The Fate of Endoplasmic Reticulum-Targeted Proteins in the Face of Proteasome Failure

Total Page:16

File Type:pdf, Size:1020Kb

The Fate of Endoplasmic Reticulum-Targeted Proteins in the Face of Proteasome Failure The fate of endoplasmic reticulum-targeted proteins in the face of proteasome failure Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von: Franziska Höfer an der Mathematisch-Naturwissenschaftliche Sektion Fachbereich Biologie Tag der mündlichen Prüfung: 18. Mai 2015 1. Referent: Prof. Dr. Martin Scheffner 2. Referent: Prof. Dr. Marcus Groettrup 3. Referent: Prof. Dr. Jörg Tatzelt Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-291257 “Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, and all there ever will be to know and understand, stimulating progress, giving birth to evolution. It is, strictly speaking, a real factor in scientific research.” Albert Einstein, 1931 Table of Content 1. SUMMARY .................................................................................................................. 1 2. ZUSAMMENFASSUNG .............................................................................................. 2 3. INTRODUCTION ......................................................................................................... 3 3.1 The endoplasmic reticulum (ER) ......................................................................................................... 3 3.1.1 Composition and function of the endoplasmic reticulum .................................................................. 3 3.1.2 Protein transport across the mammalian ER membrane ................................................................. 3 3.1.3 ER signal peptides and the ER signal peptidase complex ............................................................... 9 3.1.4 ER-associated degradation (ERAD) ............................................................................................... 11 3.1.5 ER under stress: the unfolded protein response, preemptive quality control in the ER and mislocalized proteins. .............................................................................................................................. 16 3.1.6 Antigen processing and the endoplasmic reticulum ....................................................................... 21 3.2 The (immuno-) proteasome ................................................................................................................ 23 3.2.1 Composition and assembly of the mammalian (immuno-) proteasome ......................................... 23 3.2.2 Ubiquitin and the proteasomal protein degradation process .......................................................... 26 3.2.3 Modification and inhibition of the proteasome ................................................................................ 28 3.2.4 Oxidative stress and proteasomes ................................................................................................. 31 3.3 The brain .............................................................................................................................................. 33 3.3.1 Anatomy of the brain ...................................................................................................................... 33 3.3.2 The (immuno-) biology of astrocytes .............................................................................................. 34 3.3.3 The role of the (immuno-) proteasome in the central nervous system (CNS) ................................ 34 4. OBJECTIVES ............................................................................................................ 36 5. MATERIAL & METHODS .......................................................................................... 38 5.1 Prokaryotic cells .................................................................................................................................. 38 5.1.1 Bacterial strain and culture conditions ............................................................................................ 38 5.1.2 Preparation and transformation of competent bacteria .................................................................. 38 5.2 Eukaryotic Cells ................................................................................................................................... 38 5.2.1 Cell lines ......................................................................................................................................... 38 5.2.2 Heat shock of eukaryotic cells ........................................................................................................ 39 5.2.3 Cytokine stimulation of cell lines .................................................................................................... 39 5.2.4 Lymphocytic choriomeningitis virus (LCMV) infection of cells ........................................................ 39 5.2.5 Chemical inhibitors and inducers ................................................................................................... 39 5.2.6 RNA silencing ................................................................................................................................. 40 5.2.7 Transient transfection of eukaryotic cells with DNA plasmids ........................................................ 41 5.2.8 Generation of stable transfected cell lines ..................................................................................... 44 5.2.9 Lysis of cells ................................................................................................................................... 44 5.2.10 Fluorescence-activated cell sorting .............................................................................................. 44 5.2.11 Confocal fluorescence microscopy of cells .................................................................................. 44 5.2.12 Magnetic cell separation ............................................................................................................... 45 5.2.13. Measurement of cell death .......................................................................................................... 45 5.3 Proteins ................................................................................................................................................ 46 5.3.1 Immunoprecipitation (IP) ................................................................................................................ 46 5.3.2 Deglycosylation of proteins ............................................................................................................ 46 5.3.3 Radioactive labeling of proteins with [35S]-methionine/cysteine (pulse-chase) .............................. 47 5.3.4 Separation of proteins with SDS-PAGE ......................................................................................... 47 5.3.6 Analysis of radioactive proteins on SDS-gels................................................................................. 49 5.3.7 Non-equilibrium pH gel electrophoresis (NEPHGE) ....................................................................... 50 5.3.8 Fractionating cellular proteins using osmotic pressure .................................................................. 50 5.3.9 Proteasome activity assay .............................................................................................................. 51 5.3.10 Sucrose gradient density centrifugation ....................................................................................... 51 5.3.11 Purification of antibodies from rabbit sera .................................................................................... 51 5.4. DNA ...................................................................................................................................................... 51 5.4.1 Preparation of DNA ........................................................................................................................ 51 5.4.2 Agarose gel electrophoresis ........................................................................................................... 52 5.4.4 Polymerase Chain Reaction – PCR ............................................................................................... 52 5.4.5 Restriction enzyme digestion ......................................................................................................... 53 5.4.6 Ligation of DNA fragments ............................................................................................................. 53 5.4.7 Site directed mutagenesis of plasmids ........................................................................................... 53 5.4.8 Quantitative real-time polymerase chain reaction (qRT-PCR) ....................................................... 54 5.5 RNA ....................................................................................................................................................... 54 5.5.1 RNA extraction from eukaryotic cells ............................................................................................. 54 5.5.2 Synthesis of cDNA from RNA samples – Reverse Transcriptase Reaction .................................. 54 5.6 Animals ................................................................................................................................................. 54 5.6.1 Mice ................................................................................................................................................ 54
Recommended publications
  • Computation and Visualization of Protein Topology Graphs Including Ligand Information
    Computation and Visualization of Protein Topology Graphs Including Ligand Information Tim Schäfer1, Patrick May2, and Ina Koch1 1 Institute of Computer Science, Department of Molecular Bioinformatics, Johann Wolfgang Goethe-University Frankfurt (Main), Robert-Mayer-Straße 11–15, 60325 Frankfurt (Main), Germany, [email protected] 2 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7 Avenue des Hauts-Fourneaux, L–4362 Esch-sur-Alzette, Luxembourg Abstract Motivation: Ligand information is of great interest to understand protein function. Protein structure topology can be modeled as a graph with secondary structure elements as vertices and spatial contacts between them as edges. Meaningful representations of such graphs in 2D are required for the visual inspection, comparison and analysis of protein folds, but their automatic visualization is still challenging. We present an approach which solves this task, supports different graph types and can optionally include ligand contacts. Results: Our method extends the field of protein structure description and visualization by including ligand information. It generates a mathematically unique representation and high- quality 2D plots of the secondary structure of a protein based on a protein-ligand graph. This graph is computed from 3D atom coordinates in PDB files and the corresponding SSE assignments of the DSSP algorithm. The related software supports different notations and allows a rapid visualization of protein structures. It can also export graphs in various standard file formats so they can be used with other software. Our approach visualizes ligands in relationship to protein structure topology and thus represents a useful tool for exploring protein structures. Availability: The software is released under an open source license and available at http://www.bioinformatik.uni-frankfurt.de/ in the Software section under Visualization of Protein Ligand Graphs.
    [Show full text]
  • Predictive Energy Landscapes for Folding Α-Helical Transmembrane Proteins
    Predictive energy landscapes for folding α-helical transmembrane proteins Bobby L. Kim, Nicholas P. Schafer, and Peter G. Wolynes1 Departments of Chemistry and Physics and Astronomy and the Center for Theoretical Biological Physics, Rice University, Houston, TX 77005 Contributed by Peter G. Wolynes, June 11, 2014 (sent for review May 19, 2014; reviewed by Zaida A. Luthey-Schulten, Shoji Takada, and Margaret Cheung) We explore the hypothesis that the folding landscapes of mem- folding. Starting with Khorana’swork(7),numerousα-helical brane proteins are funneled once the proteins’ topology within the transmembrane proteins have been refolded from a chemically membrane is established. We extend a protein folding model, denatured state in vitro (8). This indicates that at least some the associative memory, water-mediated, structure, and energy transmembrane domains may not require the translocon to fold model (AWSEM) by adding an implicit membrane potential and properly. In addition, recent experiments on a few α-helical reoptimizing the force field to account for the differing nature of transmembrane proteins have succeeded in characterizing the the interactions that stabilize proteins within lipid membranes, structure of transition state ensembles, in a manner like that used yielding a model that we call AWSEM-membrane. Once the pro- for globular proteins. These studies suggest that native contacts tein topology is set in the membrane, hydrophobic attractions are important in the folding nucleus but may not represent the play a lesser role in finding the native structure, whereas po- whole story (9, 10). Whether membrane proteins possess energy lar–polar attractions are more important than for globular pro- landscapes as funneled as globular proteins remains an open teins.
    [Show full text]
  • NIH Public Access Author Manuscript Science
    NIH Public Access Author Manuscript Science. Author manuscript; available in PMC 2014 September 08. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Science. 2014 January 31; 343(6170): 506–511. doi:10.1126/science.1247363. Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders A full list of authors and affiliations appears at the end of the article. # These authors contributed equally to this work. Abstract Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease. Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders with prevalence between 3 and 10 per 100,000 individuals (1). Hallmark features are axonal degeneration and progressive lower limb spasticity resulting from a loss of corticospinal tract (CST) function. HSP is classified into two broad categories, uncomplicated and complicated, on the basis of the presence of additional clinical features such as intellectual disability, seizures, ataxia, peripheral neuropathy, skin abnormalities, and visual defects.
    [Show full text]
  • Protein Folding and the Organization of the Protein Topology Universe
    Opinion TRENDS in Biochemical Sciences Vol.30 No.1 January 2005 Protein folding and the organization of the protein topology universe Kresten Lindorff-Larsen1, Peter Røgen2, Emanuele Paci3, Michele Vendruscolo1 and Christopher M. Dobson1 1University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, UK, CB2 1EW 2Department of Mathematics, Technical University of Denmark, Building 303, DK-2800 Kongens Lyngby, Denmark 3University of Zu¨ rich, Department of Biochemistry, Winterthurerstrasse 190, 8057 Zu¨ rich, Switzerland The mechanism by which proteins fold to their native ensembles has shown that establishing the correct overall states has been the focus of intense research in recent topology of the polypeptide chain is a crucial aspect of years. The rate-limiting event in the folding reaction is protein folding. This observation is in accord with a series the formation of a conformation in a set known as the of studies that have shown that the folding rate of a transition-state ensemble. The structural features pre- protein, to a first approximation, can be related to the sent within such ensembles have now been analysed for entropic cost of forming the native-like topology [16–22]. a series of proteins using data from a combination of The structural changes occurring during protein fold- biochemical and biophysical experiments together with ing have also been analysed in detail for a series of computer-simulation methods. These studies show that proteins and we discuss some of these studies here. The the topology of the transition state is determined by a results enable the topological view of folding to be set of interactions involving a small number of key reconciled with the well-established concept of nucleation residues and, in addition, that the topology of the [23] by showing that – despite the many different ways in transition state is closer to that of the native state than which a given topology could, in principle, be generated – to that of any other fold in the protein universe.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • A Clearer Picture of the ER Translocon Complex Max Gemmer and Friedrich Förster*
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs231340. doi:10.1242/jcs.231340 REVIEW A clearer picture of the ER translocon complex Max Gemmer and Friedrich Förster* ABSTRACT et al., 1986). SP-equivalent N-terminal transmembrane helices that The endoplasmic reticulum (ER) translocon complex is the main gate are not cleaved off can also target proteins to the ER through the into the secretory pathway, facilitating the translocation of nascent same mechanism. In this SRP-dependent co-translational ER- peptides into the ER lumen or their integration into the lipid membrane. targeting mode, ribosomes associate with the ER membrane via ER Protein biogenesis in the ER involves additional processes, many of translocon complexes. These membrane protein complexes them occurring co-translationally while the nascent protein resides at translocate nascent soluble proteins into the ER, integrate nascent the translocon complex, including recruitment of ER-targeted membrane proteins into the ER membrane, mediate protein folding ribosome–nascent-chain complexes, glycosylation, signal peptide and membrane protein topogenesis, and modify them chemically. In cleavage, membrane protein topogenesis and folding. To perform addition to co-translational protein import and translocation, distinct such varied functions on a broad range of substrates, the ER ER translocon complexes enable post-translational translocation and translocon complex has different accessory components that membrane integration. This post-translational pathway is widespread associate with it either stably or transiently. Here, we review recent in yeast (Panzner et al., 1995), whereas higher eukaryotes primarily structural and functional insights into this dynamically constituted use it for relatively short peptides (Schlenstedt and Zimmermann, central hub in the ER and its components.
    [Show full text]
  • Using the Spycatcher-Spytag and Related Systems for Labeling and Localizing Bacterial Proteins
    International Journal of Molecular Sciences Review Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins Daniel Hatlem , Thomas Trunk, Dirk Linke and Jack C. Leo * Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; [email protected] (D.H.); [email protected] (T.T.); [email protected] (D.L.) * Correspondence: [email protected]; Tel.: +47-228-59027 Received: 2 April 2019; Accepted: 26 April 2019; Published: 30 April 2019 Abstract: The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Genetic Editing of SEC61, SEC62, and SEC63 Abrogates Human
    bioRxiv preprint doi: https://doi.org/10.1101/653857; this version posted May 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genetic editing of SEC61, SEC62, and 2 SEC63 abrogates human cytomegalovirus 3 US2 expression in a signal peptide- 4 dependent manner 5 6 7 Anouk B.C. Schuren 1, Ingrid G.J. Boer1, Ellen Bouma1,2, Robert Jan Lebbink1, Emmanuel 8 J.H.J. Wiertz 1,* 9 1Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands. 10 2 Current address: Department of Medical Microbiology, University Medical Center Groningen, Postbus 30001, 9700 RB 11 Groningen, The Netherlands 12 *Correspondence: [email protected] (E.J.H.J.W.) 13 14 Abstract 15 Newly translated proteins enter the ER through the SEC61 complex, via either co- or post- 16 translational translocation. In mammalian cells, few substrates of post-translational SEC62- and 17 SEC63-dependent translocation have been described. Here, we targeted all components of the 18 SEC61/62/63 complex by CRISPR/Cas9, creating knock-outs or mutants of the individual subunits of 19 the complex. We show that functionality of the human cytomegalovirus protein US2, which is an 1 bioRxiv preprint doi: https://doi.org/10.1101/653857; this version posted May 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Membrane Phospholipid Alteration Causes Chronic ER Stress Through
    www.nature.com/scientificreports OPEN Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic Received: 5 February 2019 Accepted: 29 May 2019 ER-resident proteins Published: xx xx xxxx Peter Shyu Jr., Benjamin S. H. Ng, Nurulain Ho, Ruijie Chaw, Yi Ling Seah, Charlie Marvalim & Guillaume Thibault Phospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to cellular stress responses. However, in most cases, the implication of membrane lipid changes to homeostatic cellular response has not been clearly defned. Previously, we reported that Saccharomyces cerevisiae adapts to lipid bilayer stress by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR). Surprisingly, we observed certain ER-resident transmembrane proteins, which form part of the UPR programme, to be destabilised under lipid bilayer stress. Among these, the protein translocon subunit Sbh1 was prematurely degraded by membrane stifening at the ER. Moreover, our fndings suggest that the Doa10 complex recognises free Sbh1 that becomes increasingly accessible during lipid bilayer stress, perhaps due to the change in ER membrane properties. Premature removal of key ER-resident transmembrane proteins might be an underlying cause of chronic ER stress as a result of lipid bilayer stress. Phospholipid homeostasis is crucial in the maintenance of various cellular processes and functions. Phospholipids participate extensively in the formation of biological membranes, which give rise to distinct intracellular com- partments known as organelles for metabolic reactions, storage of biomolecules, signalling, as well as sequestra- tion of metabolites.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Structural analysis of a forkhead-associated domain from the type III secretion system protein YscD Permalink https://escholarship.org/uc/item/6410g6n9 Author Gamez, Alicia Margarita Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Structural analysis of a forkhead-associated domain from the type III secretion system protein YscD A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Alicia Margarita Gamez Committee in charge: Professor Partho Ghosh, Chair Professor Michael Burkart Professor Daniel Donoghue Professor Victor Nizet Professor Susan Taylor 2011 The Dissertation of Alicia Margarita Gamez is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION This thesis is dedicated to my family. iv TABLE OF CONTENTS Signature Page .......................................................................................................... iii Dedication ................................................................................................................. iv Table of Contents ....................................................................................................... v List of Figures ..........................................................................................................
    [Show full text]
  • Sec63 and Xbp1 Regulate Ire1α Activity and Polycystic Disease Severity
    Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity Sorin V. Fedeles, … , Stefan Somlo, Ann-Hwee Lee J Clin Invest. 2015;125(5):1955-1967. https://doi.org/10.1172/JCI78863. Research Article Nephrology The HSP40 cochaperone SEC63 is associated with the SEC61 translocon complex in the ER. Mutations in the gene encoding SEC63 cause polycystic liver disease in humans; however, it is not clear how altered SEC63 influences disease manifestations. In mice, loss of SEC63 induces cyst formation both in liver and kidney as the result of reduced polycystin- 1 (PC1). Here we report that inactivation of SEC63 induces an unfolded protein response (UPR) pathway that is protective against cyst formation. Specifically, using murine genetic models, we determined that SEC63 deficiency selectively activates the IRE1α-XBP1 branch of UPR and that SEC63 exists in a complex with PC1. Concomitant inactivation of both SEC63 and XBP1 exacerbated the polycystic kidney phenotype in mice by markedly suppressing cleavage at the G protein–coupled receptor proteolysis site (GPS) in PC1. Enforced expression of spliced XBP1 (XBP1s) enhanced GPS cleavage of PC1 in SEC63-deficient cells, and XBP1 overexpression in vivo ameliorated cystic disease in a murine model with reduced PC1 function that is unrelated to SEC63 inactivation. Collectively, the findings show that SEC63 function regulates IRE1α/XBP1 activation, SEC63 and XBP1 are required for GPS cleavage and maturation of PC1, and activation of XBP1 can protect against polycystic disease in the setting of impaired biogenesis of PC1. Find the latest version: https://jci.me/78863/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity Sorin V.
    [Show full text]