Salamander News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pond-Breeding Amphibian Guild
Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Pond-breeding Amphibians Guild Primary Species: Flatwoods Salamander Ambystoma cingulatum Carolina Gopher Frog Rana capito capito Broad-Striped Dwarf Siren Pseudobranchus striatus striatus Tiger Salamander Ambystoma tigrinum Secondary Species: Upland Chorus Frog Pseudacris feriarum -Coastal Plain only Northern Cricket Frog Acris crepitans -Coastal Plain only Contributors (2005): Stephen Bennett and Kurt A. Buhlmann [SCDNR] Reviewed and Edited (2012): Stephen Bennett (SCDNR), Kurt A. Buhlmann (SREL), and Jeff Camper (Francis Marion University) DESCRIPTION Taxonomy and Basic Descriptions This guild contains 4 primary species: the flatwoods salamander, Carolina gopher frog, dwarf siren, and tiger salamander; and 2 secondary species: upland chorus frog and northern cricket frog. Primary species are high priority species that are directly tied to a unifying feature or habitat. Secondary species are priority species that may occur in, or be related to, the unifying feature at some time in their life. The flatwoods salamander—in particular, the frosted flatwoods salamander— and tiger salamander are members of the family Ambystomatidae, the mole salamanders. Both species are large; the tiger salamander is the largest terrestrial salamander in the eastern United States. The Photo by SC DNR flatwoods salamander can reach lengths of 9 to 12 cm (3.5 to 4.7 in.) as an adult. This species is dark, ranging from black to dark brown with silver-white reticulated markings (Conant and Collins 1991; Martof et al. 1980). The tiger salamander can reach lengths of 18 to 20 cm (7.1 to 7.9 in.) as an adult; maximum size is approximately 30 cm (11.8 in.). -
Herpetological Journal FULL PAPER
Volume 29 (April 2019), 71-81 Herpetological Journal FULL PAPER https://doi.org/10.33256/hj29.2.7181 Published by the British Predicting Ambystoma ordinarium distribution under differentHerpetological Society climate scenarios in central Mexico Rafael Hernández-Guzmán1, Luis H. Escalera-Vázquez2 & Ireri Suazo-Ortuño3 1CONACYT – Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México 2Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, edificio R, planta baja, Ciudad Universitaria. Morelia, Michoacán, México 3Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México Global climate change represents one of the most important threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of a changing climate due to their restrictive physiological requirements and low vagility; however, little is known about which amphibian species are more vulnerable to climate change. Therefore, we aimed to forecast changes in the distribution of the mountain stream salamander, Ambystoma ordinarium, using different climate scenarios. Approximately 70 representative presence records were selected to model the current potential distribution and two scenarios based on 2070 climate projections (RCP 2.6 and RCP 8.5) using the MaxEnt algorithm and three global climate models (BCC-CSM1-1, CCSM4 and HadGEM2-ES). A total of three scenarios were simulated using the 10-percentile training presence as the threshold rule. For all scenarios, the average of the area under the receiver operating characteristic curve for the replicated runs was greater than 0.95 ± 0.005, representing good performance for the current and projected geographical distributions of A. -
Ontogenetic Evidence for the Paleozoic Ancestry of Salamanders
EVOLUTION & DEVELOPMENT 5:3, 314–324 (2003) Ontogenetic evidence for the Paleozoic ancestry of salamanders Rainer R. Schocha and Robert L. Carrollb aStaatlilches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany bRedpath Museum, McGill University, Montréal, Québec, Canada, H3A 2K6 Authors for correspondence (e-mail: [email protected], [email protected]) SUMMARY The phylogenetic positions of frogs, sala- tire developmental sequence from hatching to metamor- manders, and caecilians have been difficult to establish. phosis is revealed in an assemblage of over 600 Data matrices based primarily on Paleozoic taxa support a specimens from a single locality, all belonging to the genus monophyletic origin of all Lissamphibia but have resulted in Apateon. Apateon forms the most speciose genus of the widely divergent hypotheses of the nature of their common neotenic temnospondyl family Branchiosauridae. The se- ancestor. Analysis that concentrates on the character quence of ossification of individual bones and the changing states of the stem taxa of the extant orders, in contrast, configuration of the skull closely parallel those observed in suggests a polyphyletic origin from divergent Paleozoic the development of primitive living salamanders. These clades. Comparison of patterns of larval development in fossils provide a model of how derived features of the sala- Paleozoic and modern amphibians provides a means to mander skull may have evolved in the context of feeding test previous phylogenies based primarily on adult charac- specializations that appeared in early larval stages of mem- teristics. This proves to be highly informative in the case of bers of the Branchiosauridae. Larvae of Apateon share the origin of salamanders. -
Amphibian Identification Guide
Amphibian Migrations & Road Crossings Amphibian Identification Guide The NYSDEC Hudson River Estuary Program and Cornell University are working with communities to conserve forests, woodland pools, and the wildlife that depend on these critical habitats. This guide is designed to help volunteers of the Amphibian Migrations & Road Crossings Project identify species they observe during spring migrations, when many salamanders and frogs move from forest habitat to woodland pools for breeding. For more information about the project, visit http://www.dec.ny.gov/lands/51925.html. spotted salamander* (Ambystoma maculatum) Black to dark gray body with two rows of yellow spots. Widespread distribution in the Hudson Valley. Total length 5.0-8.0 in. Jefferson/blue-spotted salamander complex* (Ambystoma jeffersonianum x laterale) Brown to grayish black with blue-silver flecking. Less common. Note: Hybridization between Jefferson and blue-spotted salamander has created very variable appearances and individuals may have features of both species. Because even experts have difficulty distinguishing these two species in the field, we consider any sightings to be the ‘complex.’ Total length 3.0-7.5 in. marbled salamander* (Ambystoma opacum) Black or grayish-black body with white or gray crossbars along length of body. Stout body with wide head. Less common. (Breeds in the fall.) Total length 3.5-5.0 in. *Woodland pool breeding species. 0 inches 1 2 3 4 5 6 7 Amphibian Migrations & Road Crossings: Amphibian Identification Guide Page 2 of 4 eastern newt (Notophthalmus viridescens) Terrestrial “red eft” stage of newt (above) is reddish-orange with two rows of reddish spots with black borders. -
2020 Mississippi Bird EA
ENVIRONMENTAL ASSESSMENT Managing Damage and Threats of Damage Caused by Birds in the State of Mississippi Prepared by United States Department of Agriculture Animal and Plant Health Inspection Service Wildlife Services In Cooperation with: The Tennessee Valley Authority January 2020 i EXECUTIVE SUMMARY Wildlife is an important public resource that can provide economic, recreational, emotional, and esthetic benefits to many people. However, wildlife can cause damage to agricultural resources, natural resources, property, and threaten human safety. When people experience damage caused by wildlife or when wildlife threatens to cause damage, people may seek assistance from other entities. The United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services (WS) program is the lead federal agency responsible for managing conflicts between people and wildlife. Therefore, people experiencing damage or threats of damage associated with wildlife could seek assistance from WS. In Mississippi, WS has and continues to receive requests for assistance to reduce and prevent damage associated with several bird species. The National Environmental Policy Act (NEPA) requires federal agencies to incorporate environmental planning into federal agency actions and decision-making processes. Therefore, if WS provided assistance by conducting activities to manage damage caused by bird species, those activities would be a federal action requiring compliance with the NEPA. The NEPA requires federal agencies to have available -
Western Tiger Salamander,Ambystoma Mavortium
COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada. -
Red-Spotted Newt Fact Sheet
WILDLIFE IN CONNECTICUT WILDLIFE FACT SHEET DENNIS QUINN Eastern Red-spotted Newt Notophthalmus v. viridescens Background and Range The red-spotted newt (also commonly referred to as the eastern newt) is widespread and familiar in many areas of Connecticut. Newts have four distinct life stages: egg, aquatic larvae, terrestrial juvenial (or “eft”), and aquatic adult. Their life cycle is one of the most complex of all the salamanders; starting as an egg, hatching into a larvae with external gills, then migrating to terrestrial habitats as juveniles where gills are replaced with lungs, and returning a few years later to their aquatic habitats as adults which retain their lungs. In Connecticut, the newt is found statewide, but more prominently west of the Connecticut River. The red-spotted newt has many subspecies and an extensive range throughout the United States. Description The adult red-spotted newt has smooth skin that is overall greenish in color, with small black dots scattered on the back and a row of several black-bordered reddish-orange spots on each side of the back. Male newts have black rough patches on the inside of their thighs and on the bottom tip of their hind toes during the breeding season. Adult newts are usually 3 to 5 inches in length. The juvenile, or eft, stage of the red-spotted newt is bright orange in color with small black dots scattered on the back and a row of larger, black-bordered orange spots on each side of the back. The skin is rough and dry compared to the moist and smooth skin of adults and larvae. -
From Marine Fishes Off New Caledonia, with a Key to Species of Cucullanus from Anguilliformes
Parasite 25, 51 (2018) Ó F. Moravec and J.-L. Justine, published by EDP Sciences, 2018 https://doi.org/10.1051/parasite/2018050 urn:lsid:zoobank.org:pub:FC92E481-4FF7-4DD8-B7C9-9F192F373D2E Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Three new species of Cucullanus (Nematoda: Cucullanidae) from marine fishes off New Caledonia, with a key to species of Cucullanus from Anguilliformes František Moravec1 and Jean-Lou Justine2,* 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 Cˇ eské Budeˇjovice, Czech Republic 2 Institut Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 51, 57 rue Cuvier, 75005 Paris, France Received 16 July 2018, Accepted 8 August 2018, Published online 20 September 2018 Abstract – Based on light and scanning electron microscopical studies of nematode specimens from the digestive tract of some rarely collected anguilliform and perciform fishes off New Caledonia, three new species of Cucullanus Müller, 1777 (Cucullanidae) are described: C. austropacificus n. sp. from the longfin African conger Conger cinereus (Congridae), C. gymnothoracis n. sp. from the lipspot moray Gymnothorax chilospilus (Muraenidae), and C. incog- nitus n. sp. from the seabream Dentex fourmanoiri (Sparidae). Cucullanus austropacificus n. sp. is characterized by the presence of cervical alae, ventral sucker, alate spicules 1.30–1.65 mm long, conspicuous outgrowths of the ante- rior and posterior cloacal lips and by elongate-oval eggs measuring 89–108 · 48–57 lm; C. gymnothoracis n. sp. is similar to the foregoing species, but differs from it in the absence of cervical alae and the posterior cloacal outgrowth, in the shape and size of the anterior cloacal outgrowth and somewhat shorter spicules 1.12 mm long; C. -
Conger Oceanicus
Conger Eel − Conger oceanicus Overall Vulnerability Rank = High Biological Sensitivity = Moderate Climate Exposure = Very High Data Quality = 62% of scores ≥ 2 Expert Data Expert Scores Plots Conger oceanicus Scores Quality (Portion by Category) Low Moderate Stock Status 2.4 0.5 High Other Stressors 2.5 1.2 Very High Population Growth Rate 2.1 0.8 Spawning Cycle 2.9 2.4 Complexity in Reproduction 2.4 1.9 Early Life History Requirements 2.5 1.8 Sensitivity to Ocean Acidification 1.2 1.3 Prey Specialization 1.6 2.1 Habitat Specialization 2.4 3.0 Sensitivity attributes Sensitivity to Temperature 1.6 2.8 Adult Mobility 1.5 1.8 Dispersal & Early Life History 1.3 2.8 Sensitivity Score Moderate Sea Surface Temperature 4.0 3.0 Variability in Sea Surface Temperature 1.0 3.0 Salinity 2.4 3.0 Variability Salinity 1.2 3.0 Air Temperature 4.0 3.0 Variability Air Temperature 1.0 3.0 Precipitation 1.3 3.0 Variability in Precipitation 1.4 3.0 Ocean Acidification 4.0 2.0 Exposure variables Variability in Ocean Acidification 1.0 2.2 Currents 2.2 1.0 Sea Level Rise 2.4 1.5 Exposure Score Very High Overall Vulnerability Rank High Conger Eel (Anguilla oceanica) Overall Climate Vulnerability Rank: High (93% certainty from bootstrap analysis). Climate Exposure: Very High. Three exposure factors contributed to this score: Ocean Surface Temperature (4.0), Ocean Acidification (4.0) and Air Temperature (4.0). Conger Eel are semelparous: spawning in the ocean, developing in marine and estuarine habitats, then feeding growing, and maturing in marine and estuarine habitats. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Vernacular Name AMPHIUMA, ONE-TOED (Aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel)
1/6 Vernacular Name AMPHIUMA, ONE-TOED (aka: Congo Eel, Congo Snake, Ditch Eel, Fish Eel and Lamprey Eel) GEOGRAPHIC RANGE Eastern Gulf coast. HABITAT Wetlands: slow moving or stagnant freshwater rivers/streams/creeks and bogs, marshes, swamps, fens and peat lands. CONSERVATION STATUS IUCN: Near Threatened (2016). Population Trend: Decreasing. Because of the limited extent of its occurrence and because of the declining extent and quality of its habitat, this species is close to qualifying for Vulnerable. COOL FACTS Amphiumas are commonly known as "Congo eels," a misnomer. First of all, amphiumas are amphibians, rather than fish (which eels are). This notwithstanding, amphiumas bear resemblance to the elongate fishes. It is easy to overlook the diminutive legs, and the lack of any external gills adds to the similarity between the amphiumas and eels. Amphiumas are adapted for digging and tunneling. They seem to spend most of the time in muddy burrows and are rarely observed in the wild. They never fully metamorphose and retain larval characteristics in varying degrees into adulthood: one pair of the larval gill slits is retained and never disappears, no eyelids, no tongue and the presence of 4 gill arches with a single respiratory opening between the 3 rd--4th arches. Amphiumas have two pairs of limbs, and the three species, all of which occur in the S.E. U.S, differ in regard to the number of toes at the ends of these limbs: one, two or three. These amphiumas possess tiny, single-toed limbs, one pair just behind the small gill opening at each side of the neck and another pair just ahead of the longitudinal anal slit . -
Chassahowitzka Chassahowitzka Plan Comprehensive Conservation
U.S. Fish & Wildlife Service Chassahowitzka NationalWildlifeRefuge Chassahowitzka National Wildlife Refuge Refuge Manager: Michael Lusk, (Project Leader) 1502 S.E. Kings Bay Drive Crystal River, FL 34429 Phone: (352) 563-2088 / ext. 202 Fax: (352) 795-7961 E-mail: [email protected] U.S. Fish & Wildlife Service 1 800/344 WILD http://www.fws.gov Chassahowitzka National Wildlife Refuge Comprehensive ConservationPlan September 2012 Comprehensive Conservation Plan USFWS Photos Photo Credits: Operation Migration, by Keith Ramos Dog Island, by Amber Breland Chass Aerial, by Joyce Kleen Comprehensive Conservation Plans provide long-term guidance for manage- ment decisions; set forth goals, objectives, and strategies needed to accom- plish refuge purposes; and identify the Fish and Wildlife Service’s best esti- mate of future needs. These plans detail program planning levels that are sometimes substantially above current budget allocations and, as such, are primarily for Service strategic planning and program prioritization purposes. The plans do not constitute a commitment for staffing increases, operational and maintenance increases, or funding for future land acquisition. Chassahowitzka National Wildlife Refuge Comprehensive Conservation Plan U.S. Department of the Interior Fish and Wildlife Service Southeast Region September 2012 COMPREHENSIVE CONSERVATION PLAN CHASSAHOWITZKA NATIONAL WILDLIFE REFUGE Citrus and Hernando Counties, Florida U.S. Department of the Interior Fish and Wildlife Service Southeast Region Atlanta, Georgia September