAL ARTICLE Plant Taxonomy Divergence time estimation of an ancient relict genus Mankyua (Ophioglossaceae) on the young volcanic Jejudo Island in Korea Hee-Young GIL and Seung-Chul KIM* Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea (Received 15 December 2017; Revised 3 March 2018; Accepted 12 March 2018) ABSTRACT: Mankyua chejuense is the only member of the monotypic genus Mankyua (Ophioglossaceae) and is endemic to Jejudo Island, Korea. To determine the precise phylogenetic position of M. chejuense, two cpDNA regions of 42 accessions representing major members of lycophytes are obtained from GenBank and analyzed using three phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference). In addi- tion, the divergence time is estimated based on a relaxed molecular clock using four fossil calibration points. The phylogenetic position of Mankyua still appears to be uncertain, representing either the earliest diverged lin- eage within Ophioglossaceae or a sister to the clade containing Ophioglossum and Helminthostachys. The most recent common ancestor of Ophioglossaceae and its sister lineage, Psilotum, was estimated to be 256 Ma, while the earliest divergence of Mankyua was estimated to be 195 Ma in the early Jurassic. Keywords: Mankyua chejuense, monotypic genus, Jejudo Island, molecular dating, Ophioglossaceae The Korean peninsula, which is on the far east coast of Asia, Lee and Hong, 2011). Echinosophora, however, is currently has rich floristic diversity compared to its relatively small size treated as Sophora (Lee et al., 2004). Due to continuing decline (Park, 2005). It can be divided into three floristic regions with in quality and quantity of habitat, all endemic genera of Korea adjacent regions (i.e., China, Japan, and Far Eastern Russia) were classified as threatened categories of IUCN Red List and possess diverse habitats due to topographic and climatic Categories (Abeliophyllum, endangered [EN]; Pentactina, complexities (Park, 2005; Chang et al., 2011). Although large critically endangered [CR]; Hanabusaya asiatica, EN; number of taxa in the Korean peninsula are shared with Mankyua, CR; Megaleranthis, EN), except for Coreanomecon adjacent regions, seven genera are endemic to the Korean (Chang et al., 2016). Several phylogenetic and population peninsula, including Mankyua B.-Y. Sun, M. H. Kim & C. H. genetic studies have been conducted for these endemics but Kim (Ophioglossaceae), Megaleranthis Ohwi (Ranunculaceae), their divergence times from their sister lineages have not been Pentactina Nakai (Rosaceae), Echinosophora Nakai (Fabaceae), determined. This lack of estimated divergence time hinders us Abeliophyllum Nakai (Oleaceae), Hanabusaya Nakai to fully understand the origin and evolution of endemic genera (Campanulaceae), and Coreanomecon Nakai (Papaveraceae) in the Korean peninsula as well as to manage and develop (Park, 2005; Kim and Park, 2013). All these genera are conservation strategy of highly threatenened and valuable monotypic, which comprises single species, except for floristic members in Korea. Hanabusaya [H. asiatica (Nakai) Nakai, H. latisepala Nakai]. Mankyua chejuense B.-Y. Sun, M. H. Kim & C. H. Kim Recent molecular phylogenetic studies shed light on the origin (Ophioglossaceae) is the only member of the genus Mankyua of these Korean endemic genera and their status as endemic and is endemic to Jejudo Island, Korea. This monotypic genus genera (e.g., Abeliophyllum, Kim et al., 2000; Echinosophora, has unique combination of morphological characters which Lee et al., 2004; Hanabusaya, Roquet et al., 2008; Mankyua, differ from other genera of Ophioglossaceae (i.e., trophophore Sun et al., 2009; Megaleranthis, Kim et al., 2009; Pentactina, blade, trophophore venation, sporophore, and sporangium). *Author for correspondence: [email protected], [email protected] http://e-kjpt.org, © 2018 the Korean Society of Plant Taxonomists. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 1 2 Hee-Young GIL and Seung-Chul KIM Since it has unique morphology and is rare and endemic to analyses using the same heuristic search options as above. Gaps volcanic island, considerable attention has been focused on this were treated as missing data. For the ML and BI analysis, the enigmatic species. Several studies about morphology, best-fit model was selected based on the Akaike information phenology, molecular phylogenetics, conservation, and criterion implemented in the program jModelTest version 2.1.6 population genetics were conducted (Chung et al., 2010; Hyeon (Darriba et al., 2012). For both ML and BI analysis, GTR + et al., 2010, 2011; Hyun et al., 2014; Kim et al., 2014; Stuessy I + G model was selected. ML analyses were conducted using et al., 2014). Although previous phylogenetic studies have RAxML 8.0.26 (Stamatakis, 2014) implemented in raxmlGUI examined the relationships within Ophioglossaceae (Sun et al., version 1.3.1 (Silvestro and Michalak, 2012). ML trees were 2009; Shinohara et al., 2013), phylogenetic position of calculated using 1,000 rapid bootstrap inferences. BI analysis Mankyua is still controversial. was performed with 5,000,000 generations initiated with a Jejudo island is of volcanic origin and 90km south off the random starting tree, sampling every 500 generations and coast of the Korean peninsula (Woo et al., 2013). While the allowing the program to estimate the likelihood parameters family Ophioglossaceae is early diverged basal lineage of required. We discarded 25% of the samples as burn-in. monilophytes group, Jejudo Island is very young with the age of approximately 2 million years old (Woo et al., 2013). Since Divergence time estimation Jejudo Island has recurrently connected to adjacent continents Divergence times of the family Ophioglossaceae and major during the glacial cycles in the Quaternary Period, the flora of lineages within the family were estimated by BI approach using Jejudo Island has been affected by the various floristic elements the program BEAST v.2.3.1 (Bouckaert et al., 2014). Huperzia from the Korean peninsula, China, and Japan, where habitats and Isoetes were excluded from the analysis to reduce the are diverse. Despite continuous interests on this highly computational burden. As earlier study of molecular dating of enigmatic old lineage of Ophioglossaceae, there has been no ferns (monilophytes (Pryer, 2014)), we used four fossil attempt to estimate the divergence time of Mankyua, calibration points to estimate the divergence time of specifically for its split from the closest lineage and the crown Ophioglossaceae. We incorporated four fossil constraints from age. Therefore, in the present study, we explored the a reassessment of the fern fossil record and the root of the phylogenetic position of Mankyua within Ophioglossaceae and resulting tree was used as a calibration point based on the estimated the divergence time of M. chejuense. concurrent appearance of fossils belonging to each of these lineages in the Middle Devonian. We employed a relaxed Materials and Methods molecular clock model (Drummond et al., 2006) relying on uncorrelated rates drawn from a log-normal distribution, and DNA sequence and phylogenetic analyses a Yule tree prior for speciation. Two independent Markov All DNA sequences were retrieved from GenBank chain Monte Carlo runs were performed with 5,000,000 (Appendix 1). The rbcL and matK sequences were aligned generations each, with every 500 generation sampled. A burn- using CLUSTAL W (Larkin et al., 2007), implemented in in of 10% per run was discarded after assessing convergence Geneious version 7.1.7 (Kearse et al., 2012). The alignment with Tracer version 1.4.1. To obtain an estimate of the was further examined and slightly edited manually as phylogenetic tree with mean divergence time and 95% highest necessary. For the combined cpDNA datasets, we selected six posterior density (HPD) intervals, the program TreeAnnotator taxa of two genera, Huperzia and Isoetes, as outgroups (Pryer v.1.7.5 was used as it summarizes the post burn-in trees and et al., 2004). A total of 42 accessions for 37 taxa were used their parameters. for phylogenetic analysis. The combined data set was analyzed by maximum parsimony (MP), maximum likelihood (ML), and Results Bayesian inference (BI) method. The MP phylogenetic analyses was performed using PAUP* version 4.0b10 Phylogenetic position of Mankyua (Swofford, 2002). Characters were treated as unordered and The combined cpDNA data set included a total of 42 all character transformations were weighted equally. The MP accessions. A total 2,032 aligned sites for concatenated cpDNA analyses were conducted using heuristic search options with characters were used for MP, ML, and BI analyses. Of the simple stepwise addition of taxa, tree-bisection-reconnection 2,032 characters, 836 were constant, 123 were variable but branch swapping, and saving multiple trees. Bootstrap values parsimony-uninformative, and 1,073 were parsimony- (Felsenstein, 1985) were calculated from 1,000 replicate informative characters. The MP analysis found one most Korean Journal of Plant Taxonomy Vol.
Recommended publications
  • 1 Ophioglossidae (PDF, 873
    Ophioglossidae 1 Polypodiopsida Ophioglossidae – Gabelblattgewächse (Polypodiopsida) Zu den Ophioglossidae werden 2 rezente Ordnungen gestellt, die Psilotales (Gabelfarne) und die Ophioglossales (Natternzungenartigen). Die Ophioglossidae sind eine sehr alte Landpflanzengruppe. Die Blätter sind, anders als dies für viele makrophylle Farnpflanzen typisch ist, zu Beginn nicht eingerollt. Ein gemeinsames Merkmal der Psilotales mit den Ophioglossales sind eusporangiate Sporangien, d. h. die Sporangienwand weist mehrere Zellschichten auf (Unterschied lepto- sporangiate Farne, hier einschichtig). Bei einigen Arten der Psilotales fehlt eine echte Wurzel. Alle Arten sind mykotroph (Ernährung mittels Pilzsymbiose im Boden, Mykorrhiza). 1. Ordnung: Psilotales (Gabelfarne) 1.1 Systematik und Verbreitung Die Ordnung der Psilotales enthält nur 1 Familie, die Psilotaceae mit nur 2 Gattungen und 17 Arten (Psilotum 2 und Tmesipteris 15 Arten). Die Familie ist überwiegend tropisch verbreitet. 1.2 Morphologie 1.2.1 Habitus Die Arten der Psilotales sind ausschließlich krautige Pflanzen mit einem kräftigen, unterirdischen Kriechspross (Rhizom), das zahlreiche Rhizoide ausbildet. Echte Wurzeln fehlen. Die vollständige Reduktion der Wurzel wird hier als sekundäres, abgeleitetes Merkmal angesehen. Wie der Gametophyt ist auch der Sporophyt mykotroph, was erst die morphologische Reduktion der Wurzel erlaubte. Die oberirdischen sparrig dichotom verzweigten Sprossachsen weisen eine (angedeutete) Siphonostele mit einem holzigen Mark auf. Die unterirdischen Rhizome haben hingegen eine Protostele. 1.2.2 Blatt Arten aus den Psilotales haben ausschließlich schraubig angeordnete Mikrophylle. Bei Psilotum sind nur die Sporophylle Gabelblätter (im Unterschied zu den sterilen © PD DR. VEIT M. DÖRKEN, Universität Konstanz, FB Biologie Ophioglossidae 2 Polypodiopsida Blättern). Die Photosynthese erfolgt daher hauptsächlich über die chlorophyllreichen Sprossachsen (Rutenstrauch-Prinzip). Abb. 1 & 2: Psilotum nudum, dichotom verzweigte Sprossachse (links); Querschnitt einer Sprossachse (rechts).
    [Show full text]
  • A High Polyploid Chromosome Complement of Ophioglossum Nudicaule L
    © 2007 The Japan Mendel Society Cytologia 72(2): 161–164, 2007 A High Polyploid Chromosome Complement of Ophioglossum nudicaule L. f. Marunnan Faseena and John Ernest Thoppil* Genetics and Plant breeding Division, Department of Botany, University of Calicut,Pin Code-673635, Kerala, India Received January 9, 2007; accepted January 31, 2007 Summary The diploid (2nϭ720) and haploid (2nϭ360) chromosome numbers were determined in Ophioglossum nudicaule. The somatic chromosome count was made on the plant for the first time. O. nudicaule is a very high polyploid plant, either exhibiting 48-ploidy, if the basic chromosome ϭ ϭ number is x2 15 or a 24-ploid, originating from the basic chromosome number of x3 30. Key words Ophioglossum nudicaule, Ophioglossaceae, Mitosis, Meiosis, Polyploidy, Basic chro- mosome number. Ophioglossum nudicaule L. f. (Slender Adder’s tongue) belongs to Ophioglossaceae, a family of primitive ferns. It is a tiny terrestrial herb found in dense patches on the thin soil cover over lat- erite boulders in open areas, roadside ditches and lawns. It is distributed throughout Mexico, West Indies, Central America, South America, Asia, Africa and Pacific Islands. In Kerala, it is common in hills and rocky areas all over the Malabar plains and Munnar (Kumar 1998). Previous studies re- port that homosporous ferns show extremely high chromosome numbers. In O. nudicaule different chromosome numbers, viz. nϭ120 (Ninan 1958), nϭ240 (Ninan 1956, Manickam 1984) and nϭ360 (Ghatak 1977) have been reported. So the present investigation is an attempt to find out the exact somatic and gametic chromosome numbers of O. nudicaule. Materials and methods In the present investigation, O.
    [Show full text]
  • Ophioglossales)
    Acta Box. Neerl. 29 (2/3), May 1980, p. 199-202. Observations on Helminthostachys Kaulfuss (Ophioglossales) 1 2 H.K. GoswamiI and Sharda Khandelwal Department of Botany, Government Science College, Gwalior, M. P. India SUMMARY New observations on the fern genus Helminthostachys Kaulfuss (Ophioglossales) are presented. Tetrarchy ofthe stele in the root is confirmed. The stomata in Helminthostachysare similar tothose in Ophioglossum palmatum.The unusual structure of the vegetative laciniae found at the distal end of In each sporangiophore is again emphasized. the rhizomes the presence of a periderm could be demonstrated. 1. INTRODUCTION Kaulfuss is of the in the Helminthostachys a monotypic genus Ophioglossales eusporangiate ferns. H. zeylanica is found in Ceylon, India, Malay Peninsula, Indonesia, China, Japan, Australia, Philippines, New Caledonia, New Guinea and the Solomon Islands (Beddome 1892, Eames 1936, Panigrahi & Dixit 1969). Numerous workers have made morphological and anatomical studies on the Farmer & Freeman Gwynne- genus (Prantl 1883, Boodle 1899, 1899, Vaughan 1902, Lang 1915, Bower 1926, 1935, Ogura 1938, 1972, Nishida 1956); they have mostly emphasized its similarity to Botrychum Schwarz and Ophioglossum L., despite the significant differences in the fertile spikes of the three genera. is difficult offer of the of It as yet to a morphological explanation rosette vegetative laciniae produced by the sporangiophore, a structure which is unique in the entire plant kingdom (Scott 1923, Bower 1926, 1935) although they are believed to be comparable to growths found in the carboniferous fern Botryo- pteris (Sporne 1970, Bierhorst 1971). this based andanatomical studies the its In paper, on morphological on genus, uniqueness is reemphasized and the suggestion is made that an extensive com- is this parative study needed ofspecimens of monotypic pteridophyte genusfrom different because variables localities, particularly some phenotypic may be sug- gestive of genetic and/or adaptive changes.
    [Show full text]
  • Ophioglossaceae)
    A preliminary revision of the Indo-Pacific species of Ophioglossum (Ophioglossaceae) J.H. Wieffering Rijksherbarium, Leyden INTRODUCTION the of Clausen The differences between most recent complete treatment this genus by and the of a rather fundamental (1938) present revision are, I think, nature. For, though the number of characters Dr Clausen and myselfagree that in troublesometaxa, ‘the small has forced workers base conclusions often trivial .... .... to concerning species on details such leaf characters which be as cutting and size, would not ordinarily considered of fundamental in other from there have followed importance groups’ (l.c. p. 5), on we these characters a different train of thought. Clausen stated (l.c. p. 6) that ‘If were not criteria for it would be reduce the small adopted as species, necessary to species to a very number and the which thereby remove opportunity to keep apart populations appear to be really distinct enough, but for which the characters available for species differen- tiation do not seem fundamental.’ This close comes very to Prantl’s critics (1884, 300) on Luerssen’s treatise where he ob sie the forms which stated: “.... so scheint die Frage, (i.e. Luerssen brought together under O. vulgatum) als Vatietätenoder als ebensoviele Arten zu bezeichnen sein, von untergeordneter Bedeutung zu sein Es gibt eine grosse Anzahl von Sammlern, Floristen etc., deren wissenschaftliches Bedürfnis befriedigt ist, wenn sie auf Etiquetten oder in Katalogen einen aus zwei Worten bestehenden Namen schreiben können; auf ‘Varietäten’ wird eine Rücksicht in der Regel nicht genommen.” In order to facilitate studies based these determinations Prantl then chose small geographical on to accept a species concept.
    [Show full text]
  • Conservation Status of the Endemic Fern Mankyua Chejuense (Ophioglossaceae) on Cheju Island, Republic of Korea
    Oryx Vol 38 No 2 April 2004 Short Communication Conservation status of the endemic fern Mankyua chejuense (Ophioglossaceae) on Cheju Island, Republic of Korea Chul Hwan Kim Abstract Mankyua chejuense, a fern endemic to Cheju Endangered on the IUCN Red List. For conservation Island, Republic of Korea, which lies 120 km south of the of the species it needs to be included on the national Korean Peninsula, appears to be restricted to five extant threatened species list, and its habitat designated as subpopulations in the north-east of the Island, with a an ecological reserve. Intensive surveys are required total population of c. 1,300 individuals. Major threats to in order to establish whether there are any other extant the existence of the species include shifting cultivation, subpopulations of the species, and the presently known plantation, overuse of basaltic rocks that are part of the subpopulations require long-term monitoring and continuous protection. species’ microhabitat, farming and pasturage, and the construction of roads and golf courses in lowland areas. Keywords Cheju Island, Critically Endangered, The information currently available for the species endemic, fern, Mankyua chejuense, Ophioglossaceae, indicates that it should be categorized as Critically Republic of Korea. The 1,824 km2 Cheju Island is located 140 km south of the number of individuals. In this paper I report an approxi- Korean Peninsula. It is of volcanic origin and the highest mate total count of M. chejuense, examine its conservation peak, Halla Mountain, rises to an altitude of 1,950 m. The status, identify factors threatening the species’ survival, island has three main landscape types: lowland areas and propose an IUCN Red List status for the species.
    [Show full text]
  • Adder's Tongue Fern, Ophioglossum Pusillum
    Natural Heritage Adder’s Tongue Fern & Endangered Species Ophioglossum pusillum Raf. Program www.mass.gov/nhesp State Status: Threatened Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: Adder’s Tongue Fern is a small terrestrial fern, up to 30 cm (12 in) high, consisting of a single fleshy green stalk (stipe) bearing a simple leaf and a fertile spike. The stipe arises from fleshy, cod-like rhizomes and roots. About midway up the stipe is the pale green leaf, approximately 15 cm (6 in), narrowly oval to oblong. In var. pseudopodium (false foot), the widespread form, the blade gradually tapers for about 1/3 to 2/3 of its length to a narrow, 1-2 cm base that continues to run down the lower stipe. There is a finely indented network of interconnecting veins. The stipe extends well beyond the leaf blade and is terminated by a short, pale green, narrow fertile spike from 1-4 cm long and up to 5 mm wide, which consists of 2 tightly packed rows of rounded sporangia (spore cases) on the margins of the spike axis. There can be a large variation in the size, shape, and position of the blade, as well as of the fertile spike; occurrences of two fronds (leaves) per rootstalk have been observed. The plant appears anytime after early June. Distribution in Massachusetts 1985 - 2010 Based on records in the Natural Heritage Database Photo: B. Legler, USDA Forest Service. Drawing: USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions.
    [Show full text]
  • Forsythia.Pdf
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 18 April 2016 Forsythia, Forsythia spp. Forsythia is both the common and genus name of a group of deciduous fl ower shrubs in the olive family (Oleaceae) named after William Forsyth, a Scottish botanist who was at that time Director of the Royal Garden at Kensington and a founding member of England’s Royal Horticultural Society. The 11 or so species are primarily native to eastern Asia, with one species from Europe. The two quite variable species F. suspensa and F. viridissima were the fi rst to be brought from the Far East to Europe. Forsythia × intermedia is a hybrid of these species that was introduced in continental Europe Forsythia is a common landscape plant in the about 1880. Many Midwest. other crosses using the same two parents have been made so plants with this name can be quite variable. F. suspensa tends to have a widely open to drooping habit, but a more upright form found in China in 1861 was given the (incorrect) name F. fortunei. Other species discovered in the early 1900’s – F. giraldiana from China and F. ovata from Korea – as well as the European species F. europaea, have been used in 20th-century American crosses. Hardiness varies by species, with most in zones 5-8, but many of the hybrids are hardier than the parents, surviving in zones 4 or even 3. The unrelated white forsythia, Abeliophyllum distichum, has many of the same characteristics as forsythia, blooming White forsythia, Abeliophyllum about the same time, but with white fl owers.
    [Show full text]
  • Plant List by Hardiness Zones
    Plant List by Hardiness Zones Zone 1 Zone 6 Below -45.6 C -10 to 0 F Below -50 F -23.3 to -17.8 C Betula glandulosa (dwarf birch) Buxus sempervirens (common boxwood) Empetrum nigrum (black crowberry) Carya illinoinensis 'Major' (pecan cultivar - fruits in zone 6) Populus tremuloides (quaking aspen) Cedrus atlantica (Atlas cedar) Potentilla pensylvanica (Pennsylvania cinquefoil) Cercis chinensis (Chinese redbud) Rhododendron lapponicum (Lapland rhododendron) Chamaecyparis lawsoniana (Lawson cypress - zone 6b) Salix reticulata (netleaf willow) Cytisus ×praecox (Warminster broom) Hedera helix (English ivy) Zone 2 Ilex opaca (American holly) -50 to -40 F Ligustrum ovalifolium (California privet) -45.6 to -40 C Nandina domestica (heavenly bamboo) Arctostaphylos uva-ursi (bearberry - zone 2b) Prunus laurocerasus (cherry-laurel) Betula papyrifera (paper birch) Sequoiadendron giganteum (giant sequoia) Cornus canadensis (bunchberry) Taxus baccata (English yew) Dasiphora fruticosa (shrubby cinquefoil) Elaeagnus commutata (silverberry) Zone 7 Larix laricina (eastern larch) 0 to 10 F C Pinus mugo (mugo pine) -17.8 to -12.3 C Ulmus americana (American elm) Acer macrophyllum (bigleaf maple) Viburnum opulus var. americanum (American cranberry-bush) Araucaria araucana (monkey puzzle - zone 7b) Berberis darwinii (Darwin's barberry) Zone 3 Camellia sasanqua (sasanqua camellia) -40 to -30 F Cedrus deodara (deodar cedar) -40 to -34.5 C Cistus laurifolius (laurel rockrose) Acer saccharum (sugar maple) Cunninghamia lanceolata (cunninghamia) Betula pendula
    [Show full text]
  • (OUV) of the Wet Tropics of Queensland World Heritage Area
    Handout 2 Natural Heritage Criteria and the Attributes of Outstanding Universal Value (OUV) of the Wet Tropics of Queensland World Heritage Area The notes that follow were derived by deconstructing the original 1988 nomination document to identify the specific themes and attributes which have been recognised as contributing to the Outstanding Universal Value of the Wet Tropics. The notes also provide brief statements of justification for the specific examples provided in the nomination documentation. Steve Goosem, December 2012 Natural Heritage Criteria: (1) Outstanding examples representing the major stages in the earth’s evolutionary history Values: refers to the surviving taxa that are representative of eight ‘stages’ in the evolutionary history of the earth. Relict species and lineages are the elements of this World Heritage value. Attribute of OUV (a) The Age of the Pteridophytes Significance One of the most significant evolutionary events on this planet was the adaptation in the Palaeozoic Era of plants to life on the land. The earliest known (plant) forms were from the Silurian Period more than 400 million years ago. These were spore-producing plants which reached their greatest development 100 million years later during the Carboniferous Period. This stage of the earth’s evolutionary history, involving the proliferation of club mosses (lycopods) and ferns is commonly described as the Age of the Pteridophytes. The range of primitive relict genera representative of the major and most ancient evolutionary groups of pteridophytes occurring in the Wet Tropics is equalled only in the more extensive New Guinea rainforests that were once continuous with those of the listed area.
    [Show full text]
  • Morphological Variations of Fertile Spike in Helminthostachys Zeylanica (L.) Hook
    HACQUETIA 11/2 • 2012, 271–275 DOi: 10.2478/v10028-012-0007-0 MorphologIcAl vAriatIons of fertIle spike In HelmintHostacHys zeylanica (l.) hooK Tapas K. CHaKRabORTy1,2,*, Sandip Dev CHauDHuRi2 & Jayanta CHOuDHuRy2 Abstract The evolutionary history of Ophioglossaceae is enigmatic mainly because fossils of the family trace back only from the earliest Tertiary. Phylogenetic analyses indicate that Helminthostachys is sister to the broadly defined Botrychium. Generally the sporophore of Botrychium is a pinnately compound, whereas it is simple in Hel- minthostachys. Here examples of different Helminthoistachys are represented which show double or triple spikes with some variations. Plants showing variations in their spike morphology are also grown normally. Variations of Helminthostachys spike morphology indicate a tendency to form a compound sporophore structure and in that way have a strong relationship with Botrychium. Key words: Helminthostachys zeylanica, pteridophyte, Ophioglossaceae, fertile spike. Izvleček: Evolucijski razvoj družine kačjejezikovk (Ophioglossaceae) je precej skrivnosten, saj prve fosilne ostanke pred- stavnikov družine najdemo šele iz zgodnjega terciarja. Filogenetske raziskave kažejo, da je monotipični rod Helminthostachys sestrski sicer širše definiranemu rodu mladomesečin (Botrychium). Na splošno je fertilni ali plodni del sporotrofofila pri rodu Botrychium pernato deljen, medtem ko je pri rodu Helminthostachys valjast in enostaven. V študiji so predstavljeni različni osebki vrste Helminthostachys zeylanica z enim ali več plodnimi izrastki. Osebki, ki kažejo na variacijo v obliki trosnih izrastkov rastejo v naravnem okolju. Različna morfologija plodnega-trosnega dela sporotrofofila pri rodu Helminthostachys nakazuje tendenco k tvorbi pernato deljenih trosnih izrastkov, kar je znak sorodnosti omenjenega rodu z rodom Botrychium. Ključne besede: Helminthostachys zeylanica, praprotnice, Ophioglossaceae, plodni izrastek.
    [Show full text]
  • Verbascoside-Rich Abeliophyllum Distichum Nakai Leaf Extracts
    molecules Article Verbascoside-Rich Abeliophyllum distichum Nakai Leaf Extracts Prevent LPS-Induced Preterm Birth Through Inhibiting the Expression of Proinflammatory Cytokines from Macrophages and the Cell Death of Trophoblasts Induced by TNF-α Ho Won Kim 1, A-Reum Yu 1, Minji Kang 2, Nak-Yun Sung 3 , Byung Soo Lee 3 , Sang-Yun Park 3 , In-Jun Han 3, Dong-Sub Kim 3 , Sang-Muk Oh 4, Young Ik Lee 5, Gunho Won 6, Sung Ki Lee 7,* and Jong-Seok Kim 1,* 1 Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea; [email protected] (H.W.K.); [email protected] (A.-R.Y.) 2 Department of Medical Science, Chungnam National University, Daejeon 35365, Korea; [email protected] 3 Division of Natural Product Research, Korea Prime Pharmacy CO. LTD., Jeonnam 58144, Korea; [email protected] (N.-Y.S.); [email protected] (B.S.L.); [email protected] (S.-Y.P.); [email protected] (I.-J.H.); [email protected] (D.-S.K.) 4 Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; [email protected] 5 Industrial Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 35365, Korea; [email protected] 6 Centers for Disease Control & Prevention National Institute of Health 187, Chungcheongbuk-do 28159, Korea; [email protected] 7 Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon 35365, Korea * Correspondence: [email protected] (S.K.L.); [email protected] (J.-S.K.); Tel.: +82-42-600-9114 (S.K.L.); +82-42-600-8648 (J.-S.K.) Academic Editors: Maurizio Battino, Jesus Simal-Gandara and Esra Capanoglu Received: 2 September 2020; Accepted: 5 October 2020; Published: 7 October 2020 Abstract: Background: Preterm birth is a known leading cause of neonatal mortality and morbidity.
    [Show full text]
  • Horsetails and Ferns Are a Monophyletic Group and the Closest Living Relatives to Seed Plants
    letters to nature joining trees and the amino-acid maximum parsimony phylogenies, and 100 replicates for ................................................................. the nucleotide maximum likelihood tree and the amino-acid distance-based analyses (Dayhoff PAM matrix) (see Supplementary Information for additional trees and summary Horsetails and ferns are a of bootstrap support). We performed tests of alternative phylogenetic hypotheses using Kishino±Hasegawa29 (parsimony and likelihood) and Templeton's non-parametric30 tests. monophyletic group and the Received 30 October; accepted 4 December 2000. closestlivingrelativestoseedplants 1. Eisenberg, J. F. The Mammalian Radiations (Chicago Univ. Press, Chicago, 1981). 2. Novacek, M. J. Mammalian phylogeny: shaking the tree. Nature 356, 121±125 (1992). 3. O'Brien, S. J. et al. The promise of comparative genomics in mammals. Science 286, 458±481 (1999). Kathleen M. Pryer*, Harald Schneider*, Alan R. Smith², 4. Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61±64 (1997). Raymond Cran®ll², Paul G. Wolf³, Jeffrey S. Hunt* & Sedonia D. Sipes³ 5. Stanhope, M. J. et al. Highly congruent molecular support for a diverse clade of endemic African mammals. Mol. Phylogenet. Evol. 9, 501±508 (1998). * Department of Botany, The Field Museum of Natural History, 6. McKenna, M. C. & Bell, S. K. Classi®cation of Mammals above the Species Level (Columbia Univ. Press, New York, 1997). 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA 7. Mouchatty, S. K., Gullberg, A., Janke, A. & Arnason, U. The phylogenetic position of the Talpidae ² University Herbarium, University of California, 1001 Valley Life Sciences within Eutheria based on analysis of complete mitochondrial sequences. Mol.
    [Show full text]