Program Profile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Centaur Dl-A Systems in a Nutshell
NASA Technical Memorandum 88880 '5 t I Centaur Dl-A Systems in a Nutshell (NASA-TM-8888o) CElTAUR D1-A SYSTEBS IN A N87- 159 96 tiljTSBELL (NASA) 29 p CSCL 22D Andrew L. Gordan Lewis Research Center Cleveland, Ohio January 1987 . CENTAUR D1-A SYSTEMS IN A NUTSHELL Andrew L. Gordan National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY This report identifies the unique aspects of the Centaur D1-A systems and subsystems. Centaur performance is described in terms of optimality (pro- pellant usage), flexibility, and airborne computer requirements. Major I-. systems are described narratively with some numerical data given where it may 03 CJ be useful. v, I W INTRODUCT ION The Centaur D1-A launch vehicle continues to be a key element in the Nation's space program. The Atlas/Centaur and Titan/Centaur combinations have boosted into orbit a variety of spacecraft on scientific, lunar, and planetary exploration missions and Earth orbit missions. These versatile, reliable, and accurate space booster systems will contribute to many significant space pro- grams well into the shuttle era. Centaur D1-A is the latest version of the Nation's first high-energy cryogenic launch vehicle. Major improvements in avionics and payload struc- ture have enhanced mission flexibility and mission success reliability. The liquid hydrogen and liquid oxygen propellants and the pressurized stainless steel structure provide a top-performance vehicle. Centaur's primary thrust comes from two Pratt 8, Whitney constant- thrust, turbopump-fed, regeneratively cooled, liquid-fueled rocket engines. Each RL10A-3-3a engine can generate 16 500 lb of thrust, for a total thrust of 33 000 lb. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Centaur D-1A Pamphlet (1973)
• l:Intf.LN3~ UO!S!A!O 9:JedsoJ8t/ J!eAUOJ ''o'l:I3N3~ S:::ml\l'o'NAC ... ) Imagination has been the hallmark of the Cen taur program since its inception. Centaur was the vehicle selected to satisfy man's quest for knowledge in space. Already it has sent Survey or to probe the moon's surface. Mariner to chart the planet Mars, the Orbiti ng Astronomical Observatory to scan the stars without inter ference from the earth's atmosphere, and Pioneer to Jupiter and beyond. Centaur will also be called upon to launch other spacecraft to continue to unlock the secrets of the planets, such as Mariner for Venus and Mercury in 1973, Viking Orbiter/Lander spacecraft to Mars in 1975, and advanced Mariners to Jupiter and Saturn in 1977. Centaur has not only flown scientific missions but also ones with application for solving more tangible problems, such as Applications Tech nology Satellites and the Intelsat communica tions satellite. Centaur has also been chosen to deliver domestic and military communication satellites to synchronous orbit beginning in 1975. Because man's curiosity will never be satisfied, Convair Aerospace stands ready to respond to the challenges of tomorrow with the same imag inative design and quality craftsmanship embod ied in Centaur. K. E. Newton Vice President & Program Director Launch Vehicle Programs CONTENTS INTRODUCTION Introduction A little over a decade ago, Centaur began the first evolutionary steps from conventional Centaur Structure and Major Systems 3 Structure 4 rocketry to the high-energy-fueled vehicles of Propulsion 5 oxygen/hydrogen. Centaur faced numerous Reaction Control 6 problems, many of them demanding solutions Guidance 7 beyond the then current state of the art. -
Aeronautics and Space Report of the President
Aeronautics and Space Report of the President 1971 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 197 I Activities i W Executive Office of the President National Aeronautics and Space Council Washington, D.C. 20502 PRESIDENT’S MESSAGE OF TRANSMITTAL To the Congress of the United States: I am pleased to transmit herewith a report of our national progress in aero- nautics and space activities during 1971. This report shows that we have made forward strides toward each of the six objectives which I set forth for a balanced space program in my statement of March 7, 1970. Aided by the improvements we have made in mobility, our explorers on the moon last summer produced new, exciting and useful evidence on the structure and origin of the moon. Several phenomena which they uncovered are now under study. Our unmanned nearby observation of Mars is similarly valuable and significant for the advancement of science. During 1971, we gave added emphasis to aeronautics activities which contribute substantially to improved travel conditions, safety and security, and we gained in- creasing recognition that space and aeronautical research serves in many ways to keep us in the forefront of man’s technological achievements. There can be little doubt that the investments we are now making in explora- tions of the unknown are but a prelude to the accomplishments of mankind in future generations. THEWHITE HOUSE, March 1972 iii Table of Contents Page Page I . Progress Toward U.S. -
10/2/95 Rev EXECUTIVE SUMMARY This Report, Entitled "Hazard
10/2/95 rev EXECUTIVE SUMMARY This report, entitled "Hazard Analysis of Commercial Space Transportation," is devoted to the review and discussion of generic hazards associated with the ground, launch, orbital and re-entry phases of space operations. Since the DOT Office of Commercial Space Transportation (OCST) has been charged with protecting the public health and safety by the Commercial Space Act of 1984 (P.L. 98-575), it must promulgate and enforce appropriate safety criteria and regulatory requirements for licensing the emerging commercial space launch industry. This report was sponsored by OCST to identify and assess prospective safety hazards associated with commercial launch activities, the involved equipment, facilities, personnel, public property, people and environment. The report presents, organizes and evaluates the technical information available in the public domain, pertaining to the nature, severity and control of prospective hazards and public risk exposure levels arising from commercial space launch activities. The US Government space- operational experience and risk control practices established at its National Ranges serve as the basis for this review and analysis. The report consists of three self-contained, but complementary, volumes focusing on Space Transportation: I. Operations; II. Hazards; and III. Risk Analysis. This Executive Summary is attached to all 3 volumes, with the text describing that volume highlighted. Volume I: Space Transportation Operations provides the technical background and terminology, as well as the issues and regulatory context, for understanding commercial space launch activities and the associated hazards. Chapter 1, The Context for a Hazard Analysis of Commercial Space Activities, discusses the purpose, scope and organization of the report in light of current national space policy and the DOT/OCST regulatory mission. -
Development of a Commercial Expendable Launch Vehicle Industry
The Space Congress® Proceedings 1988 (25th) Heritage - Dedication - Vision Apr 1st, 8:00 AM Development of A Commercial Expendable Launch Vehicle Industry Barbara A. Stone Director of Plans, Policy & Evaluation Division, Office of Commercial Programs, National Aeronautics and Space Administration, Washington, DC 20546 John L. Emond Plans, Policy & Evaluation Division, Office of Commercial Programs, National Aeronautics and Space Administration, Washington, DC 20546 Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Stone, Barbara A. and Emond, John L., "Development of A Commercial Expendable Launch Vehicle Industry" (1988). The Space Congress® Proceedings. 4. https://commons.erau.edu/space-congress-proceedings/proceedings-1988-25th/session-1/4 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. DEVELOPMENT OF A COMMERCIAL EXPENDABLE LAUNCH VEHICLE INDUSTRY Barbara A. Stone r Ph.D. Director of Plans, Policy & Evaluation Division Office of Commercial Programs National Aeronautics and Space Administration Washington, DC 20546 and John L. Emond Plans, Policy & Evaluation Division Office of Commercial Programs National Aeronautics and Space Administration Washington, DC 20546 POLICY BACKGROUND A ground rule in the development of the Shuttle was that expendable launch vehicles (ELV) would be phased out and eventually terminated and that the Shuttle would be the single transportation system for the nation. Subse quently, President Reagan announced a National Space Policy on July 4, 1982, which called for continuation of U.S. -
Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966 Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D. -
Desind Finding
NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application. -
Titan Iv Requirements
OFFICE OF THE INSPECTOR GENERAL TITAN IV REQUIREMENTS Report No. 94-089 April 21, 1994 Department of Defense Additional Copies To obtain additional copies of this report, contact the Secondary Reports Distribution Unit, Audit Planning and Technical Support Directorate, at (703) 614-6303 (DSN 224-6303) or FAX (703) 614-8542. Suggestions for Future Audits To suggest ideas for or to request future audits, contact the Planning and Coordination Branch, Audit Planning and Technical Support Directorate, at (703) 614-1868 (DSN 224-1868) or FAX (703) 614-8542. Ideas and requests can also be mailed to: Inspector General, Department of Defense OAIG-AUD (ATTN: APTS Audit Suggestions) 400 Army Navy Drive (Room 801) Arlington, Virginia 22202-2884 DoD Hotline To report fraud, waste, or abuse, call the DoD Hotline at (800) 424-9098 (DSN 223-5080) or write to the DoD Hotline, The Pentagon, Washington, D.C. 20301-1900. The identity of writers and callers is fully protected. Acronyms FYDP Future Years Defense Program IV&V Independent Verification and Validation OSD Office of the Secretary of Defense RFP Request for Proposal SLAG Space Launch Advisory Group SPO System Program Office SRM Solid Rocket Motor SRMU Solid Rocket Motor Upgrade INSPECTOR GENERAL DEPARTMENT OF DEFENSE 400 ARMY NAVY DRIVE ARLINGTON, VIRGINIA 22202-2884 April 21, 1994 MEMORANDUM FOR ASSISTANT SECRETARY OF THE AIR FORCE (FINANCIAL MANAGEMENT AND COMPTROLLER) SUBJECT: Audit Report on Titan IV Requirements (Report No. 94-089) We are providing this audit report for your review and comments. It discusses requirements for the Titan IV expendable launch vehicle and for independent validation and verification of critical computer resources. -
Titan II Small Multisatellite Mission Approach
I I Titan II Small Multisatellite Mission Approach Aubrey J. Butts I David F. Giere Bruce M. French Martin Marietta Astronautics Group John J. Kusnierek I Space Systems Division, USAF At the present time, small satellite programs are faced with the dilemma that they are I sometimes so small that they cannot afford the expense of a dedicated Expendable Launch Vehicle (EL V) and. therefore, must attempt to find a way to get into orbit as a secondary payload. This paper discusses another alternative, the use of a Titan II as a dedicated launch vehicle for a group of small satellites. Launches could be scheduled on a periodic I basis as a function of predicted need. The Titan II has the capability of inserting total payload weight of 3,000 to 4,000 lbs. into high-inclination, low-earth orbits and smaller payloads to higher orbits. Orbit changes are possible depending on the altitudes and I payloads weights involved. Payload fairings are available for small and large payloads. Since the total payload could conceivably consist of satellites from several unrelated programs, some type of mission "broker" or central contracting agency would be needed to develop and implement a multisatellite mission. This paper offers an approach to I implementing a mission of this type that would allow small satellites to schedule a launch on the T -II multisatellite carrier at a predetermined launch date during each year. The costs would be shared between payloads on the basis of weight and volume. This gives those small satellite programs a launch option that would provide on-orbit operation at a I predetermined time. -
The Evolution of Commercial Launch Vehicles
Fourth Quarter 2001 Quarterly Launch Report 8 The Evolution of Commercial Launch Vehicles INTRODUCTION LAUNCH VEHICLE ORIGINS On February 14, 1963, a Delta launch vehi- The initial development of launch vehicles cle placed the Syncom 1 communications was an arduous and expensive process that satellite into geosynchronous orbit (GEO). occurred simultaneously with military Thirty-five years later, another Delta weapons programs; launch vehicle and launched the Bonum 1 communications missile developers shared a large portion of satellite to GEO. Both launches originated the expenses and technology. The initial from Launch Complex 17, Pad B, at Cape generation of operational launch vehicles in Canaveral Air Force Station in Florida. both the United States and the Soviet Union Bonum 1 weighed 21 times as much as the was derived and developed from the oper- earlier Syncom 1 and the Delta launch vehicle ating country's military ballistic missile that carried it had a maximum geosynchro- programs. The Russian Soyuz launch vehicle nous transfer orbit (GTO) capacity 26.5 is a derivative of the first Soviet interconti- times greater than that of the earlier vehicle. nental ballistic missile (ICBM) and the NATO-designated SS-6 Sapwood. The Launch vehicle performance continues to United States' Atlas and Titan launch vehicles constantly improve, in large part to meet the were developed from U.S. Air Force's first demands of an increasing number of larger two ICBMs of the same names, while the satellites. Current vehicles are very likely to initial Delta (referred to in its earliest be changed from last year's versions and are versions as Thor Delta) was developed certainly not the same as ones from five from the Thor intermediate range ballistic years ago.