(Hemiptera: Reduviidae) Vectors of Chagas Disease in Mexico

Total Page:16

File Type:pdf, Size:1020Kb

(Hemiptera: Reduviidae) Vectors of Chagas Disease in Mexico A revision of thirteen species of Triatominae (Hemiptera: Reduviidae ) vectors of Chagas disease in Mexico Revisión de 13 especies de la familia Triatominae (Hemiptera: Reduviidae ) vectores de la enfermedad de Chagas, en México *Salazar-Schettino Paz Maria 1, ** Rojas-Wastavino Gloria Elena 1, Cabrera-Bravo Margarita 1, Bucio-Torres Martha IreneI1, Martínez-Ibarra José Alejandro 3, Monroy-Escobar Maria Carlota 2, Rodas-Retana Antonieta 2, Guevara-Gómez Yolanda 1, Vences-Blanco Mauro Omar 1 Ruiz-Hernández Adela Luisa 1, Torres-Gutiérrez Elia 1 Datos del Articulo Resumen Los transmisores de Trypanosoma cruzi , flagelado causante de la enfermedad, se dividen en intradomiciliados, 1Departamento de Microbiología y Parasitología Facultad de Medicina, peridomiciliados y silvestres. Entre los intradomiciliados se encuentran, Triatoma barberi y Triatoma dimidiata , que Universidad Nacional Autónoma de México. Edificio “A” 2º Piso, Ciudad son los que representan un mayor riesgo para la Salud Pública, en México. Aunque Triatoma dimidiata se encuentra Universitaria, México, DF . principalmente dentro de la vivienda, en Yucatán tiene un comportamiento peridomiciliar, dentro de este grupo se 2Universidad de San Carlos de Guatemala, Laboratorio de encuentran la mayoría de los transmisores de la enfermedad de Chagas Meccus longipennis , M. mazzottii, M. Entomología Aplicada y Parasitología. pallidipennis, M. phyllosomus, M. picturatus, Triatoma gerstaeckeri , T. mexicana, T. rubida, Dipetalogaster máxima, 3 Área de Entomología Médica, Centro Universitario del Sur, Universidad de Panstrongylus rufotuberculatus y Rhodnius prolixus . Los transmisores peridomiciliados son de menor riesgo en la Guadalajara. Avenida Prolongación Colon s/n Km 1 Carretera Cd Guzmán- dinámica de transmisión comparados con los intradomiciliados. Para el control de los transmisores intradomiciliados, Guadalajara Jalisco se deben emplear programas de educación para la salud, mejoramiento de vivienda e insecticidas; mientras que para *Dirección de contacto: Paz María Salazar-Schettino. los vectores visitantes o peridomiciliados, son necesarios programas de educación para la salud, uso de mosquiteros, E-mail. [email protected] Tel/fax (52) (55) 56232468 pabellones y cementación de las bardas de piedra. **Dirección de contacto: Gloria Elena Rojas-Wastavino. E-mail. [email protected] Palabras clave: Triatominos, © 2010. Journal of the Selva Andina Research Society. Bolivia. Todos los derechos reservados. infección por Tripanosoma cruzi , comportamiento, control, Abstract México J Selva Andina Res Soc Vectors of Trypanosoma cruzi , parasite responsible for Chagas disease, are divided in intradomestic, peridomestic and 2010;1(1):57-80. sylvatic. The intradomestic are Triatoma barberi and Triatoma dimidiata , two species that represent the highest health risk among the Mexican population. Triatoma dimidiata is a species found mainly inside human habitats, but in Historial del artículo Yucatan, it corresponds to the peridomicile vectors. Also in the peridomicile most of Chagas disease vectors are Received on June 10, 2010. Accepted on August 06, 2010. found: Meccus bassolsae , M. longipennis , M. mazzottii , M pallidipennis , M. phyllosomus , M picturata , Triatoma On line, Octuber 2010 . gerstaeckeri , T mexicana , T rubida , Dipetalogaster máxima (the last two are in the process of becoming adapted to Key words: the domicile), Panstrongylus rufotuberculatus which occasionally enters the domicile in its adult stage, and Rhodnius Triatominae, natural infection with prolixus , which is practically controlled in the country. Peridomestic vectors are of lower risk in the transmission Trypanosoma cruzi, behaviour, dynamics, as compared to the intradomestic ones. For the control of the intradomestic vectors, health education control, Mexico. programs, improvements of housing, and the use of pesticides are essential To control the peridomestic vectors, health education programs are required, as well as the use of mosquito nets on doors and windows and around beds, aside from cementing the stone wall fences. © 2010. Journal of the Selva Andina Research Society. Bolivian. All rights reserved. 57 Vol 1 No 1 2010 Review of thirteen species Triatominae in Mexico ___________________________________________________________________________________________________________ Introduction There are several initiatives to control Chagas house (Bautista et al 1999) and accomplish some disease. In the Southern Cone Initiative (WHO developmental stages of their life cycle in the 1992), the vector to control is Triatoma infestans ; intradomicile. in the Andean and Central American Countries Initiatives (WHO 1997, 1998), the vectors to Dipetologaster maxima has a wild life cycle (Lent eradicate is Rhodnius prolixus and to control T & Wygodzinsky 1979), but it has been observed in dimidiata . In the Mexico Initiative (Salazar et al the last years to be in a transition and adaptation 2001), no particular species is proposed, as there is process to the human housing. Of the eleven a large variety of vectors distributed along the visiting species, only nymphs in the last stages and whole country, from the smallest one, Belminus adults have been observed intradomiciliated; costaricensis in Veracruz, to the largest, however, they do not colonize the human dwelling Dipetalogaster maxima in Baja California Sur and their presence is not associated to any type of (Salazar et al 1988). All these species have been construction, they only enter the dwelling in search of related with Chagas disease (Cruz & Pickering food and, once obtained, they leave the dwelling. 2006). Meccus pallidipennis , M. longipennis , M . mazzottii and T. mexicana are species that we have found practically in all stages mainly in the first stages of their biological In Mexico, 32 vectors of Trypanosoma cruzi have development, below stones or stone fences, indicating been reported, 19 species belong to the Triatoma that this is the site where their biological cycle is genus and six to the Meccus genus, two species to accomplished. the genus Panstrongylus , and one species to each of the following genera: Belminus , Dipetalogaster , Since not all stages of the biological cycle have been Eratyrus , Paratriatoma , and Rhodnius . Two collected intradomicile, the colonization index genera and fifteen species are exclusive of proposed by Silveira et al (1984) and its modification Mexico, one is Dipetalogaster with one species by Diotaiuti et al (2000) does not reflect actually this and the other is the Meccus genus with six species. index, even when finding nymphs in the fourth and fifth stage, the vector is not actually colonizing the human The Triatoma genus has eight species that are only dwelling. found in Mexico (Galvão et al 2003). Altitude and temperature are important factors, because Thirteen vector species are related to human these vectors have no thermoregulatory center, and dwellings; two are found in the intradomicile and hence, both the vectors and the parasite are at the eleven in the peridomicile area (Vidal et al 2000). environmental temperature, which is going to influence Intradomestic are Triatoma barberi and Triatoma the transmission dynamics of T. cruzi . The ideal dimidiata , although the latter has a similar temperature for the parasite is from 28 to 30ºC a behavior to that observed in the visiting vectors in temperature that is not recorded at high altitudes. the Yucatan Peninsula. The visiting vector species Triatoma dimidiata is the most dispersed vector in colonize the peridomicile, that is, 50-m around the Mexico, its presence has been reported in the south, 58 Salazar-Schettino Paz María et al J Selva Andina Res Soc ___________________________________________________________________________________________________________ center, east (Gulf of Mexico), and north of the country, 1985). for this reason in the Initiative of the Andean and Materials and methods Central American Countries (WHO 1997, 1998) only control of this species is proposed but not its This review was organized from available eradication. literature that includes research papers, conference abstracts, proceedings, theses, and original Seroprevalence values differ between the regions where intradomestic vectors are found and those where research conducted by the authors. The purpose of visiting vectors are reported. Concerning individuals this review is to show same aspects about thirteen that developed the disease, patients with vectors, two are intradomestic and eleven are in myocardiopathies have been found in regions where the peridomestic area. The intradomestic are visiting vectors are reported, and in those where T. Triatoma barberi and Triatoma dimidiata , two barberi considered as intradomestic, is distributed; species that represent the highest health risk aside from this pathology, mega digestive organs have among the Mexican population. The peridomestic been reported (Salazar et al 1984a, Tay et al 1986). are: Meccus longipennis , M. mazzottii , M pallidipennis , M. phyllosomus , M picturatus , The state of Oaxaca is worthwhile mentioning, Triatoma gerstaeckeri , T. mexicana , T rubida , especially for its historical antecedents regarding the disease and the variety of vectors found in this state, ten Dipetalogaster maxima , Panstrongylus different triatomine species have been reported (Galvão rufotuberculatus and Rhodnius prolixus . et al 2003, Lent & Wygodzinsky 1979, Carcavallo et al 1989, Ramsey et al 2000). Here,
Recommended publications
  • Trypanosoma Cruzi Immune Response Modulation Decreases Microbiota in Rhodnius Prolixus Gut and Is Crucial for Parasite Survival and Development
    Trypanosoma cruzi Immune Response Modulation Decreases Microbiota in Rhodnius prolixus Gut and Is Crucial for Parasite Survival and Development Daniele P. Castro1*, Caroline S. Moraes1, Marcelo S. Gonzalez2, Norman A. Ratcliffe1, Patrı´cia Azambuja1,3, Eloi S. Garcia1,3 1 Laborato´rio de Bioquı´mica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundac¸a˜o Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil, 2 Laborato´rio de Biologia de Insetos, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF) Nitero´i, Rio de Janeiro, Brazil, 3 Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil Abstract Trypanosoma cruzi in order to complete its development in the digestive tract of Rhodnius prolixus needs to overcome the immune reactions and microbiota trypanolytic activity of the gut. We demonstrate that in R. prolixus following infection with epimastigotes of Trypanosoma cruzi clone Dm28c and, in comparison with uninfected control insects, the midgut contained (i) fewer bacteria, (ii) higher parasite numbers, and (iii) reduced nitrite and nitrate production and increased phenoloxidase and antibacterial activities. In addition, in insects pre-treated with antibiotic and then infected with Dm28c, there were also reduced bacteria numbers and a higher parasite load compared with insects solely infected with parasites. Furthermore, and in contrast to insects infected with Dm28c, infection with T. cruzi Y strain resulted in a slight decreased numbers of gut bacteria but not sufficient to mediate a successful parasite infection. We conclude that infection of R. prolixus with the T. cruzi Dm28c clone modifies the host gut immune responses to decrease the microbiota population and these changes are crucial for the parasite development in the insect gut.
    [Show full text]
  • When Hiking Through Latin America, Be Alert to Chagas' Disease
    When Hiking Through Latin America, Be Alert to Chagas’ Disease Geographical distribution of main vectors, including risk areas in the southern United States of America INTERNATIONAL ASSOCIATION 2012 EDITION FOR MEDICAL ASSISTANCE For updates go to www.iamat.org TO TRAVELLERS IAMAT [email protected] www.iamat.org @IAMAT_Travel IAMATHealth When Hiking Through Latin America, Be Alert To Chagas’ Disease COURTESY ENDS IN DEATH segment upwards, releases a stylet with fine teeth from the proboscis and Valle de los Naranjos, Venezuela. It is late afternoon, the sun is sinking perforates the skin. A second stylet, smooth and hollow, taps a blood behind the mountains, bringing the first shadows of evening. Down in the vessel. This feeding process lasts at least twenty minutes during which the valley a campesino is still tilling the soil, and the stillness of the vinchuca ingests many times its own weight in blood. approaching night is broken only by a light plane, a crop duster, which During the feeding, defecation occurs contaminating the bite wound periodically flies overhead and disappears further down the valley. with feces which contain parasites that the vinchuca ingested during a Bertoldo, the pilot, is on his final dusting run of the day when suddenly previous bite on an infected human or animal. The irritation of the bite the engine dies. The world flashes before his eyes as he fights to clear the causes the sleeping victim to rub the site with his or her fingers, thus last row of palms. The old duster rears up, just clipping the last trees as it facilitating the introduction of the organisms into the bloodstream.
    [Show full text]
  • Toxicity, Repellency and Flushing out in Triatoma Infestans (Hemiptera: Reduviidae) Exposed to the Repellents DEET and IR3535
    Toxicity, repellency and flushing out in Triatoma infestans (Hemiptera: Reduviidae) exposed to the repellents DEET and IR3535 Mercedes M.N. Reynoso1, Emilia A. Seccacini1, Javier A. Calcagno2, Q1 Eduardo N. Zerba1,3 and Raul A. Alzogaray1,3 Please only 1 UNIDEF, CITEDEF, CONICET, CIPEIN, Villa Martelli, Buenos Aires, Argentina 2 Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico (CEBBAD), Departamento ANNOTATE de Ciencias Naturales y Antropológicas, CONICET, Ciudad Autónoma de Buenos Aires, Argentina 3 Instituto de Investigación e Ingeniería Ambiental (3IA), Universidad Nacional de San Martín (UNSAM), San the proof. Martín, Buenos Aires, Argentina Do not edit the PDF. ABSTRACT If multiple DEET and IR3535 are insect repellents present worldwide in commercial products, which efficacy has been mainly evaluated in mosquitoes. This study compares the authors will toxicological effects and the behavioral responses induced by both repellents on the review this PDF, blood-sucking bug Triatoma infestans Klug (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. When applied topically, the Median Lethal Dose (72 h) for please return DEET was 220.8 mg/insect. Using IR3535, topical application of 250 mg/insect killed one file no nymphs. The minimum concentration that produced repellency was the same for both compounds: 1,15 mg/cm2. The effect of a mixture DEET:IR3535 1:1 was similar containing all to that of their pure components. Flushing out was assessed in a chamber with a shelter corrections. containing groups of ten nymphs. The repellents were aerosolized on the shelter and the number of insects leaving it was recorded for 60 min.
    [Show full text]
  • A New Species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae)
    A peer-reviewed open-access journal ZooKeys 675: 1–25A new (2017) species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae) 1 doi: 10.3897/zookeys.675.12024 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae) João Aristeu da Rosa1, Hernany Henrique Garcia Justino2, Juliana Damieli Nascimento3, Vagner José Mendonça4, Claudia Solano Rocha1, Danila Blanco de Carvalho1, Rossana Falcone1, Maria Tercília Vilela de Azeredo-Oliveira5, Kaio Cesar Chaboli Alevi5, Jader de Oliveira1 1 Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Araraquara, SP, Brasil 2 Departamento de Vigilância em Saúde, Prefeitura Municipal de Paulínia, SP, Brasil 3 Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil 4 Departa- mento de Parasitologia e Imunologia, Universidade Federal do Piauí (UFPI), Teresina, PI, Brasil 5 Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), São José do Rio Preto, SP, Brasil Corresponding author: João Aristeu da Rosa ([email protected]) Academic editor: G. Zhang | Received 31 January 2017 | Accepted 30 March 2017 | Published 18 May 2017 http://zoobank.org/73FB6D53-47AC-4FF7-A345-3C19BFF86868 Citation: Rosa JA, Justino HHG, Nascimento JD, Mendonça VJ, Rocha CS, Carvalho DB, Falcone R, Azeredo- Oliveira MTV, Alevi KCC, Oliveira J (2017) A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys 675: 1–25. https://doi.org/10.3897/zookeys.675.12024 Abstract A colony was formed from eggs of a Rhodnius sp. female collected in Taquarussu, Mato Grosso do Sul, Brazil, and its specimens were used to describe R.
    [Show full text]
  • Description of Triatoma Huehuetenanguensis Sp. N., a Potential Chagas Disease Vector (Hemiptera, Reduviidae, Triatominae)
    A peer-reviewed open-access journal ZooKeys 820:Description 51–70 (2019) of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector 51 doi: 10.3897/zookeys.820.27258 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae) Raquel Asunción Lima-Cordón1, María Carlota Monroy2, Lori Stevens1, Antonieta Rodas2, Gabriela Anaité Rodas2, Patricia L. Dorn3, Silvia A. Justi1,4,5 1 Department of Biology, University of Vermont, Burlington, Vermont, USA 2 The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala 3 Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, USA 4 Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Maryland, USA 5 Walter Reed Army Institute of Research, Silver Spring, MD, USA Corresponding author: Raquel Asunción Lima-Cordón ([email protected]) Academic editor: G. Zhang | Received 6 June 2018 | Accepted 4 November 2018 | Published 28 January 2019 http://zoobank.org/14B0ECA0-1261-409D-B0AA-3009682C4471 Citation: Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, Justi SA (2019) Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys 820: 51–70. https://doi.org/10.3897/zookeys.820.27258 Abstract A new species of the genus Triatoma Laporte, 1832 (Hemiptera, Reduviidae) is described based on speci- mens collected in the department of Huehuetenango, Guatemala. Triatoma huehuetenanguensis sp. n. is closely related to T. dimidiata (Latreille, 1811), with the following main morphological differences: lighter color; smaller overall size, including head length; and width and length of the pronotum.
    [Show full text]
  • Spatial Diversification of Panstrongylus Geniculatus (Reduviidae
    Spatial diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in Colombia Investigadora principal Valentina Caicedo Garzón Investigadores asociados Juan David Ramírez González Camilo Salazar Clavijo Fabian Camilo Salgado Roa Melissa Sánchez Herrera Carolina Hernández Castro Luisa María Arias Giraldo Lineth García Gustavo Vallejo Omar Cantillo Catalina Tovar Joao Aristeu da Rosa Hernán Carrasco Spatial diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in Colombia Estudiante: Valentina Caicedo Garzón Directores de tesis: Juan David Ramírez González Camilo Salazar Clavijo Asesores análisis de datos: Fabian Camilo Salgado Roa Melissa Sánchez Herrera Asesor metodológico: Carolina Hernández Castro Luisa María Arias Giraldo Proveedores muestras: Lineth García Gustavo Vallejo Omar Cantillo Catalina Tovar Joao Aristeu da Rosa Hernán Carrasco Facultad de Ciencias Naturales y Matemáticas Universidad del Rosario Bogotá D.C., 2019 Keywords – Panstrongylus geniculatus, dispersal, genetic diversification, Triatominae, Chagas Disease Abstract Background Triatomines are responsible for the most common mode of transmission of Trypanosoma cruzi, the etiologic agent of Chagas disease. Although, Triatoma and Rhodnius are the vector genera most studied, other triatomines such as Panstrongylus can also contribute to T. cruzi transmission creating new epidemiological scenarios that involve domiciliation. Panstrongylus has at least twelve reported species but there is limited information about their intraspecific diversity and patterns of diversification. Here, we began to fill this gap, studying intraspecific variation in Colombian populations of P. geniculatus. Methodology/Principal finding We examined the pattern of diversification as well as the genetic diversity of P. geniculatus in Colombia using mitochondrial and ribosomal data. We calculated genetic summary statistics within and among P. geniculatus populations. We also estimated genetic divergence of this species from other species in the genus (P.
    [Show full text]
  • Vectors of Chagas Disease, and Implications for Human Health1
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Jurberg Jose, Galvao Cleber Artikel/Article: Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health 1095-1116 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health1 J. JURBERG & C. GALVÃO Abstract: The members of the subfamily Triatominae (Heteroptera, Reduviidae) are vectors of Try- panosoma cruzi (CHAGAS 1909), the causative agent of Chagas disease or American trypanosomiasis. As important vectors, triatomine bugs have attracted ongoing attention, and, thus, various aspects of their systematics, biology, ecology, biogeography, and evolution have been studied for decades. In the present paper the authors summarize the current knowledge on the biology, ecology, and systematics of these vectors and discuss the implications for human health. Key words: Chagas disease, Hemiptera, Triatominae, Trypanosoma cruzi, vectors. Historical background (DARWIN 1871; LENT & WYGODZINSKY 1979). The first triatomine bug species was de- scribed scientifically by Carl DE GEER American trypanosomiasis or Chagas (1773), (Fig. 1), but according to LENT & disease was discovered in 1909 under curi- WYGODZINSKY (1979), the first report on as- ous circumstances. In 1907, the Brazilian pects and habits dated back to 1590, by physician Carlos Ribeiro Justiniano das Reginaldo de Lizárraga. While travelling to Chagas (1879-1934) was sent by Oswaldo inspect convents in Peru and Chile, this Cruz to Lassance, a small village in the state priest noticed the presence of large of Minas Gerais, Brazil, to conduct an anti- hematophagous insects that attacked at malaria campaign in the region where a rail- night.
    [Show full text]
  • Ontogeny, Species Identity, and Environment Dominate Microbiome Dynamics in Wild Populations of Kissing Bugs (Triatominae) Joel J
    Brown et al. Microbiome (2020) 8:146 https://doi.org/10.1186/s40168-020-00921-x RESEARCH Open Access Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae) Joel J. Brown1,2†, Sonia M. Rodríguez-Ruano1†, Anbu Poosakkannu1, Giampiero Batani1, Justin O. Schmidt3, Walter Roachell4, Jan Zima Jr1, Václav Hypša1 and Eva Nováková1,5* Abstract Background: Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas’ disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. Methods: To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. Results: Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T.
    [Show full text]
  • Redalyc.Towards an Understanding of the Interactions of Trypanosoma
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Azambuja, Patrícia; A. Ratcliffe, Norman; S. Garcia, Eloi Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus Anais da Academia Brasileira de Ciências, vol. 77, núm. 3, set., 2005, pp. 397-404 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32777304 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2005) 77(3): 397-404 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus PATRÍCIA AZAMBUJA1, NORMAN A. RATCLIFFE2 and ELOI S. GARCIA1 1Department of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil 2Biomedical and Physiologial Research Group, School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea, SA28PP, United Kingdom Manuscript received on March 3, 2005; accepted for publication on March 30, 2005; contributed by Eloi S. Garcia* ABSTRACT This review outlines aspects on the developmental stages of Trypanosoma cruzi and Trypanosoma rangeli in the invertebrate host, Rhodnius prolixus. Special attention is given to the interactions of these parasites with gut and hemolymph molecules and the effects of the organization of midgut epithelial cells on the parasite development.
    [Show full text]
  • Curriculum Vitae 1/2021
    CURRICULUM VITAE 1/2021 John G. Hildebrand Department of Neuroscience Telephone: (520) 621-6626 College of Science, School of Mind, Brain & Behavior Fax: (520) 621-8282 University of Arizona Email: [email protected] PO Box 210077 Website: https://neurosci.arizona.edu/person/john-hildebrand-phd Tucson AZ 85721-0077 Spouse: Gail D. Burd, Ph.D. Education 1964 A.B. Harvard University (Biology – mentors: John Law & Konrad Bloch) 1966 Harvard Medical School, summer training program in general pathology 1969 Ph.D. Rockefeller University (Bio-organic chemistry – mentors: Leonard Spector & Fritz Lipmann) 1969-71 Postdoctoral Fellow, Harvard Medical School, Department of Neurobiology (mentor: Edward Kravitz) 1977 Cold Spring Harbor Laboratory course, Methods in Cellular Neurophysiology 1993 DNA Methods Course, University of Arizona Division of Biotechnology Employment Present Positions 2014-now Foreign Secretary, U.S. National Academy of Sciences 2010-now Honors Professor, University of Arizona 1989-now Regents Professor, University of Arizona 1985-now Professor of Neuroscience, Chemistry & Biochemistry, Ecology & Evolutionary Biology, Entomology, and Molecular & Cellular Biology, University of Arizona Previous Positions 2009-13 founding Head, Dept. of Neuroscience (formerly ARL Div. Neurobiology), Univ. of Arizona 2010-12 Chairman, Executive Committee, UA School of Mind, Brain and Behavior 1986-97 Chairman, UA Committee on Neuroscience, University of Arizona 1985-2009 founding Director, Arizona Research Laboratories Division of Neurobiology,
    [Show full text]
  • Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande
    REVIEW ARTICLE published: 17 November 2014 PUBLIC HEALTH doi: 10.3389/fpubh.2014.00177 Pathogenic landscape of transboundary zoonotic diseases in the Mexico–US border along the Rio Grande Maria Dolores Esteve-Gassent 1*†, Adalberto A. Pérez de León2†, Dora Romero-Salas 3,Teresa P. Feria-Arroyo4, Ramiro Patino4, Ivan Castro-Arellano5, Guadalupe Gordillo-Pérez 6, Allan Auclair 7, John Goolsby 8, Roger Ivan Rodriguez-Vivas 9 and Jose Guillermo Estrada-Franco10 1 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA 2 USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX, USA 3 Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, México 4 Department of Biology, University of Texas-Pan American, Edinburg, TX, USA 5 Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX, USA 6 Unidad de Investigación en Enfermedades Infecciosas, Centro Médico Nacional SXXI, IMSS, Distrito Federal, México 7 Environmental Risk Analysis Systems, Policy and Program Development, Animal and Plant Health Inspection Service, United States Department of Agriculture, Riverdale, MD, USA 8 Cattle Fever Tick Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Edinburg, TX, USA 9 Facultad de Medicina Veterinaria y Zootecnia, Cuerpo Académico de Salud Animal, Universidad Autónoma de Yucatán, Mérida, México 10 Facultad de Medicina Veterinaria Zootecnia, Centro de Investigaciones y Estudios Avanzados en Salud Animal, Universidad Autónoma del Estado de México, Toluca, México Edited by: Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic Juan-Carlos Navarro, Universidad focus and have pathogens circulating in geographic regions encircling multiple geopoliti- Central de Venezuela, Venezuela cal boundaries.
    [Show full text]
  • Arthropods of Public Health Significance in California
    ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA California Department of Public Health Vector Control Technician Certification Training Manual Category C ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA Category C: Arthropods A Training Manual for Vector Control Technician’s Certification Examination Administered by the California Department of Health Services Edited by Richard P. Meyer, Ph.D. and Minoo B. Madon M V C A s s o c i a t i o n of C a l i f o r n i a MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA 660 J Street, Suite 480, Sacramento, CA 95814 Date of Publication - 2002 This is a publication of the MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA For other MVCAC publications or further informaiton, contact: MVCAC 660 J Street, Suite 480 Sacramento, CA 95814 Telephone: (916) 440-0826 Fax: (916) 442-4182 E-Mail: [email protected] Web Site: http://www.mvcac.org Copyright © MVCAC 2002. All rights reserved. ii Arthropods of Public Health Significance CONTENTS PREFACE ........................................................................................................................................ v DIRECTORY OF CONTRIBUTORS.............................................................................................. vii 1 EPIDEMIOLOGY OF VECTOR-BORNE DISEASES ..................................... Bruce F. Eldridge 1 2 FUNDAMENTALS OF ENTOMOLOGY.......................................................... Richard P. Meyer 11 3 COCKROACHES ...........................................................................................
    [Show full text]