An Introduction to Number Theory JJP Veerman

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Number Theory JJP Veerman September 28, 2021 An Introduction to Number Theory J. J. P. Veerman List of Figures p 1 Eratosthenes’ sieve up to n = 30. All multiples of a less than 31 are cancelled. The remainder are the primes less than n = 31. 6 2 A directed path g passing through all points of Z2. 14 R x 3 On the left, the function 2 lnt dt in blue, p(x) in red, and R x x=lnx in green. On the right, we have 2 lnt dt − x=lnx in blue, p(x) − x=lnx in red. 31 ¥ R ¥ −s 4 Proof that ∑n=1 f (n) is greater than 1 x dx if f is positive and decreasing. 36 ¥ 5 Proof that ∑n=1 f (n) (shaded in blue and green) minus f (1) R ¥ −s (shaded in blue) is less than 1 x dx if f is positive and decreasing to 0. 39 6 The origin is marked by “×”. The red dots are visible from ×; between any blue dot and × there is a red dot. The picture shows exactly one quarter of {−4;··· ;4g2n(0;0) ⊂ Z2. 40 7 The general solution of the inhomogeneous equation (~r;~x) = c in R2. 47 8 A one parameter family ft of maps from the circle to itself. For every t 2 [0;1] the map ft is constructed by truncating the map x ! 2x mod 1 as indicated in this figure. 67 3 4 List of Figures 9 Three branches of the Gauss map. 92 10 The line y = wx and (in red) successive iterates of the rotation Rw . Closest returns in this figure are q in f2;3;5;8g. 101 11 The geometry of successive closest returns. 101 12 Drawing y = w1x and successive approximations (an+1 is taken to be 3). The green arrows correspond to en−1, en, and en+1. 102 13 Black: thread from origin with golden mean slope; red: pulling the thread down from the origin; green: pulling the thread up from the origin. 105 14 Plots of the points (n;n) in polar coordinates, for n ranging from 1 to 50, 180, 330, and 3000, respectively. 108 15 Plots of the prime points (p; p) (p prime) in polar coordinates with p ranging between 2 and 3000, and between 2 and 30000, respectively. 109 16 The Gaussian integers are the lattice points in the complex plane; both real and imaginary parts are integers. For an arbitrary point z 2 C — marked by x in the figure, a nearby integer is k1 + ik2 where k1 is the closest integer to Re(z) and k2 the closest integer to Im(z). In this case that is 2 + 3i. 124 p 17 A depiction of Z[ −6] in the complex plane;p real parts are integers and imaginary parts are multiples of 6. 126 18 The part to the right of the intersection with ` : y = x + 1 (dashed) of bad path (in red) is reflected. The reflected part in indicated in green. The path becomes a monotone path from (0;0) to (n − 1;n + 1). 127 19 The Gaussian primes described in Proposition 7.33. There are approximately 950 within a radius 40 of the origin (left figure) and about 3300 within a radius 80 (right figure). 130 20 Possible values of rg−1 in the proof of Proposition 7.27. 132 21 A comparison between approximating the Lebesgue integral (left) and the Riemann integral (right). 140 22 The pushforward of a measure n. 141 − + 23 The functions m(Xc ) and m(Xc ). 142 List of Figures 5 24 This map is not uniquely ergodic 144 25 The first two stages of the construction of the singular measure np. The shaded parts are taken out. 147 26 The first two stages of the construction of the middle third Cantor set. 150 27 The inverse image of a small interval dy is T −1(dy) 156 p 28 w is irrational and q is a convergent of w. Then x + qw modulo 1 is close to x. Thus adding qw modulo 1 amounts to a translation by a small distance. Note: “om” in the figure stands for w. 159 1 1 29 `(I) is between 3 and 2 of `(J). So there are two disjoint images −1 of I under Rw that fall in J. 160 30 An example of the system described in Corollary 9.9. 162 31 Illustration of the fact that for a concave function f , we have f (wx + (1 − w)y) ≥ w f (x) + (1 − w) f (y) (Jensen’s inequality). 170 32 Plot of the function ln(x)ln(1 + x) 171 33 Left, a curve. Then two simple, closed curves with opposite orientation. The curve on the right is a union of two simple, closed curves. 177 34 A singular point z0 where f is bounded does not contribute to H g f dz. 178 35 The curve g goes around z exactly once in counter-clockwise direction. If d is small enough, z + d also lies inside g. 181 36 The curve w goes around z0 exactly once in counter-clockwise direction. 183 37 g is analytic in DR := fRez ≥ −dRg \ fjzj ≤ Rg (shaded). The red is p p curve is given by C+(s) = Re with s 2 (− 2 ; 2 ). The green curve is p 3p is given by C+(s) = Re with s 2 ( 2 ; 2 ). The blue L− consists of 2 small circular segments plus the segment connecting their left endpoints at a distance d to the left of the the imaginary axis. 184 38 The complex plane with eit , −e−it and e−it on the unit circle. cost is the average of eit and e−it and isint as the average of eit and −e−it . 188 6 List of Figures 39 The functions gi and hi of exercise 10.20 for i 2 f2;8;15;30g. 192 40 The contour C is the concatenation of c (celeste), b1 (blue), r1 (red), g (green), p (purple), −g, r2, and b2. The path r is a semi-circle of radius R. The path p is a small circle of radius r. See exercise 10.21. 192 41 Integration over the shaded triangle of area 1=2 in equation 11.9. 201 42 The functions q(x)=x (green), y(x)=x (red), and p(x)lnx=x (blue) for x 2 [1;1000]. All converge to 1 as x tends to infinity. The x-axis is horizontal. 210 43 The two characters modulo 3 illustrate the orthogonality of the Dirichlet characters. 220 44 The set S consists of the natural numbers contained in intervals shaded in the top figure of the form [22n−1;22n). The bottom picture is the same but with a logarithmic horizontal scale. 231 R 1 k 45 Proof that 0 f (x)dx is between ∑ j=1 f ( j dx) and f (0) − f (1) + k ∑ j=1 f ( j dx) if f is decreasing. 232 46 The function ln(ln(x)) for x 2 [1;1040]. 234 List of Tables 7 Contents List of Figures 3 List of Tables 7 Preface 1 Part 1. Introduction to Number Theory Chapter 1. A Quick Tour of Number Theory 5 §1.1. Divisors and Congruences 6 §1.2. Rational and Irrational Numbers 7 §1.3. Algebraic and Transcendental Numbers 9 §1.4. Countable and Uncountable Sets 12 §1.5. Exercises 15 Chapter 2. The Fundamental Theorem of Arithmetic 21 §2.1. Bezout’s´ Lemma 22 §2.2. Corollaries of Bezout’s´ Lemma 23 §2.3. The Fundamental Theorem of Arithmetic 25 §2.4. Corollaries of the Fundamental Theorem of Arithmetic 27 §2.5. The Riemann Hypothesis 29 §2.6. Exercises 33 9 10 Contents Chapter 3. Linear Diophantine Equations 41 §3.1. The Euclidean Algorithm 41 §3.2. A Particular Solution of ax + by = c 43 §3.3. Solution of the Homogeneous equation ax + by = 0 45 §3.4. The General Solution of ax + by = c 46 §3.5. Recursive Solution of x and y in the Diophantine Equation 47 §3.6. The Chinese Remainder Theorem 48 §3.7. Exercises 50 Chapter 4. Number Theoretic Functions 57 §4.1. Multiplicative Functions 57 §4.2. Additive Functions 60 §4.3. Mobius¨ inversion 60 §4.4. Euler’s Phi or Totient Function 62 §4.5. Dirichlet and Lambert Series 64 §4.6. Exercises 67 Chapter 5. Modular Arithmetic and Primes 75 §5.1. Modular Arithmetic 75 §5.2. Euler’s Theorem and Primitive Roots 76 §5.3. Fermat’s Little Theorem and Primality Testing 79 §5.4. Fermat and Mersenne Primes 81 §5.5. Division in Zb 84 §5.6. Exercises 86 Chapter 6. Continued Fractions 91 §6.1. The Gauss Map 91 §6.2. Continued Fractions 92 §6.3. Computing with Continued Fractions 97 §6.4. The Geometric Theory of Continued Fractions 99 §6.5. Closest Returns 101 §6.6. Exercises 103 Contents 11 Part 2. Currents in Number Theory: Algebraic, Probabilistic, and Analytic Chapter 7. Algebraic Integers 113 §7.1. Rings and Fields 113 §7.2. Primes and Integral Domains 115 §7.3. Norms 118 §7.4. Euclidean Domains 121 §7.5. Example and Counter-Example 123 §7.6. Exercises 126 Chapter 8. Ergodic Theory 135 §8.1. The Trouble with Measure Theory 135 §8.2. Measure and Integration 137 §8.3. The Birkhoff Ergodic Theorem 141 §8.4. Examples of Ergodic Measures 144 §8.5. The Lebesgue Decomposition 146 §8.6. Exercises 148 Chapter 9. Three Maps and the Real Numbers 155 §9.1.
Recommended publications
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015
    juan guillermo dueñas luna ASPECTSOFQUANTUMFIELDTHEORYAND NUMBERTHEORY ASPECTSOFQUANTUMFIELDTHEORYANDNUMBER THEORY juan guillermo dueñas luna Quantum Field Theory and Riemann Zeros Theoretical Physics Department. Brazilian Center For Physics Research. July 02, 2015. Juan Guillermo Dueñas Luna: Aspects of Quantum Field Theory and Number Theory, Quantum Field Theory and Riemann Zeros, © July 02, 2015. supervisors: Nami Fux Svaiter. location: Rio de Janeiro. time frame: July 02, 2015. ABSTRACT The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1=2. Motivated by the Hilbert- Pólya conjecture which states that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory, a lot of activity has been devoted to establish a bridge between number theory and physics. Using the techniques of the spectral zeta function we show that prime numbers and the Rie- mann zeros have a different behaviour as the spectrum of a linear operator associated to a system with countable infinite number of degrees of freedom. To explore more connections between quantum field theory and number theory we studied three systems involving these two sequences of numbers. First, we discuss the renormalized zero-point energy for a massive scalar field such that the Riemann zeros appear in the spectrum of the vacuum modes. This scalar field is defined in a (d + 1)-dimensional flat space-time, assuming that one of the coordinates lies in an finite interval [0, a]. For even dimensional space-time we found a finite reg- ularized energy density, while for odd dimensional space-time we are forced to introduce mass counterterms to define a renormalized vacuum energy.
    [Show full text]
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]
  • Sequences of Primes Obtained by the Method of Concatenation
    SEQUENCES OF PRIMES OBTAINED BY THE METHOD OF CONCATENATION (COLLECTED PAPERS) Copyright 2016 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599734668 ISBN: 978-1-59973-466-8 1 INTRODUCTION The definition of “concatenation” in mathematics is, according to Wikipedia, “the joining of two numbers by their numerals. That is, the concatenation of 69 and 420 is 69420”. Though the method of concatenation is widely considered as a part of so called “recreational mathematics”, in fact this method can often lead to very “serious” results, and even more than that, to really amazing results. This is the purpose of this book: to show that this method, unfairly neglected, can be a powerful tool in number theory. In particular, as revealed by the title, I used the method of concatenation in this book to obtain possible infinite sequences of primes. Part One of this book, “Primes in Smarandache concatenated sequences and Smarandache-Coman sequences”, contains 12 papers on various sequences of primes that are distinguished among the terms of the well known Smarandache concatenated sequences (as, for instance, the prime terms in Smarandache concatenated odd
    [Show full text]
  • Prime Numbers and the Riemann Hypothesis
    Prime numbers and the Riemann hypothesis Tatenda Kubalalika October 2, 2019 ABSTRACT. Denote by ζ the Riemann zeta function. By considering the related prime zeta function, we demonstrate in this note that ζ(s) 6= 0 for <(s) > 1=2, which proves the Riemann hypothesis. Keywords and phrases: Prime zeta function, Riemann zeta function, Riemann hypothesis, proof. 2010 Mathematics Subject Classifications: 11M26, 11M06. Introduction. Prime numbers have fascinated mathematicians since the ancient Greeks, and Euclid provided the first proof of their infinitude. Central to this subject is some innocent-looking infinite series known as the Riemann zeta function. This is is a function of the complex variable s, defined in the half-plane <(s) > 1 by 1 X ζ(s) := n−s n=1 and in the whole complex plane by analytic continuation. Euler noticed that the above series can Q −s −1 be expressed as a product p(1 − p ) over the entire set of primes, which entails that ζ(s) 6= 0 for <(s) > 1. As shown by Riemann [2], ζ(s) extends to C as a meromorphic function with only a simple pole at s = 1, with residue 1, and satisfies the functional equation ξ(s) = ξ(1 − s), 1 −z=2 1 R 1 −x w−1 where ξ(z) = 2 z(z − 1)π Γ( 2 z)ζ(z) and Γ(w) = 0 e x dx. From the functional equation and the relationship between Γ and the sine function, it can be easily noticed that 8n 2 N one has ζ(−2n) = 0, hence the negative even integers are referred to as the trivial zeros of ζ in the literature.
    [Show full text]
  • Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected]
    Transformations Volume 2 Article 5 Issue 2 Winter 2016 12-27-2016 Number Pattern Hui Fang Huang Su Nova Southeastern University, [email protected] Denise Gates Janice Haramis Farrah Bell Claude Manigat See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/transformations Part of the Curriculum and Instruction Commons, Science and Mathematics Education Commons, Special Education and Teaching Commons, and the Teacher Education and Professional Development Commons Recommended Citation Su, Hui Fang Huang; Gates, Denise; Haramis, Janice; Bell, Farrah; Manigat, Claude; Hierpe, Kristin; and Da Silva, Lourivaldo (2016) "Number Pattern," Transformations: Vol. 2 : Iss. 2 , Article 5. Available at: https://nsuworks.nova.edu/transformations/vol2/iss2/5 This Article is brought to you for free and open access by the Abraham S. Fischler College of Education at NSUWorks. It has been accepted for inclusion in Transformations by an authorized editor of NSUWorks. For more information, please contact [email protected]. Number Pattern Cover Page Footnote This article is the result of the MAT students' collaborative research work in the Pre-Algebra course. The research was under the direction of their professor, Dr. Hui Fang Su. The ap per was organized by Team Leader Denise Gates. Authors Hui Fang Huang Su, Denise Gates, Janice Haramis, Farrah Bell, Claude Manigat, Kristin Hierpe, and Lourivaldo Da Silva This article is available in Transformations: https://nsuworks.nova.edu/transformations/vol2/iss2/5 Number Patterns Abstract In this manuscript, we study the purpose of number patterns, a brief history of number patterns, and classroom uses for number patterns and magic squares.
    [Show full text]
  • The Aliquot Constant We first Show the Following Result on the Geometric Mean for the Ordi- Nary Sum of Divisors Function
    THE ALIQUOT CONSTANT WIEB BOSMA AND BEN KANE Abstract. The average value of log s(n)/n taken over the first N even integers is shown to converge to a constant λ when N tends to infinity; moreover, the value of this constant is approximated and proven to be less than 0. Here s(n) sums the divisors of n less than n. Thus the geometric mean of s(n)/n, the growth factor of the function s, in the long run tends to be less than 1. This could be interpreted as probabilistic evidence that aliquot sequences tend to remain bounded. 1. Introduction This paper is concerned with the average growth of aliquot sequences. An aliquot sequence is a sequence a0, a1, a2,... of positive integers ob- tained by iteration of the sum-of-aliquot-divisors function s, which is defined for n> 1 by s(n)= d. d|n Xd<n The aliquot sequence with starting value a0 is then equal to 2 a0, a1 = s(a0), a2 = s(a1)= s (a0),... ; k we will say that the sequence terminates (at 1) if ak = s (a0)=1 for some k ≥ 0. The sequence cycles (or is said to end in a cycle) k l 0 if s (a0) = s (a0) for some k,l with 0 ≤ l<k, where s (n) = n by arXiv:0912.3660v1 [math.NT] 18 Dec 2009 definition. Note that s is related to the ordinary sum-of-divisors function σ, with σ(n)= d|n d, by s(n)= σ(n) − n for integers n> 1.
    [Show full text]
  • Ramanujan, Robin, Highly Composite Numbers, and the Riemann Hypothesis
    Contemporary Mathematics Volume 627, 2014 http://dx.doi.org/10.1090/conm/627/12539 Ramanujan, Robin, highly composite numbers, and the Riemann Hypothesis Jean-Louis Nicolas and Jonathan Sondow Abstract. We provide an historical account of equivalent conditions for the Riemann Hypothesis arising from the work of Ramanujan and, later, Guy Robin on generalized highly composite numbers. The first part of the paper is on the mathematical background of our subject. The second part is on its history, which includes several surprises. 1. Mathematical Background Definition. The sum-of-divisors function σ is defined by 1 σ(n):= d = n . d d|n d|n In 1913, Gr¨onwall found the maximal order of σ. Gr¨onwall’s Theorem [8]. The function σ(n) G(n):= (n>1) n log log n satisfies lim sup G(n)=eγ =1.78107 ... , n→∞ where 1 1 γ := lim 1+ + ···+ − log n =0.57721 ... n→∞ 2 n is the Euler-Mascheroni constant. Gr¨onwall’s proof uses: Mertens’s Theorem [10]. If p denotes a prime, then − 1 1 1 lim 1 − = eγ . x→∞ log x p p≤x 2010 Mathematics Subject Classification. Primary 01A60, 11M26, 11A25. Key words and phrases. Riemann Hypothesis, Ramanujan’s Theorem, Robin’s Theorem, sum-of-divisors function, highly composite number, superabundant, colossally abundant, Euler phi function. ©2014 American Mathematical Society 145 This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 146 JEAN-LOUIS NICOLAS AND JONATHAN SONDOW Figure 1. Thomas Hakon GRONWALL¨ (1877–1932) Figure 2. Franz MERTENS (1840–1927) Nowwecometo: Ramanujan’s Theorem [2, 15, 16].
    [Show full text]
  • On Types of Elliptic Pseudoprimes
    journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N.
    [Show full text]
  • 2 Primes Numbers
    V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 2 Primes Numbers Definition 2.1 A number is prime is it is greater than 1, and its only divisors are itself and 1. A number is called composite if it is greater than 1 and is the product of two numbers greater than 1. Thus, the positive numbers are divided into three mutually exclusive classes. The prime numbers, the composite numbers, and the unit 1. We can show that a number is composite numbers by finding a non-trivial factorization.8 Thus, 21 is composite because 21 = 3 7. The letter p is usually used to denote a prime number. × The first fifteen prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 These are found by a process of elimination. Starting with 2, 3, 4, 5, 6, 7, etc., we eliminate the composite numbers 4, 6, 8, 9, and so on. There is a systematic way of finding a table of all primes up to a fixed number. The method is called a sieve method and is called the Sieve of Eratosthenes9. We first illustrate in a simple example by finding all primes from 2 through 25. We start by listing the candidates: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 The first number 2 is a prime, but all multiples of 2 after that are not. Underline these multiples. They are eliminated as composite numbers. The resulting list is as follows: 2, 3, 4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25 The next number not eliminated is 3, the next prime.
    [Show full text]
  • 2015 Compilation of Internship Reports Iii Solubility of Perfl Uorocarbons Under Geothermal Conditions
    BNL-108447-2015 A Compilation of Internship Reports 2015 Prepared for The Offi ce of Educational Programs Brookhaven National Laboratory Offi ce of Educational Programs Offi ce of Educational Programs, 2012 Compilation of Internship Reports 1 DISCLAIMER This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, ex- press or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or rep- resents that its use would not infringe privately owned rights. Reference herein to any specifi c commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily con- stitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or refl ect those of the United States Government or any agency thereof. Table of Contents Automatically detecting typical failure signatures to improve Sun-photometer data quality . 7 Brooke Adams Examining the water gas shift reaction using Pt-CeOx-TiO2 powder catalysts . 11 Balal Aslam Harmonic fl ow in heavy ion collisions: a search for phase transition and v2 correlations . 16 Mamoudou Ba Erin O’Brien Wind farm: feasibility and environmental impacts . 20 Matthew Bernard Acoustic click to mount: using sound pulses to solve the crystal harvesting bottleneck for high throughput screening applications .
    [Show full text]