Edible Palm Fruits of the Braztlian Amazoll*

Total Page:16

File Type:pdf, Size:1020Kb

Edible Palm Fruits of the Braztlian Amazoll* r9771 CAVALCANTE:EDIBLE PALM FRUITS 9l Edible Palm Fruits of the Braztlian Amazoll* Paur,o B. Clvl:,cawrp Museu Goeldi, Bel6m, Pard, Brasil Translater],lrom the P ortuguese,by Dennrs JoHlrson Uniuersityol Houston,Houston, Texas 77004 PATMAE The palm generally produces 10-12 fruit clusters which remain partially Acrocomia sclerocarpa Mart. hidden among the lower, dead leaves. [Acrocomia sp.]"" MUCAJA The fruit is a drupe, spherical, single- .bacairtaa, coco-bo'boio, coco- seeded"'andabout 4 cm in diameter.The d,e-catarro,maca'iba,, fiLa,catibd. epicarp is coriaceous,rigid, and light- 'lhis green in color; the mesocarp (the edible speciesis common to nearly all pulp) is whitish in color, fibrous, and to of Brazil; however,it doesnot appear mucilaginous; the endocarpis of a rock- reachthe State'o{Amazonas. It is one of like consistency, enclosing a small, palms the most common in the vicinity white kernel or seed, which contains a grow- of the city of Bel6m, and is found clear edible oil recommended for the - ing singly and spontaneously in open manufacture of soap. The palm fruits second growth. sites or in areas o{ low {rom July to November, and into De- Mature palmqreach a height of 15-20 cember. m, and bear some spine3 on the trunk. Leaves form a rounded, fairly regular- Astrocaryum tucuma Mart, shaped crown and dead leaves remain TUCUMA attached to the trunk for some time. ttt'curn, tucutnd,-agu When tbe leaves do abscise, the lea{ sheaths remain attached and commonly This palm is found in the states o{ covei the upper half of the trunk. This ParS and Amazonas, but with greater habit constitutes one of the distinctive frequency in the latter. It occurs in open characteristics of the species. sites, or in the midst of low second growth. The single, straight trunk reaches B-I4 m in height, and is * This translation represents the section on palms in the author's longer work entitled adorned with long, black spines, Frutas Comestiaeis da Amaz6nia /1, Mirseu arranged in rings, that are denser in the Goeldi, Bel6m, Par6, Brasil, 1974. upper half of the trunk. Leaves have i+ Editor's note, Some ol the names used sturdy, enlarged sheaths and are densely those usually accepted today. differ from Fruit clusters are long and Owing to a nomenclatural technicality, the aculeate. name Acrocomia sclerocarpa is synonymous cylindrical, measuring about I.5 m in with l. aculeata (Jacq.) Lodd. ex Mart., a length. The {ruit is a drupe, ellipsoidal West Indian species, and the correct name lor or rounded, yellow-green or orange in is not yet clear. The the Brazilian species length, and weighs 70- preferred name is included in brackets when color, 5-6 cm in di{ferent Irom that given by the author. 75 e. The pulp is yellow in color, oily, 92 PRINCIPES [Vor. 2l ?-B mm in thickness, and with a flavor nutritive value for the following rea- similar to that of an apricot (Prunus SONS: armeniaca). The tree is in fruit from a. Its Vitamin A value is February to May. 52,000 international units Per I00 g, a value equalled onlY bY the Astrocaryum vulgare Mart. pulp of the buriti palm (Mawritia TUCUMA uinifera). It has 90 times more Vitamin A than the pulp of the avo- This is the most common of the Palms cado, and three times that o{ the that are popularly called tucumd. in carrot, a vegetable that until re- Par5, and its range also extends to the cently was consideredto be the best Northeast Region of Brazil. The fruits sourceo{ the vitamin. of this palm are commonly confused b. Its Vitamin 81 (thiamine) with those oI A. tucuma, but there are value is important, and its Vitamin perceptible dif{erencesbetween the two C (ascorbic acid) content rirals species. Astrocaryurn tucurna is a soli- that of citrus fruit. tary palm with an erect trunk and large c. The food value o{ the edible f.ruit: A. uulgare is a cluster palm and pulp is significantly higher than {orms clumps of several thin trunks that fresh fruits in general, 247 calories are somewhatcurved in their lower por- per 100 g, due to the Presenceof tions. The lower trunk does not have Lg.I% glycosides, 16.6% liPoids, black spines, and the fruits are much and35% proteides. smallerthan in the other species.Leaves are up to 7 m in length and always erect. Elaeis melanococca Gaert. The spadix is up to 1.7 m in length. (HBK) Cort6s] The fruit o{ this speciesis commonly fElaeis oleifera (.Corozo (HBK) Bail.) {ound in the open-air markets o{ Bel6m oleilera in appreciahie quantities {rom January CAIAUE to July. The fruits are eaten fresh, or d,end6-do-pard used to make juice. Although this palm does not yield an The rachis of the leaf furnishes a edible fruit, in its natural state, it is strong fiber that can be utilized in nu- included in this listing because of its merous ways. In addition, the Palm importance as one o{ the typically Ama- yields an excellent heart of palm, al- zonian oil palms. The height o{ the tree, though its extraction is made dii{icult at its maximum, is no taller than a man. by the quantity of spines on the upper While growing, the oldest part of the trunk. thick trunk assumesa procumbent posi' The largest consumersol tucumd' are tion and produces adventitious roots. people of the lower class who, without The oldest part o{ the trunk dies and realizing it, are getting an excellent decomposes,resulting in an almost im- supply of Vitamin A and other vitamins. perceptibleshi{t of the plant away from The nutritive value o{ the pulp was dem- the placewhere it rtas originally planted. onstrated by the chemical analysis For that reason, individuals who know made by Chaves and Pechnik (1947: the caiaue in its habitat, often say that t7): the first item of their conclusions 'owalks." the plant is quoted as follows: The low stature ol the dend'€-d,o-pard 1. The edible fruit oI the tucumd' facilitates the collection o{ fruits. That revealsitsel{ to be a food of estimable' characteristic has been experimented 19771 CAVALCANTE:EDIBLE PALM FRUITS 93 Itr ffi 3 l. Palm fruits: 1, Acrocomia sp.;2, Astrocaryum' tucumd;3, Maxitniliana martiana;4, Mauritia llexuoih; 5, Oenocarpus distichus; 6, Jessenia bataua: 7' Mauritia mattiana. with in cross-breedingwith the African At times the palms are found in almost oil palm, which normally reaches 15-20 pure stands, representing, along with m in height, resulting in hybrids of low buriti, the most prominent feature of or medium stature. The fruit yields two the vegetation landscape. One of the characteristics o{ the spe- types of oil: the pulp produces a red- cies is its growth in clumps, which is the dish. edible oil. and the kernel contains result of basal suckering. The number re{ined, can be a white oil that, when o{ individual stems per clump varies utilized for the making of margarine. according to environmental conditions, and may reach 25, including the suckers. Mart. AEAI Euterpe oleracea The palm has a thin trunk, sometimes aga.i-ilo-pq,rd,,agai-d'o-baixo dm,&zonas slightly curved, which reaches, on the Agai is one of the most characteristic average,15-20 m in height. The crown palms of Par5, found in nearly the en- of pinnate leaves with pendulous seg- tire state. Its major occurrenceis in the ments gives the palm its delicate and Amazon estuary, on lands of the flood- elegant bearing. For that reason it is plains (udrzed,s),the backswamps(iga' not infrequently {ound in plazas and in p6s) and on the uplands (terras firmes). private gardens as an ornamental plant. PRINCIPES [Vor. 21 19771 CAVALCANTE:EDIBLE PALM FRUITS 95 The number of fruit clusters per plant essentially energetic food, with a caloric varies up to eight, with three or four value higher than that of milk and with being most common. Each cluster is al' a content of lipoids twice as high. It is ways at a different stage of development, not very rich in proteides, and -the per- {rom inflorescences still enclosed in the centage of glycosides is not very high. spathe to clusters with ripe fruit. The Nevertheless,agai, as it commonly con- fruit is a rounded berry, black-violet in sumedowith sugar and starch, may be color when ripe, and from 12-15 mm considered a rich food of high caloric in diameter. Fruiting occurs through- value. The content of minerals, calcium, out the year, with the dry season,July to phosphorous, and iron reveals benefit." December,being the period of greatest Dante Costa (1959: 51) conducted abundance. Fruits from the dry season biological experiments with rats, and are said to produce the best-tasting . showed the presence of Vitamin A in juice. Harvesting the fruit clusters is an agai. arduous and dilngerous task, done by A comprehensivestudy carried out by individuals accustomed to climbing the Calzavara (1972) addressesall aspects acai palms. When someone is atoP a of agai in the Amazon region, notably palm to harvest the fruit clusters, it is its economic importance, ecology, agri' possible to move from one stem to an- cultural aspects, and methods of culti- other without descending; in that way vation. As far as the chemical composi- all the ripe fruit clusters from a clump tion of the fruit is concerned,Calzavara can be harvested. givesthe resultsarrived at by more than Juice is prepared from the agai htuit, ten different researchers. by either manual or mechanical pro' Without any doubt, the agai pal:m cesses,and consumed in the following brings together exceptional qualities places primary position as ways: that it in a the ideal, highlv pro{itable palm for the exploitation of hearts of palm.
Recommended publications
  • New World Guava Fruit Fly, Anastrepha Striata, Host List the Berries, Fruit, Nuts and Vegetables of the Listed Plant Species Are Now Considered Host Articles for A
    November 2018 New World Guava Fruit Fly, Anastrepha striata, Host List The berries, fruit, nuts and vegetables of the listed plant species are now considered host articles for A. striata. Unless proven otherwise, all cultivars, varieties, and hybrids of the plant species listed herein are considered suitable hosts of A. striata. Scientific Name Common Name Acca sellowiana (O. Berg) Burret Pineapple-guava, feijoa Anacardium occidentale L. Cashew, cajuil Annona cherimola Mill. Cherimoya, custard-apple Annona muricata L. Soursop, araticum-grande Averrhoa carambola L. Carambola, starfruit Bellucia dichotoma Cogn. N/A Bellucia grossularioides (L.) Triana N/A Byrsonima crassifolia (L.) Kunth Craboo, golden-spoon Calycolpus moritzianus (O. Berg) Burret N/A Campomanesia lineatifolia Ruiz & P av. Guabiroba, guayaba de leche Carica papaya L. Papaya, pawpaw 1 Citrus xsinensis (L.) Osbeck Sweet orange, blood orange Citrus xtangeloJ. W. Ingram & H. E. Moore Tangelo, uglifruit Coffea arabica L. Arabica coffee, Arabian coffee Couma utilis (Mart.) Mull. Arg. Sorva, sorva pequena Diospyros digyna Jacq. Black persimmon, black sapote Eriobotrya japonica (Thunb). Lindl. Loquat, Japanese-medlar Eugenia ligustrina (Sw.) Willd. Birchberry, privet stopper Eugenia luschnathiana (O. Berg) Klotzsch ex B. D. Jacks N/A Eugenia stipitata McVaugh Araca-boi, araza Eugenia uniflora L. Brazil-cherry, Surinam-cherry Inga edulis Mart. Ice-cream-bean, inga-cipo Inga feuilleei DC. Pacae, pacay Inga velutina Wiild. N/A Malpighia glabra L. Escobillo Mangifera indica L. Common mango, Indian mango Manilkara zapota (L.) P. Royen Sapote, naseberry, sapodilla Oenocarpus bacaba Mart. Bacaba palm Common passionfruit, purple Passiflora edulis Sims granadilla Persea americana Mill. Avocado, abacate 2 Pouteria caimito (Ruiz & Pav.) Radlk.
    [Show full text]
  • Index to Volume 60
    PALM S Index to Vol. 60 Vol. 60(4) 2016 Index to Volume 60 A new species of Attalea from the Bolivian Attalea crassispatha 97, 113 lowlands 161 Attalea eichleri 111 A university palmetum 93 Attalea exigua 112 Acoelorrhaphe 97 Attalea huebneri 61, 69, 73, 74, 76, 114, Acoelorrhaphe wrightii 25–28, 97 117–119, 123 Acrocomia crispa 97, 113 Attalea insignis 76, 123 Adonidia dransfieldii 15 Attalea macrocarpa 122, 123 Adonidia merrillii 15, 97 Attalea maripa 59, 72, 74, 76 Aiphanes horrida 67, 70, 74, 113 Attalea moorei 58, 59, 62–64, 66–70, 72–74, Aiphanes minima 113 76, 117–121, 123 Aiphanes weberbaueri 72 Attalea osmantha 123 Andriamanantena, A.Z., as co-author 169 Attalea pacensis 162–165, 167 Ali, O.M.M.: The argun palm, Medemia Attalea peruviana 62, 64, 65, 77, 112, 122, argun , in the eastern Nubian Desert of 123 Sudan 145 Attalea phalerata 63, 68, 69, 73–76, 114, Allagoptera 111 117–120, 123, 162, 163, 165, 167 Areca 18 Attalea plowmanii 58, 62–64, 76, 110, 117, Areca catechu 3, 19 123 Arenga 17 Attalea polysticha 64, 65, 76, 112, 116 Arenga caudata 43 Attalea princeps 59, 71, 73, 76, 77, 118, 123, Arenga hookeriana 43 161, 162, 165, 167 Arenga pinnata 97 Attalea racemosa 62, 76 Arenga undulatifolia 97 Attalea rostrata 123 Aspects and causes of earlier and current Attalea salazarii 58, 61, 62 spread of Trachycarpus fortunei in the Attalea septuagenata 76 forests of southern Ticino and northern Attalea speciosa 76 Lago Maggiore (Switzerland, Italy) 125 Attalea tessmannii 59, 62, 64, 76, 113, 121, Astrocaryum 39, 113, 114 122 Astrocaryum carnosum 70 Attalea weberbaueri 59, 66, 67, 72, 73, 77, Astrocaryum faranae 70, 72 111, 112, 114, 119, 121, 123 Astrocaryum gratum 76 Attalea : Insights into the diversity and Astrocaryum huicungo 69 phylogeny of an intriguing genus 109 Astrocaryum perangustatum 72 Bactris 39 Astrocaryum ulei 74 Bactris gasipaes 39 Attalea 9, 11, 12, 18, 21, 39, 57–59, 63, 64, Bactris hirta 74 66, 69, 72, 74, 76, 77, 109–116, 121, Baker, W.J., W.L.
    [Show full text]
  • Journal of the International Palm Society Vol. 46(3) Ausust 2002
    Journalof the InternationalPalm Society vol.46(3) Ausust 2002 THE INTERNATIONALPALM SOCIETY,INC. The International Palm Society ,*:ff #:lil:H,t}ffili'1"* An illustrated,peer-reviewed quarterly devoled to intormationabout palms and publishedin March,June, i|il',"t*nfi*,nr:#;?Jt,',""',::r""" Septemberand Decemberby The InternationalPalm nationalin scopewith worldwidemembership, ";i:l#'i,'and t-hen' Socielr Sl0 EasL1oth St.,P.O. Box 1897,Lawrence, l;il::il;i ::#il i,"J i::i',:i:5:"fi :iJ Kansas66044-8897, USA. Editors: JohnDransfield, Herbarium, Royal Botanic ,."^.i".;:*,^"';"ilfi::+il;'d$I*;n :5t Cardens, Kew, Richmond, Surrey, TW9 3AE.United [: Kingdom,e-mail [email protected], - tel.44- I Si-ZIZ-SZZS,Fax 44-1 81 -332-SZtg. ScoltZona, Fairchild Tropical Carden, 11935 Old Cutler Cables(Miami), Florida 33156, USA, e-mail :H:il"."-""',',' r':::*:,,"" Road,Coral 1-3 05-66 7-165 1exr Texas77061 , USA,e-mail [email protected], tel. yf,li?,lTil3g:;:;lr3!l,.' ;:::::;::1,, o,,,craf,,Po B.x 500041, Associate Editor: NatalieUhl, 467 Mannlibrary, CornellUniversity, lthaca. New York14853, USA, e-mail y;fjf#; 1-607-257 -0885. lit:11?,iliti*i i:fl 1,, "' [email protected],tel. l?ilj'i,:li"T ifl,T; [Ti' ;',1 I li,,?,';, l,]J.?#i' Supplement Editor: JimCain, 124i8 SLaffordSprings, [email protected],Lel.6i -7-3800-5526. ffiH::1.:"63: Ijl ii;Yiti i ]i\. uun.,0,u Gorresponding Secretary: Don Kurth, 10569 Apple ^" Garden Editor: LvnnMcKamev. Rhapis Cardens, P.O. **; liT,iSH.ilillll I :JJ,llnf il'ul [ Box 287,Cregory, Texas Za:SS, USn.
    [Show full text]
  • Non-Timber Forest Products in Brazil: a Bibliometric and a State of the Art Review
    sustainability Review Non-Timber Forest Products in Brazil: A Bibliometric and a State of the Art Review Thiago Cardoso Silva * , Emmanoella Costa Guaraná Araujo, Tarcila Rosa da Silva Lins , Cibelle Amaral Reis, Carlos Roberto Sanquetta and Márcio Pereira da Rocha Department of Forestry Engineering and Technology, Federal University of Paraná, 80.210-170 Curitiba, Brazil; [email protected] (E.C.G.A.); [email protected] (T.R.d.S.L.); [email protected] (C.A.R.); [email protected] (C.R.S.); [email protected] (M.P.d.R.) * Correspondence: [email protected]; Tel.: +55-8199-956-6178 Received: 4 July 2020; Accepted: 22 August 2020; Published: 2 September 2020 Abstract: Non-timber forest products (NTFPs) are a consolidated source of income and acquisition of inputs from forest environments. Therefore, the objective of this work was to carry out a collection of publications on NTFPs in Brazil, until 2019, available in the Scopus database, presenting a bibliometric review and the state of the art of this theme from the evaluation of these publications, discussing the challenges of Brazilian legislation on NTFPs. After screening the articles of interest, 196 documents were evaluated, in which they were observed institutions and authors, analyzing networks of citations and terms used, areas of forest sciences and sciences that encompass the most explored biomes and the most studied species. The results showed that the concern to research on NTFPs in Brazil began in the 1990s, with an increase in the number of publications over the years. Besides that, the research on NTFPs is multidisciplinary, with emphasis on the areas of Agricultural and Biological Sciences and Environmental Science.
    [Show full text]
  • DIVERSIDADE GENÉTICA E CITOGENÉTICA EM Astrocaryum SPP
    NATÁLIA PADILHA DE OLIVEIRA DIVERSIDADE GENÉTICA E CITOGENÉTICA EM Astrocaryum SPP. (ARECACEAE) LAVRAS-MG 2016 NATÁLIA PADILHA DE OLIVEIRA DIVERSIDADE GENÉTICA E CITOGENÉTICA EM Astrocaryum SPP. (ARECACEAE) Tese de doutorado apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Genética e Melhoramento de Plantas, área de concentração em Genética e Melhoramento de Plantas, para a obtenção do título de doutor. Prof. Dra. Lisete Chamma Davide Orientadora Dra. Susan Kalisz Co-orientadora LAVRAS – MG 2016 Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a). Oliveira, Natália Padilha de. Diversidade Genética e Citogenética em Astrocaryum spp. (Arecaceae) / Natália Padilha de Oliveira. - 2016. 105 p. Orientador(a): Lisete Chamma Davide. Coorientador(a): Susan Kalisz Tese (doutorado) - Universidade Federal de Lavras, 2016. Bibliografia. 1. Genética molecular. 2. Citogenética. 3. Palmeiras. I. Davide, Lisete Chamma. II. Kalisz, Susan . III. Título. O conteúdo desta obra é de respo de seu orientador(a). NATÁLIA PADILHA DE OLIVEIRA DIVERSIDADE GENÉTICA E CITOGENÉTICA EM Astrocaryum SPP. (ARECACEAE) Tese de doutorado apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Genética e Melhoramento de Plantas , área de concentração em Genética e Melhoramento de Plantas, para a obtenção do título de doutor. APROVADA em 16 de setembro de 2016. Dra. Elisa Ferreira Moura Cunha EMBRAPA-CPATU Profa.Dra. Dulcinéia de Carvalho UFLA Dr. Welison Andrade Pereira UFLA Profa. Dra. Vânia Helena Techio UFLA Profa. Dra. Lisete Chamma Davide Orientadora LAVRAS – MG 2016 Aos meus amados avós Joaquim Padilha (in memoriam) e Ana Maria Padilha (in memoriam) pelo amor, carinho e tantos mimos recebidos..
    [Show full text]
  • Las Palmeras En El Marco De La Investigacion Para El
    REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico
    [Show full text]
  • The Palms of the Guianas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Horizon / Pleins textes ORSTOM Centre de Cayenne September 198-6 THE PALMS_OF THE GUIANAS J.-J. ~e Granville _Syagrus inajai THE PATJMS OF THE GUIA11AS (J.-J. de GRANVILLE, 1986) : Inventaire des espèces de palmiers des trois Guyanes (Guyane française, Surinam, Guyana) et principales caractéristiques de chaque groupe pour une reconnaissance pratique sur le terrain. Instructions pour la collecte des herbiers de palmiers. Clef de détermination des genres basée sur les caractères végétatifs. Inventory of the species occurring in the three Guianas (French Guiana, Suriname, Guyana) and main features of each group for a practical id.m1tification in the field. Guide lines for collecting palms. Key for iden­ tifi~ation of the genera. based on vegetative characters. -..-J • .. - - --._-_._ 1 1 . .. i" - Guyana}Suriname} eo' G) ~ TH /..1----1 C-; '<:1: gmE 3 G ". .. 0 ..• '"V1 w :;G) U'IANAS se' :: ;" C • 0- 3» 51' roZ ~ ~ 1 Guyane » GU") c '< o ~,,?~~l;O~ p /l ::3. 0 ----r--:;--: --; : .. :. ft) 21'~ Franr;aise "Tl s .., ~ ss' ... 0 ': :J -0 I~ ._._ o 8 5" .. ~~:LL-----t-----, ~ ~ ~-.-. i 150 , -t'--'-'~----' 1 nouli~ol ) 1 53' , . .,. ~ ",U t !. 1 ::•• ! 52' ,..-.- , 1 .. -.' \..------+---i'· SI' \ --~w· , J' -:,. , THE PALMS OF THE GUIANAS J.-J. de Gruu~VILLE This paper is not a systematic treatment : it aims at helping the botanists to identify and to collect the palms in the field. l SURVEY OF THE PALM GROUPS OCCURRING IN THE GUIANAS ================================================== According to the litterature (especially DAHLGREN, 1936; GLASSMAN, 1972; WESSELS BOER, 1965 and 1972) and to the study of the herbarium specimens, the number of species of indige­ nous palms occurring in the 3 Guianas together amounts to 8J, that is to say 7 %of the american species.
    [Show full text]
  • American Palms Used for Medicine, in the Ethnobotanical and Pharmacological Publications
    Rev. peru. biol. 15(supl. 1): 143- 146 (Noviembre 2008) Las palmeras en América del Sur AmericanVersión palms Online used ISSN for 1727-9933 medicine © Facultad de Ciencias Biológicas UNMSM American palms used for medicine, in the ethnobotanical and pharmacological publications Las palmeras americanas con uso medicinal en las publicaciones etnobotánicas y farmacológicas Joanna Sosnowska1 and Henrik Balslev2 1 W. Szafer Institute of Botany, Po- Abstract lish Academy of Sciences, Lubicz The center of diversity of palms (Arecaceae) in tropical America is found in the Amazon basin and along the 46, 31-512 Krakow, Poland. Panamanian isthmus.The greatest palm species richness has been reported for the Iquitos and Chocó areas. Email Joanna Sosnowska: [email protected] Many species of palms are used mainly for construction and due to their edible fruits. In addition, there are 2 Department of Biological Scien- 104 palm species that are used for medicinal purposes in many regions of the Americas. Cocos nucifera and ces, Aarhus University, Build. 1540, Oenocarpus bataua are the most commonly used species for medicinal purposes. The fruit is the most com- Ny Munkegade, 8000 Aarhus C., monly used part of palms for medicinal purposes (57 species). The traditional and medicinal use of plants has Denmark. deep roots in indigenous communities of Latin America. The significance of ethnomedicine for health care of Email Henrik Balslev: henrik.bals- [email protected] local populations can not be ignored anymore because it plays a significant role in basic health care in devel- oping countries. Interdisciplinary research in antropology, ethnobotany and ethnopharmacology helps gather information on ethnomedicine and design new drugs for modern medicine.
    [Show full text]
  • Palm Trees of the Amazon and Their Uses
    «fem \J (Fft Ford & West hth London PALM TREES OF THE AMAZON AND THEIR USES. BY ALFRED RUSSEL WALLACE. WITH FORTY-EIGHT PLATES, LONDON: JOHN VAN VOORST, I PATERNOSTER ROW 1853, PRINTED BY TAYLOR AND FRANCIS3 RED LION COURT, FLEET STREET. IDiU PREFACE. 1 HE materials for this work were collected during my travels on the Amazon and its tributaries from 1848 to 1852. Though principally occupied with the varied and interesting animal productions of the country, I yet found time to examine and admire the wonders of vegetable life which everywhere abounded. In the vast forests of the Amazon valley, tropical vegetation is to be seen in all its luxuriance. Huge trees with but- tressed stems, tangled climbers of fantastic forms, and strange parasitical plants everywhere meet the admiring gaze of the naturalist fresh from the meadows and heaths of Europe. Everywhere too rise the graceful Palms, true denizens of the tropics, of which they are — IV PREFACE. the most striking and characteristic feature. In the districts which I visited they were everywhere abundant, and I soon became interested in them, from their great variety and beauty of form and the many uses to which they are applied. I first endeavoured to familiarize myself with the aspect of each species and to learn to know it by its native name; but even this was not a very easy matter, for I was often unable to see any dif- ference between trees which the Indians assured me were quite distinct, and had widely different properties and uses. More close examination, however, convinced me that external characters did exist by which every species could be separated from those most nearly allied to it, and I was soon pleased to find that I could di- stinguish one palm from another, though barely visible above the surrounding forest, almost as certainly as the natives themselves.
    [Show full text]
  • Use, Production and Conservation of Palm Fiber in South America: a Review
    © Kamla-Raj 2013 J Hum Ecol, 42(1): 69-93 (2013) Use, Production and Conservation of Palm Fiber in South America: A Review Carolina Isaza1, Rodrigo Bernal2 and Patricia Howard1 1Anthropology Department, University of Kent at Canterbury 2Instituto de Ciencias Naturales, Universidad Nacional de Colombia (Current Address) Apartado 7495, Bogotá, Colombia (Actual) E-mail: 1<[email protected]>; 2 <[email protected]; 1<[email protected]> KEYWORDS Arecaceae. Fiber. Conservation. Forest Extraction. Forest Products. Palms. South America. Sustainable Use ABSTRACT South American ethnic groups traditionally use palm fiber, which provides materials for domestic, commercial, and ceremonial purposes. A literature review of 185 references was carried out in order to identify and understand the extent of palm fiber production and the sustainability of harvesting and use in South America. The reports recorded 111 palm species and 37 genera used for fiber in the region; the genera Attalea, Astrocaryum and Syagrus had the highest diversity of fiber-producing species. Mauritia flexuosa and Astrocaryum chambira were the species mostly reported and with the largest number of object types manufactured with their fibers. The geographical distribution of the species use nearly overlaps the natural distribution of palms in South America, reaching its highest diversity in northern Amazonia, where palms are used mostly by indigenous people and peasants. The techniques used for extraction, harvesting and processing are usually basic and minimal. Most species are represented by wild populations found on common lands, the little detailed information available suggests that when use is intensive it is mosly unsustainable, and those with a greater market demand usually become locally extinct.
    [Show full text]
  • Major Components in Oils Obtained from Amazonian Palm Fruits
    GRASAS Y ACEITES, 64 (3), ABRIL-JUNIO, 328-334, 2013, ISSN: 0017-3495 DOI: 10.3989/gya.023513 Major components in oils obtained from Amazonian palm fruits By M.F.G. SantosS S. Marmesat^ E.S. BritoS R.E. Alves'' and M.C. Dobarganes•b', * ^Instituto de Pesquisas Científicas e Tecnológicas de Amapá-IEPA. Rodovia JK, Km 10, 68900-000, Macapá-AP, Brasil "Instituto de la Grasa-CSIC. Avda. Padre García Tejero, 4, 41012 Sevilla-Spain ' Embrapa Agroindústria Tropical. Rua Dra. Sara Mesquita, 2270, Pici, 60511-110, Fortaleza-CE, Brasil "Programa de Pós-Graduacáo em Agronomia-PPGA/UFPB. Rodovia PB 079, Km 12, 58397-000, Areia-PB, Brasil * Corresponding author: [email protected] RESUMEN This study deals with the characterization of the major compounds in the oils obtained from the mesocarp of fruits Componentes mayoritarios de aceites obtenidos de of the main palm species from the State of Amapá, Brasil, i.e. frutos de palmeras de la región amazónica bacaba {Oenocarpus baeaba), buriti {Mauritia flexuosa), inajá {Maximiliana maripa), pupunha {Bactris gasipaes) and tucumá Las palmeras nativas de la familia Arecaceae constitu- {Astrocaryum vulgäre). Physicochemical characteristics, fatty yen recursos alimentarios de gran importancia en la región acids and triacylglycerol (TAG) contents were analyzed by amazónica. A pesar de su diversidad y utilidad, muchas es- HPLC and GC. The proximate composition of the fruits was pecies son poco conocidas por lo que son de interés los es- also analyzed. tudies dirigidos a conocer la calidad y composición de las The results relating to acidity, peroxide value and polar especies menos exploradas para evaluar su potencial eco- compounds indicate good quality of the oils obtained.
    [Show full text]
  • Minor Components in Oils Obtained from Amazonian Paim Fruits
    GRASAS Y ACEITES, 64 (5), OCTUBRE-DICIEMBRE, 531-536, 2013, ISSN: 0017-3495 DOI: 10.3989/gya.048913 Minor components in oils obtained from Amazonian paim fruits Por M.F.G. Santos% R.E. Alves" and M.V. Ruíz-Méndez' ^ Instituto de Pesquisas Científicas e Tecnológicas de Amapá-IEPA. Rodovia JK, Km 10, 68900-000, Macapá-AP, Brasil Programa de Pos-Graduaçâo en Agronomia-UFPB. Rodovia PB 079, Km 12, 58397-000, Arela-PB, Brasil " Instituto de la Grasa-CSIC. Avda. Padre García Tejero, 4, 41012 Sevilla-Spain ^ Corresponding author: [email protected] RESUMEN glyceridic compounds, i.e. dimeric triacylglycerols (TAG), the oxidized TAG and diacylglycerols (DAG) related to oil Componentes minoritarios de aceites obtenidos de quality, and the compounds of unsaponifiable matter, i.e. frutos de palmeras de la región amazónica hydrocarbons, aliphatic alcohols, sterols and tocopherols have been determined. El objetivo de este estudio fue la caracterización de los The results indicate that the extracted oils had good componentes menores presentes en los aceites obtenidos initial quality, with DAG as the major glyceridic compound. del mesocarpio de frutos de especies de bacaba (Oenocar- The contents of hydrocarbons (50-734 mg-kg') and aliphatic pus bacaba), buriti (Mauritia tiexuosa), inajá {Maximiliana alcohols (80-490 mg-kg"') were highly variable with inajá oil maripa), pupuña (Bactris gasipaes) y tucumá (Astrocaryum containing the highest contents. In the case of tocopherols, vulgäre), de importante producción en el Estado de Amapá, buriti (1567 mg-kg') and tucumá (483 mg-kg"') oils had the Brasil. highest contents and the presence of significant amounts Se determinaron las dos principales fracciones presentes of tocotrienols was only detected in inajá oil.
    [Show full text]