Integrating Genomic Approaches to Understand Ageing Nomic Geing

Total Page:16

File Type:pdf, Size:1020Kb

Integrating Genomic Approaches to Understand Ageing Nomic Geing Integrating genomic approaches to understand ageing to understand genomic approaches Integrating ageing to understand genomic approaches Integrating IntegratingIntegrating genomicgenomic UitnodigingUitnodiging VoorVoor het het bijwonen bijwonen van van de de openbare openbare approachesapproaches toto verdedigingverdediging van van mijnmijn proefschrift proefschrift understandunderstand ageingageing “Integrating“Integrating genomicgenomic MarjoleinMarjolein J. J. Peters Peters approachesapproaches to to understandunderstand ageing” ageing” doordoor MarjoleinMarjolein J. J.Peters Peters [email protected]@hotmail.com ParanimfenParanimfen HannekeHanneke Kerkhof Kerkhof LisetteLisette Stolk Stolk WoensdagWoensdag 2323 maart maart 2016 2016 Marjolein J. Peters Marjolein J. Peters Marjolein J. omom 13.30 13.30 uur uur ErasmusErasmus Medisch Medisch Centrum Centrum ProfessorProfessor Andries Andries Queridozaal Queridozaal WytemawegWytemaweg 80 80 30153015 CN CN Rotterdam Rotterdam NaNa afloop afloop van van de de promotie promotie bentbent u uvan van harte harte uitgenodigd uitgenodigd voor voor dede receptie. receptie. Integrating Genomic Approaches to Understand Ageing Marjolein J. Peters 502007-L-bw-Peters ACKNOWLEDGEMENTS The work described in this thesis was conducted at the department of Internal Medicine at Erasmus University Medical Center Rotterdam. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University Rotterdam; the Netherlands Organization for Scientific Research (NWO); the Netherlands Organization for Health Research and Development (ZonMW); the Research Institute for Diseases in the Elderly (RIDE); the Dutch Ministry of Education, Culture and Science; the Dutch Ministry of Health, Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam. Additional funding for the work described in this thesis was provided by the European Commission (HEALTH-F2-2008-201865, GEFOS; HEALTH-F2-2008 35627, TREAT-OA); Netherlands Organisation for Scientific Research (NWO) Investments (nr. 175.010.2005.011, 911-03-012); the Netherlands Consortium for Healthy Ageing (NCHA); the Netherlands Genomics Initiative (NGI) / Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810; and Vidi grant 917103521. The infrastructure for the CHARGE Consortium is supported in part by the National Heart, Lung, and Blood Institute grant R01HL105756. Financial support for the publication of this thesis was kindly provided by the Erasmus University Rotterdam, the Anna Foundation (Anna Fonds), Stichting Artrose Zorg, Pfizer, and Becton Dickinson (BD). Design and layout: Legatron Electronic Publishing, Rotterdam Printing: Ipskamp Printing, Enschede ISBN: 978-94-028-0061-6 © M.J. Peters, 2016 No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without permission from the author or, when appropriate, from the publisher of the publications. 502007-L-bw-Peters “Integrating Genomic Approaches to Understand Ageing” “Integratie van genomische onderzoeksmethodes om veroudering beter te begrijpen” Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. H.A.P. Pols en volgens besluit van het College voor Promoties. De openbare verdeding zal plaatsvinden op woensdag 23 maart 2016 om 13.30 uur door Maria Josephine (Marjolein) Peters geboren te Avereest 502007-L-bw-Peters PROMOTIECOMMISSIE Promotor: Prof.dr. A.G. Uitterlinden Overige leden: Prof.dr. J.H. Gribnau Prof.dr. O.H. Franco Prof.dr. L.H. Franke Copromotor: Dr. J.B.J. van Meurs Paranimfen: Dr. H.J.M. Kerkhof Dr. L. Stolk 502007-L-bw-Peters CONTENT Chapter 1 General Introduction 7 Chapter 2 Transcriptomic Studies 27 2.1 The transcriptional landscape of age in human peripheral blood 29 2.2 A meta-analysis of gene expression signatures of blood pressure 59 and hypertension 2.3 Meta-analysis of whole-blood gene expression associations 79 with circulating lipid levels 2.4 Gene transcripts associated with muscle strength: a CHARGE 105 meta-analysis of 7,781 persons Chapter 3 Combining genetic & genomic approaches 127 3.1 Systematic identification of trans-eQTLs as putative drivers of 129 known disease associations 3.2 Identification of non-coding RNA target genes through 151 trans-eQTL analysis Chapter 4 Genomic analysis integration for age-related musculoskeletal 175 comorbidities 4.1 Genome-wide association study meta-analysis of chronic 177 widespread pain: evidence for involvement of the 5p15.2 region 4.2 Genetics of the heat pain threshold in the general population 199 4.3 Associations between joint effusion in the knee and gene 215 expression levels in the circulation: a meta-analysis Chapter 5 General Discussion 233 Chapter 6 Summary 253 Samenvatting 259 Chapter 7 Bibliography 265 Authors and affiliations 277 About the author 301 Over de auteur 302 Dankwoord 303 502007-L-bw-Peters 502007-L-bw-Peters CHAPTER 1 General Introduction 502007-L-bw-Peters Chapter 1 Age is a major risk factor for many common diseases including cancer, cardiovascular disease, hypertension, osteoarthritis, and type 2 diabetes. The process of ageing is described as a decline in intrinsic physiological functioning over time, leading to an increased mortality rate [1]. All cells and tissues experience progressively decreased functioning over time, but it is not clear which of these changes are causal to age-related phenotypes and diseases. Although age is the most powerful risk factor for many common diseases, the underlying molecular mechanisms are still largely unknown. Biological theories of ageing are dived in two main groups: the programmed ageing theory and the theory of cellular ageing [2]. The programmed ageing theory suggests that ageing is regulated by biological clocks operating throughout lifespan. This regulation would depend on changes in gene expression that affect systems responsible for maintenance, repair, and defense responses. The second theory of cellular ageing is based on the concept that damage, either due to environmental impacts on living organisms, normal byproducts of metabolism, or inefficient repair systems accumulates throughout the lifespan, and causes ageing. Despite the recent advances in molecular biology and genetics, the mysteries that control human lifespan are yet to be unraveled [3]. AGEING RESEARCH IN ANIMAL MODELS The first studies into the regulation of lifespan were performed in animal models, such as yeast (Saccharomyces cerevisiae), round worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and mice (Mus musculus). Genetically engineered animals allow for better understanding of the molecular mechanisms of ageing. An example is a mouse model that expresses a proofreading deficient form of the mitochondrial DNA (mtDNA) polymerase [4]. The mutation resulted in randomly accumulated mtDNA mutations during the course of mitochondrial biosynthesis. The mice displayed a normal phenotype at birth and early adolescence, but subsequently acquired many features of premature ageing (such as weight loss, reduced subcutaneous fat, osteoporosis, anemia, reduced fertility, and heart enlargement) and had a reduced lifespan. These results demonstrate that the accumulation of mtDNA mutations leads to premature ageing in mice. In addition, a significant decrease in the mitochondrial energetic capacity with ageing has been identified in yeast, round worms, and fruit flies [5]. Finally, a study in human volunteers showed that the mtDNA content in muscle declined with ageing [6]. They found reduced levels of mitochondrial gene transcripts and proteins, and a declined capacity for mitochondrial energy production, resulting in lower physical function and higher insulin resistance, both more common in the elderly. Animal models are still instrumental in studying the molecular mechanisms of disease processes: the short life span of some model species enable longitudinal studies and experimental manipulations [7]. While these studies have been crucial for the identification of some ageing regulating genes and pathways, a limitation is that the findings can be difficult to translate to human ageing. The Ageing Gene Database (GenAge) provides a publically available manually curated collection of all genes related to longevity and ageing in model organisms [8]. Today, about 300 human genes and about 2,000 genes in animals have been related to longevity and/or ageing. 8 502007-L-bw-Peters General Introduction AGEING RESEARCH USING CELL LINES Next to animal studies, cell culture studies have been used to study ageing. In 1961, Hayflick et 1 al. [9] discovered that human fibroblasts derived from embryonic tissues could only divide a finite number of times in culture, a phenomena called “replicative senescence”. In 1990, Harley et al. found that telomeres (repetitive sequences at the end of your chromosomes) shorten at each passage. The telomere length contributes to the stabilization of the telomeres, and is the key in avoiding replicative senescence [10]. Recently, scientists in Japan were able to either accelerate the process of ageing within human fibroblast cell lines, or to reverse the process of ageing [11]. They targeted two genes (GCAT and SHMT2) that produce the amino acid glycine in the mitochondria, and by reprogramming the fibroblast cell lines the researchers restored age-associated respiration defects. Yet, the connection between the in vitro findings and the ageing
Recommended publications
  • Supplementary Data
    Figure 2S 4 7 A - C 080125 CSCs 080418 CSCs - + IFN-a 48 h + IFN-a 48 h + IFN-a 72 h 6 + IFN-a 72 h 3 5 MRFI 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 7 B 13 080125 FBS - D 080418 FBS - + IFN-a 48 h 12 + IFN-a 48 h + IFN-a 72 h + IFN-a 72 h 6 080125 FBS 11 10 5 9 8 4 7 6 3 MRFI 5 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 Molecule Molecule FIGURE 4S FIGURE 5S Panel A Panel B FIGURE 6S A B C D Supplemental Results Table 1S. Modulation by IFN-α of APM in GBM CSC and FBS tumor cell lines. Molecule * Cell line IFN-α‡ HLA β2-m# HLA LMP TAP1 TAP2 class II A A HC§ 2 7 10 080125 CSCs - 1∞ (1) 3 (65) 2 (91) 1 (2) 6 (47) 2 (61) 1 (3) 1 (2) 1 (3) + 2 (81) 11 (80) 13 (99) 1 (3) 8 (88) 4 (91) 1 (2) 1 (3) 2 (68) 080125 FBS - 2 (81) 4 (63) 4 (83) 1 (3) 6 (80) 3 (67) 2 (86) 1 (3) 2 (75) + 2 (99) 14 (90) 7 (97) 5 (75) 7 (100) 6 (98) 2 (90) 1 (4) 3 (87) 080418 CSCs - 2 (51) 1 (1) 1 (3) 2 (47) 2 (83) 2 (54) 1 (4) 1 (2) 1 (3) + 2 (81) 3 (76) 5 (75) 2 (50) 2 (83) 3 (71) 1 (3) 2 (87) 1 (2) 080418 FBS - 1 (3) 3 (70) 2 (88) 1 (4) 3 (87) 2 (76) 1 (3) 1 (3) 1 (2) + 2 (78) 7 (98) 5 (99) 2 (94) 5 (100) 3 (100) 1 (4) 2 (100) 1 (2) 070104 CSCs - 1 (2) 1 (3) 1 (3) 2 (78) 1 (3) 1 (2) 1 (3) 1 (3) 1 (2) + 2 (98) 8 (100) 10 (88) 4 (89) 3 (98) 3 (94) 1 (4) 2 (86) 2 (79) * expression of APM molecules was evaluated by intracellular staining and cytofluorimetric analysis; ‡ cells were treatead or not (+/-) for 72 h with 1000 IU/ml of IFN-α; # β-2 microglobulin; § β-2 microglobulin-free HLA-A heavy chain; ∞ values are indicated as ratio between the mean of fluorescence intensity of cells stained with the selected mAb and that of the negative control; bold values indicate significant MRFI (≥ 2).
    [Show full text]
  • Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
    ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.
    [Show full text]
  • Gene Expression Studies: from Case-Control to Multiple-Population-Based Studies
    From the Institute of Human Genetics, Helmholtz Zentrum Munchen,¨ Deutsches Forschungszentrum fur¨ Gesundheit und Umwelt (GmbH) Head: Prof. Dr. Thomas Meitinger Gene expression studies: From case-control to multiple-population-based studies Thesis Submitted for a Doctoral Degree in Natural Sciences at the Faculty of Medicine, Ludwig-Maximilians-Universitat¨ Munchen¨ Katharina Schramm Dachau, Germany 2016 With approval of the Faculty of Medicine Ludwig-Maximilians-Universit¨atM ¨unchen Supervisor/Examiner: Prof. Dr. Thomas Illig Co-Examiners: Prof. Dr. Roland Kappler Dean: Prof. Dr. med. dent. Reinhard Hickel Date of oral examination: 22.12.2016 II Dedicated to my family. III Abstract Recent technological developments allow genome-wide scans of gene expression levels. The reduction of costs and increasing parallelization of processing enable the quantification of 47,000 transcripts in up to twelve samples on a single microarray. Thereby the data collec- tion of large population-based studies was improved. During my PhD, I first developed a workflow for the statistical analyses of case-control stu- dies of up to 50 samples. With large population-based data sets generated I established a pipeline for quality control, data preprocessing and correction for confounders, which re- sulted in substantially improved data. In total, I processed more than 3,000 genome-wide expression profiles using the generated pipeline. With 993 whole blood samples from the population-based KORA (Cooperative Health Research in the Region of Augsburg) study we established one of the largest population-based resource. Using this data set we contributed to a number of transcriptome-wide association studies within national (MetaXpress) and international (CHARGE) consortia.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Systems Analysis Implicates WAVE2&Nbsp
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.5,NO.4,2020 ª 2020 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects a b b b Jonathan J. Edwards, MD, Andrew D. Rouillard, PHD, Nicolas F. Fernandez, PHD, Zichen Wang, PHD, b c d d Alexander Lachmann, PHD, Sunita S. Shankaran, PHD, Brent W. Bisgrove, PHD, Bradley Demarest, MS, e f g h Nahid Turan, PHD, Deepak Srivastava, MD, Daniel Bernstein, MD, John Deanfield, MD, h i j k Alessandro Giardini, MD, PHD, George Porter, MD, PHD, Richard Kim, MD, Amy E. Roberts, MD, k l m m,n Jane W. Newburger, MD, MPH, Elizabeth Goldmuntz, MD, Martina Brueckner, MD, Richard P. Lifton, MD, PHD, o,p,q r,s t d Christine E. Seidman, MD, Wendy K. Chung, MD, PHD, Martin Tristani-Firouzi, MD, H. Joseph Yost, PHD, b u,v Avi Ma’ayan, PHD, Bruce D. Gelb, MD VISUAL ABSTRACT Edwards, J.J. et al. J Am Coll Cardiol Basic Trans Science. 2020;5(4):376–86. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2020.01.012 JACC: BASIC TO TRANSLATIONALSCIENCEVOL.5,NO.4,2020 Edwards et al. 377 APRIL 2020:376– 86 WAVE2 Complex in LVOTO HIGHLIGHTS ABBREVIATIONS AND ACRONYMS Combining CHD phenotype–driven gene set enrichment and CRISPR knockdown screening in zebrafish is an effective approach to identifying novel CHD genes.
    [Show full text]
  • Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence After Radical Prostatectomy
    Int. J. Mol. Sci. 2015, 16, 3856-3869; doi:10.3390/ijms16023856 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Exploring Prostate Cancer Genome Reveals Simultaneous Losses of PTEN, FAS and PAPSS2 in Patients with PSA Recurrence after Radical Prostatectomy Chinyere Ibeawuchi 1, Hartmut Schmidt 2, Reinhard Voss 3, Ulf Titze 4, Mahmoud Abbas 5, Joerg Neumann 6, Elke Eltze 7, Agnes Marije Hoogland 8, Guido Jenster 9, Burkhard Brandt 10 and Axel Semjonow 1,* 1 Prostate Center, Department of Urology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 2 Center for Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Gebaeude 1A, Muenster D-48149, Germany; E-Mail: [email protected] 3 Interdisciplinary Center for Clinical Research, University of Muenster, Albert-Schweitzer-Campus 1, Gebaeude D3, Domagkstrasse 3, Muenster D-48149, Germany; E-Mail: [email protected] 4 Pathology, Lippe Hospital Detmold, Röntgenstrasse 18, Detmold D-32756, Germany; E-Mail: [email protected] 5 Institute of Pathology, Mathias-Spital-Rheine, Frankenburg Street 31, Rheine D-48431, Germany; E-Mail: [email protected] 6 Institute of Pathology, Klinikum Osnabrueck, Am Finkenhuegel 1, Osnabrueck D-49076, Germany; E-Mail: [email protected] 7 Institute of Pathology, Saarbrücken-Rastpfuhl, Rheinstrasse 2, Saarbrücken D-66113, Germany; E-Mail: [email protected] 8 Department
    [Show full text]
  • ADAMTSL3 As a Candidate Gene for Schizophrenia: Gene Sequencing and Ultra-High Density Association Analysis by Imputation
    Schizophrenia Research 127 (2011) 28–34 Contents lists available at ScienceDirect Schizophrenia Research journal homepage: www.elsevier.com/locate/schres ADAMTSL3 as a candidate gene for schizophrenia: Gene sequencing and ultra-high density association analysis by imputation David J. Dow a, Julie Huxley-Jones b, Jamie M. Hall a, Clyde Francks b, Peter R. Maycox a, James N.C. Kew a, Israel S. Gloger a, Nalini A.L. Mehta a, Fiona M. Kelly a, Pierandrea Muglia b, Gerome Breen c, Sarah Jugurnauth c, Inti Pederoso c, David St.Clair d, Dan Rujescu e, Michael R. Barnes b,c,⁎ a Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, CM19 5AW, UK b Computational Biology and Genetics, Quantitative Sciences, Drug Discovery, GlaxoSmithKline Pharmaceuticals, Gunnels Wood Road, Stevenage, SG1 2NY, UK c Division of Psychological Medicine and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College, London, UK d Department of Mental Health, University of Aberdeen, Aberdeen, United Kingdom e Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University, Munich, Germany article info abstract Article history: We previously reported an association with a putative functional variant in the ADAMTSL3 gene, just below Received 27 July 2010 genome-wide significance in a genome-wide association study of schizophrenia. As variants impacting the Received in revised form 29 November 2010 function of ADAMTSL3 (a disintegrin-like and metalloprotease domain with thrombospondin type I motifs- Accepted 11 December 2010 like-3) could illuminate a novel disease mechanism and a potentially specific target, we have used Available online 15 January 2011 complementary approaches to further evaluate the association.
    [Show full text]
  • Systematic Data-Querying of Large Pediatric Biorepository Identifies Novel Ehlers-Danlos Syndrome Variant Akshatha Desai1, John J
    Desai et al. BMC Musculoskeletal Disorders (2016) 17:80 DOI 10.1186/s12891-016-0936-8 RESEARCH ARTICLE Open Access Systematic data-querying of large pediatric biorepository identifies novel Ehlers-Danlos Syndrome variant Akshatha Desai1, John J. Connolly1, Michael March1, Cuiping Hou1, Rosetta Chiavacci1, Cecilia Kim1, Gholson Lyon1, Dexter Hadley1 and Hakon Hakonarson1,2* Abstract Background: Ehlers Danlos Syndrome is a rare form of inherited connective tissue disorder, which primarily affects skin, joints, muscle, and blood cells. The current study aimed at finding the mutation that causing EDS type VII C also known as “Dermatosparaxis” in this family. Methods: Through systematic data querying of the electronic medical records (EMRs) of over 80,000 individuals, we recently identified an EDS family that indicate an autosomal dominant inheritance. The family was consented for genomic analysis of their de-identified data. After a negative screen for known mutations, we performed whole genome sequencing on the male proband, his affected father, and unaffected mother. We filtered the list of non- synonymous variants that are common between the affected individuals. Results: The analysis of non-synonymous variants lead to identifying a novel mutation in the ADAMTSL2 (p. Gly421Ser) gene in the affected individuals. Sanger sequencing confirmed the mutation. Conclusion: Our work is significant not only because it sheds new light on the pathophysiology of EDS for the affected family and the field at large, but also because it demonstrates the utility of unbiased large-scale clinical recruitment in deciphering the genetic etiology of rare mendelian diseases. With unbiased large-scale clinical recruitment we strive to sequence as many rare mendelian diseases as possible, and this work in EDS serves as a successful proof of concept to that effect.
    [Show full text]
  • Neuromuscular Disorders Neurology in Practice: Series Editors: Robert A
    Neuromuscular Disorders neurology in practice: series editors: robert a. gross, department of neurology, university of rochester medical center, rochester, ny, usa jonathan w. mink, department of neurology, university of rochester medical center,rochester, ny, usa Neuromuscular Disorders edited by Rabi N. Tawil, MD Professor of Neurology University of Rochester Medical Center Rochester, NY, USA Shannon Venance, MD, PhD, FRCPCP Associate Professor of Neurology The University of Western Ontario London, Ontario, Canada A John Wiley & Sons, Ltd., Publication This edition fi rst published 2011, ® 2011 by Blackwell Publishing Ltd Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s publishing program has been merged with Wiley’s global Scientifi c, Technical and Medical business to form Wiley-Blackwell. Registered offi ce: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offi ces: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offi ces, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell The right of the author to be identifi ed as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]