The Contributions of John Thomas Jutson to Geomorphology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baylor Geological Studies
BAYLORGEOLOGICA L STUDIES PAUL N. DOLLIVER Creative thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Frontis. Sunset over the Canadian River from near the abandoned settlement of Old Tascosa, Texas. The rampart-like cliffs on the horizon first inspired the name "Llano Estacado" (Palisaded Plain) among Coronado's men. THE BAYLOR UNIVERSITY PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 42 Cenozoic Evolution of the Canadian River Basin Paul N. DoUiver BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1984 Baylor Geological Studies EDITORIAL STAFF Jean M. Spencer Jenness, M.S., Editor environmental and medical geology O. T. Ph.D., Advisor, Cartographic Editor what have you Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D. -
Vertical Motions of Australia During the Cretaceous
Basin Research (1994) 6,63-76 The planform of epeirogeny: vertical motions of Australia during the Cretaceous Mark Russell and Michael Gurnis* Department of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109-1063,USA ABSTRACT Estimates of dynamic motion of Australia since the end of the Jurassic have been made by modelling marine flooding and comparing it with palaeogeographical reconstructions of marine inundation. First, sediment isopachs were backstripped from present-day topography. Dynamic motion was determined by the displacement needed to approximate observed flooding when allowance is made for changes in eustatic sea-level. The reconstructed inundation patterns suggest that during the Cretaceous, Australia remained a relatively stable platform, and flooding in the eastern interior during the Early Cretaceous was primarily the result of the regional tectonic motion. Vertical motion during the Cretaceous was much smaller than the movement since the end of the Cretaceous. Subsidence and marine flooding in the Eromanga and Surat Basins, and the subsequent 500 m of uplift of the eastern portion of the basin, may have been driven by changes in plate dynamics during the Mesozoic. Convergence along the north-east edge of Australia between 200 and 100 Ma coincides with platform sedimentation and subsidence within the Eromanga and Surat Basins. A major shift in the position of subduction at 140Ma was coeval with the marine incursion into the Eromanga. When subduction ended at 95 Ma, marine inundation of the Eromanga also ended. Subsidence and uplift of the eastern interior is consistent with dynamic models of subduction in which subsidence is generated when the dip angle of the slab decreases and uplift is generated when subduction terminates (i.e. -
Hydro-Power and the Promise of Modernity and Development in Ghana: Comparing the Akosombo and Bui Dam Projects
HYDRO-POWER AND THE PROMISE OF MODERNITY AND DEVELOPMENT IN GHANA: COMPARING THE AKOSOMBO AND BUI DAM PROJECTS Stephan F. Miescher, University of California, Santa Barbara & Dzodzi Tsikata, University of Ghana n 2007, as Ghanaians were suffering another electricity crisis with frequent power outages, President J. A. Kufuor celebrated I in a festive mode the sod cutting for the country’s third large hydro-electric dam at Bui across the Black Volta in the Brong Ahafo Region.1 The new 400 megawatt (MW) power project promises to guarantee Ghana’s electricity supply and to develop neglected parts of the north. The Bui Dam had been planned since the 1920s as part of the original Volta River Project: harnessing the river by producing ample electricity for processing the country’s bauxite. In the early 1960s, when President Kwame Nkrumah began to implement the Volta River Project by building the Akosombo Dam, Bui was supposed to follow as part of a grand plan for the industrialization and modernization of Ghana and Africa. Since the 1980s, periodic electricity crises due to irregular rainfall have undermined Ghana’s reliance on Akosombo. By the turn of the century, these crises had created a sense of urgency to realize the Bui project in spite of an increasing international critique of large dams. Although there is more than a forty-year gap between the 1 See press reporting in Daily Mail, 24 August 2007, and the Ghanaian Chroni- cle, 27 August 2007. The sod cutting ceremony, analogous to a grass-cutting or ribbon-cutting event, symbolically marks the beginning of construction for a major infrastructure project. -
Annual Report of the Colonies, Kenya, 1934
COLONIAL REPORTS—ANNUAL No. 1722 Annual Report on the Social and Economic Progress of the People of the KENYA COLONY AND PROTECTORATE, 1934 (For Reports for 1932 and 1933 see Nos. 1659 and 168S respectively (Price 2s. od. each),) Cmvn Copyright Reserved LONDON PRINTED AND PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE To be purchased directly from H.M. STATIONERY OFFICE at the following addresses: Adastral House, Kingsway, London, W.C.2; 120 George Street, Edinburgh 2) York Street, Manchester 1 j 1 St. Andrew's Crescent, Cardiff} 80 Chichester Street, Belfast| or through any Bookseller 1935 Price a;, od. Net 58-1722 ANNUAL REPORT ON THE SOCIAL AND ECONOMIC PROGRESS OF THE PEOPLE OF KENYA COLONY AND PROTECTORATE, 1934 CONTENTS PAGE I. GEOGRAPHY, CLIMATE, AND HISTORY 2 II. GOVERNMENT 5 III. POPULATION 10 IV. HEALTH 13 V. HOUSING 15 VI. PRODUCTION 15 VII. COMMERCE 19 VIII. WAGES AND COST OF LIVING 29 IX. EDUCATION AND WELFARE INSTITUTIONS 31 X. COMMUNICATIONS AND TRANSPORT 33 XI. BANKING, CURRENCY, AND WEIGHTS AND MEASURES 38 XII. PUBLIC WORKS 39 XIII. JUSTICE, POLICE, AND PRISONS 40 XIV. LEGISLATION 44 XV. PUBLIC FINANCE AND TAXATION 46 APPENDIX. LIST OF SELECTED PUBLICATIONS 52 MAP. I.—GEOGRAPHY, CLIMATE, AND HISTORY. Geography. The Colony and Protectorate of Kenya is traversed centrally from east to west by the Equator and from north to south by meridian line 37£° East of Greenwich. It extends from 4° North to 4° South of the Equator and from 34° East longitude to 41° East. The land area is 219,730 square miles and the water area includes the larger portion of Lake Rudolf and the eastern waters of Victoria Nyanza including the Kavirondo Gulf. -
THE DEVELOPMENT of LANDFORM STUDIES in AUSTRALIA by H.I
THE DEVELOPMENT OF LANDFORM STUDIES IN AUSTRALIA by H.I. Scott, B.A.Qld.,M.Sc.Macq. Submitted for the Degree of Doctor of Philosophy School of Geography, August 1976 University of New South Wales UNIVERSITY OF N.S.W., 27922 T3.DEC.77 LIBRARY ACKNOWLEDGEMENTS Directly and indirectly, I am indebted to many people. Many of those whose writing has stimulated me are mentioned in the Bibliography, but I wish to thank the following in particular: My Supervisor, Professor J.A. Mabbutt, Head, School of Geography, University of New South Wales, for his helpful criticisms, suggestions and financial assis tance by way of my appointment as part-time tutor in the Department; Dr. G. Seddon, Director, Centre for Environmental Studies, University of Melbourne, previously Professor and Head of the School of The History and Philosophy of Science, University of New South Wales, and my Co-Supervisor during Professor Mabbutt's Sabbatical Leave, for his helpful cri ticisms of the early drafts of the various Chapters; Professor J.N. Jennings, Professorial Fellow, Department of Biogeography and Geomorphology; Research School of Pacific Studies, Australian National University, Canberra, for his helpful comments on the last five Chapters, his discussion concerning the development of Australian geomorphology since 1945 , and related matters by way of Correspondence. \ Emeritus Professor E.S. Hills, Department of Geology, University of Melbourne, for his helpful comments on Chapters Eight, Nine, and Eleven, and for his time in dis cussing the role which he and his Department played in the development of geomorphology in Victoria during the pre- and post-war periods; Dr. -
THE DEVELOPMENT of GHANA's ALUMINIUM INDUSTRY a Thesis
THE DEVELOPMENT OF GHANA'S ALUMINIUM INDUSTRY A thesis submitted for the degree of DOCTOR OF PHILOSOPHY in the University of London by ALBERT OWUSU BARNAFO A.C.S.M. (Camborne), M.Sc. (London), C.Eng. Department of Social and Economic Studies, Imperial College of Science And Technology, London, S.W.7. September 1982. CONTENTS Abstract Explanatory Notes And Conversion Tables Major Currency Changes In Ghana Abbreviations Acknowledgement s List of Tables List of Figures Preface CHAPTER Is THE BACKGROUND AND INTRODUCTORY SURVEY Chapter 1.1 Structure of Ghana's Economy Chapter 1.2 Ghana's Resources For Aluminium Production Chapter 1.3 The Fragmentary Structure of Ghana's Aluminium Industry Chapter 1.4 Circumstances Leading Up To The 1962 Agreements CHAPTER 2: THE GHANA/KAISER-REYNOLDS AGREEMENTS Chapter 2.1 Overview Chapter 2.2 The Terms Of The Master Agreement And The Power Contract CHAPTER 3: THE WORLD ALUMINIUM INDUSTRY - Implications For Ghana Chapter 3.1 Overview Chapter 3.2 The Technology of Commercial Aluminium Production Chapter 3.3 The Structure And Modus Operandi Of The World Aluminium Industry Chapter 3.4 The Comparative Economics of Alumina/ Aluminium Production In The Traditional Locations And In Ghana Page Chapter 3.5 Market Considerations 97 Chapter 3.6 Investment Requirements For The Prospective 111 Mine/Refinery Complex In Ghana CHAPTER A: THE CASE FOR INTEGRATION 122 Chapter 4.1 Overview 122 Chapter 4.2 The Economic Justification For Integration 126 CHAPTER 5: PROBLEMS OF IMPLEMENTATION 139 Chapter 5.1 The Problems Stated 139 -
Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors
Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors Dictionary of Geotourism With 635 Figures and 12 Tables Editors Anze Chen Young Ng Chinese Academy of Geological Sciences The Geological Society of Australia Beijing, China Sydney, NSW, Australia Erkuang Zhang Mingzhong Tian The Geological Society of China China University of Geosciences Beijing, China Beijing, China ISBN 978-981-13-2537-3 ISBN 978-981-13-2538-0 (eBook) ISBN 978-981-13-2539-7 (print and electronic bundle) https://doi.org/10.1007/978-981-13-2538-0 Jointly published with Science Press, Beijing, China ISBN: 978-7-03-058981-1 Science Press, Beijing, China © Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for gecneral use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Tectonostratigraphy of Sarvak Formation in Zagros Mountain Ranges; South West of Iran
The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran, 26-28 April 2010 Tectonostratigraphy of Sarvak Formation in Zagros Mountain Ranges; South West of Iran M. Afghah1, A. Zamani2, N. Esmaeilpoor3 1- Geology Department, Islamic Azad University, Shiraz Branch, Shiraz, Iran [email protected] 2- Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran, [email protected] 3 -Geology Department, Islamic Azad University, Shiraz Branch, Shiraz, Iran [email protected]. Abstract In this study four geologic sections which are perpendicular to Zagros mountain range have been chosen. Each geologic section is composed of many stations(stratigraphic columns). Sarvak formation as petroleum reservoir rock is studied in the field of lithostratigraphic and syndepositional tectonic activities. Different tectonic activities in the sedimentary basin during Cenomanian, causes various aggregation pattern of Sarvak formation in each station. Finally tectonic movements confirm variation of lithostratigraphic limit of Sarvak Formation in the sub division of Zagros. Key words: Sarvak Formation, Lithostratigraphic, Tectonic activities, Zagros Introduction Sarvak Formation is a thick carbonated unit that is deposited in and Leshtegan limestone, but with sectional measurement in Sarvak rock unit at Bangestan mountain, Sarvak Formation substituted former names. Based on identified fossils, the age of the Sarvak Formation is Upper Albin to Touronian. This formation includes mostly carbonate in lithology and was composed from sequence of thin to medium-bedded limestone and massive limestone. Also Sarvak Formation is one of the most important hydrocarbon resources production horizon in Iran (Afshar Harb, 2001). Laboratory and field observation lead to recognition of four facies environments: open marine, shale, lagoon in Coastal area of Fars, Khuzestan and Lurestan. -
Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)
Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2017 Dissolution-enlarged fractures imaging using electrical resistivity tomography (ERT) Elnaz Siami-Irdemoosa Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Geological Engineering Commons, and the Geophysics and Seismology Commons Department: Geosciences and Geological and Petroleum Engineering Recommended Citation Siami-Irdemoosa, Elnaz, "Dissolution-enlarged fractures imaging using electrical resistivity tomography (ERT)" (2017). Doctoral Dissertations. 2572. https://scholarsmine.mst.edu/doctoral_dissertations/2572 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. DISSOLUTION-ENLARGED FRACTURES IMAGING USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) by ELNAZ SIAMI-IRDEMOOSA A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in GEOLOGICAL ENGINEERING 2017 Approved Neil L. Anderson, Advisor J. David Rogers Norbert H. Maerz Kelly Liu Maochen Ge 2017 Elnaz Siami-Irdemoosa All Rights Reserved iii ABSTRACT In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. -
Tectonic History of the Palo Duro Basin, Texas Panhandle
OF-WTWI-1983-1 TECTONIC HISTORY OF THE PALO DURO BASIN, TEXAS PANHANDLE by Roy T. Budn; k Prepared for the U. S. Department of Energy Office of Nuclear Waste Isolation under contract no. DE-AC-97-83WM 46615 Bureau of Economic Geology W. L. Fisher, Director The University of Texas at Austin Un i ve rs i t Y Stat ion, P.O. Box X Austin, Texas 78712 , / ) ~' 3.3.2 TECTONIC HISTORY INTRODUCTION The Palo Duro Basin is one of a dozen or more intracratonic basins formed as a result of large-scale plate motions in the Late Paleozoic (Goldstein, 1981; Kluth and.Coney, 1981). The margins of the basin are defined by a series of uplifts that developed during the Pennsylvanian (fig. 1). The Palo Duro Basin is bounded on the northeast by the Amarillo-WiChita Uplift, on the northwest by the Bravo Dome, and on the west by the Sierra Grande and other smaller uplifts, all of which were imporant sources of sediment. To the south, the Matador Arch served as a sediment barrier and loci of carbonate buildups, as did a number of smaller, generally unnamed, uplifts to the east. The Palo Duro Basin includes sediments deposited in two temporally separate but spatially overlapping basins (Budnik and Smith, 1982). The initial basin, a northwest extension of the Hardeman Basin (fig. 2), formed as a result of the foundering of a Mississippian shelf during the latest Mississippian or early Pennsylvanian (Budnik and Smith, 1982; Dutton and others, 1982). Up to 2,500 ft (750 m) of Pennsylvanian and a similar thickness of Wolfcampian (Lower Permian), primarily marine, sediments were deposited during this phase (Dutton and others, 1982). -
Alphabetical Glossary of Geomorphology
International Association of Geomorphologists Association Internationale des Géomorphologues ALPHABETICAL GLOSSARY OF GEOMORPHOLOGY Version 1.0 Prepared for the IAG by Andrew Goudie, July 2014 Suggestions for corrections and additions should be sent to [email protected] Abime A vertical shaft in karstic (limestone) areas Ablation The wasting and removal of material from a rock surface by weathering and erosion, or more specifically from a glacier surface by melting, erosion or calving Ablation till Glacial debris deposited when a glacier melts away Abrasion The mechanical wearing down, scraping, or grinding away of a rock surface by friction, ensuing from collision between particles during their transport in wind, ice, running water, waves or gravity. It is sometimes termed corrosion Abrasion notch An elongated cliff-base hollow (typically 1-2 m high and up to 3m recessed) cut out by abrasion, usually where breaking waves are armed with rock fragments Abrasion platform A smooth, seaward-sloping surface formed by abrasion, extending across a rocky shore and often continuing below low tide level as a broad, very gently sloping surface (plain of marine erosion) formed by long-continued abrasion Abrasion ramp A smooth, seaward-sloping segment formed by abrasion on a rocky shore, usually a few meters wide, close to the cliff base Abyss Either a deep part of the ocean or a ravine or deep gorge Abyssal hill A small hill that rises from the floor of an abyssal plain. They are the most abundant geomorphic structures on the planet Earth, covering more than 30% of the ocean floors Abyssal plain An underwater plain on the deep ocean floor, usually found at depths between 3000 and 6000 m. -
The Transition State in Chemical Kinetics by Prof
APRIL 3, 1937 NATURE 575 The Transition State in Chemical Kinetics By Prof. M. Polanyi, University of Manchester """'HE energy barrier separating the initial and The 'transition state method' of treating 1 final states of a reaction has ceased to be a problems of reaction velocity consists in a general fictitious concept since the main principles of ization of this procedure to other variations than chemical inertia were discovered by F. London those of temperature. Supposing the reaction rate (1927). For some simple cases, we can now cal in solution changes under the influence of hydro culate the energy changes occurring during the static pressure 71", then applying thermodynamics process of reaction, and follow the paths along to equation (A) we obtain which the atoms move. We can, in particular, obtain in many cases a clear picture of the con dlogk1 V 1 -V-r dlogv/2 figuration which corresponds to the top of the d1t = RT energy barrier. This configuration is called the where V is the volume of a solution containing transition state " of the reaction. 1 one mol of the initial state and V the volume It is interesting to deduce Arrhenius's equation 1 of a solution containing one mol of the transition by thermodynamical considerations relating to the state. We can again neglect the differential of v transition state. At chemical equilibrium we see and set the atomic configuration changing forwards and k ex; e (V1 - Vr)/RT backwards between the initial and final states of 1 a reaction, and passing on each occasion through The fruitfulness of this deduction depends on the transition state -r.