抗カエル Pa 抗体および患者血清を用いた Elisa による 127 魚種の パルブアルブミンのアレルゲン性評価
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however, -
(Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19. -
Skin Injuries Contribute to Nocardiosis in Japanese Amberjack Seriola
魚病研究 Fish Pathology, 54 (3), 64–67, 2019. 9 © 2019 The Japanese Society of Fish Pathology Short communication expected, which is currently in experimental conditions (Kato et al., 2014). For the moment, control of this dis- Skin Injuries Contribute to ease largely depends on the culture techniques to avoid infection. Nocardiosis in Japanese It has long been suspected that Japanese amber- Amberjack Seriola quinqueradiata jack (=yellowtail) Seriola quinqueradiata with skin inju- ries are vulnerable to N. seriolae infection (Kusuda and Nakagawa, 1978). Matsuzato (1978) speculated that Yasuyuki Miyoshi1, Yutaka Fukuda2 injuries of the skin and the gills induced by the monoge- 3* and Kazuo Ogawa neans Benedenia seriolae and Heteraxine heterocerca, 1 respectively, can form a portal of entry by N. seriolae. Oita Prefecture Southern Region Bureau, However, no experimental evidence has been presented Oita 876-0813, Japan on the involvement of injuries and monogenean infesta- 2Fisheries Research Division, Oita Prefectural Agriculture, tions in the N. seriolae infection of amberjacks. In this Forestry and Fisheries Research Center, paper, we examined experimentally 1) if physical injuries Oita 879-2602, Japan of the skin induce N. seriolae infection of Japanese 3Meguro Parasitological Museum, amberjack, and 2) how the infestation of B. seriolae, a Tokyo 153-0064, Japan ubiquitous skin parasite among amberjacks cultured in net cages (Ogawa and Shirakashi, 2017), contributes to (Received July 12, 2019) the progression of nocardiosis. ABSTRACT―We examined how mechanical damages to Materials and Methods the skin and the infestation of the monogenean Benedenia Fish used in the experiments seriolae on the skin affected Nocardia seriolae infection in 0-year-old wild-caught seedlings of Japanese Japanese amberjack Seriola quinqueradiata. -
Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES
FMP for Groundfish of the BSAI Management Area Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES Appendix A History of the Fishery Management Plan ...................................................................... A-1 A.1 Amendments to the FMP ......................................................................................................... A-1 Appendix B Geographical Coordinates of Areas Described in the Fishery Management Plan ..... B-1 B.1 Management Area, Subareas, and Districts ............................................................................. B-1 B.2 Closed Areas ............................................................................................................................ B-2 B.3 PSC Limitation Zones ........................................................................................................... B-18 Appendix C Summary of the American Fisheries Act and Subtitle II ............................................. C-1 C.1 Summary of the American Fisheries Act (AFA) Management Measures ............................... C-1 C.2 Summary of Amendments to AFA in the Coast Guard Authorization Act of 2010 ................ C-2 C.3 American Fisheries Act: Subtitle II Bering Sea Pollock Fishery ............................................ C-4 Appendix D Life History Features and Habitat Requirements of Fishery Management Plan SpeciesD-1 D.1 Walleye pollock (Theragra calcogramma) ............................................................................ -
Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus .................................................................................................. -
Notice Calling for Suggestions, Views, Comments Etc from WTO- SPS Committee Members Within a Period of 60 Days on the Draft Noti
Notice Calling for suggestions, views, comments etc from WTO- SPS Committee members within a period of 60 days on the draft notification related to Standards for list of Histamine Forming Fish Species and limits of Histamine level for Fish and Fishery Products. 1. In the Food Safety and Standards (Contaminants, toxins and Residues) Regulations, 2011, in regulation 2.5, relating to “Other Contaminants”, after sub-regulation 2.5.1 the following sub-regulation shall be inserted, namely:- “2.5.2 Histamine in Fish and Fishery Products contaminants, Toxins and Residues 1. Fish species having potential to cause histamine poisoning Sl.No. Family Scientific Name Common Name 1. Carangidae Alectis indica Indian Threadfish Alepes spp. Scad Atropus atropos Cleftbelly trevally Carangoides Yellow Jack bartholomaei Carangoides spp. Trevally Caranx crysos Blue runner Caranx spp. Jack/Trevally Decapterus koheru Koheru Decapterus russelli Indian scad Decapterus spp. Scad Elagatis bipinnulata Rainbow Runner Megalaspis cordyla Horse Mackerel/Torpedo Scad Nematistius pectoralis Roosterfish Oligoplites saurus Leather Jacket Pseudocaranx dentex White trevally Sl.No. Family Scientific Name Common Name Scomberoides Talang queenfish commersonnianus Scomberoides spp. Leather Jacket/Queen Fish Selene spp. Moonfish Seriola dumerili Greater/Japanese Amberjack or Rudder Fish Seriola lalandi Yellowtail Amberjack Seriola quinqueradiata Japanese Amberjack Seriola rivoliana Longfin Yellowtail Seriola spp. Amberjack or Yellowtail Trachurus capensis Cape Horse Mackerel Trachurus japonicas Japanese Jack Mackerel Trachurus murphyi Chilean Jack Mackerel Trachurus Yellowtail Horse Mackerel novaezelandiae Trachurus spp. Jack Mackerel/Horse Mackerel Trachurus trachurus Atlantic Horse Mackerel Uraspis secunda Cottonmouth jack 2. Chanidae Chanos chanos Milkfish 3. Clupeidae Alosa pseudoharengus Alewife Alosa spp. Herring Amblygaster sirm Spotted Sardinella Anodontostoma chacunda Chacunda gizzard shad Brevoortia patronus Gulf Menhaden Brevoortia spp. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Historical Fish Specimens Collected from the Tohoku District by the Saito Ho-On Kai Museum of Natural History
Bull. Natl. Mus. Nat. Sci., Ser. A, 35(1), pp. 9–54, March 22, 2009 Historical Fish Specimens Collected from the Tohoku District by the Saito Ho-on Kai Museum of Natural History Keiichi Matsuura1, Gento Shinohara2 and Masanori Nakae1 1 Collection Center, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073 Japan E-mail: [email protected]; [email protected] 2 Department of Zoology, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073 Japan E-mail: [email protected] Abstract The fish collection of the Saito Ho-on Kai Museum of Natural History was transferred to the National Museum of Nature and Science, Tokyo in February 2006. Ninety percent of the fish collection contains specimens collected from the Tohoku District during the period from 1930 to 1933 when natural environments of Japan were in good condition for various groups of fishes. The fish specimens from the Tohoku District were classified into 361 species/subspecies of 273 genera belonging to 131 families of 31 orders. A list of the species is shown with remarks on distribution. Key words: Fish specimens, Saito Ho-on Kai Museum, Tohoku District, inventory. stead of natural sicence. The museum has tried to Introduction keep its activity at the level before the war, but it The Saito Ho-on Kai Museum was established failed to do so because of financial difficulties. In in November 1933 in Sendai City, Miyagi Pre- 2005, the Saito Ho-on Kai Museum of Natural fecture, Japan. -
A Preliminary Study on ABC Estimation Approach for Ecosystem-Based TAC T Management
Ocean and Coastal Management 157 (2018) 9–22 Contents lists available at ScienceDirect Ocean and Coastal Management journal homepage: www.elsevier.com/locate/ocecoaman A preliminary study on ABC estimation approach for ecosystem-based TAC T management ∗ Hee Joong Kanga, Young Il Seoa, Chang Ik Zhangb, a National Institute of Fisheries Science, 216, Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, Republic of Korea b Pukyong National University, 45, Yongso-ro, Nam-gu, Busan, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Korea's acceptable biological catch (ABC) for total allowable catch (TAC) management has been estimated by a Ecosystem-based fisheries assessment five-tier system that relies on population-based stock assessment models according to available ecological in- Acceptable biological catch formation for pelagic or demersal species. To overcome the limitations of the current ABC estimation system Total allowable catch based on population dynamic models, this study attempted to integrate the ecosystem-based fisheries assessment Species risk index (EBFA) approach into Korea's current ABC estimation system, and has developed an ABC estimation approach for Sustainability ecosystem-based TAC management. To estimate an ecosystem-based ABC, ABC estimated by the current ABC estimation system was adjusted depending on the species risk index (SRI) that was derived from risk analysis of EBFA. During the process, the SRI-F relationship which generalizes the relationship between SRI and fishing mortality (F) was devised, and was used to estimate an ecosystem-based ABC. Also, the SRI projection as a function of the F scenario was conducted to estimate the regression coefficient of a relationship of SRI and F. -
Parasitic Copepods of Marine Fish Cultured in Japan: a Review Kazuya Nagasawa*
Journal of Natural History, 2015 Vol. 49, Nos. 45–48, 2891–2903, http://dx.doi.org/10.1080/00222933.2015.1022615 Parasitic copepods of marine fish cultured in Japan: a review Kazuya Nagasawa* Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan (Received 22 September 2014; accepted 4 February 2015; first published online 29 June 2015) This paper reviews aspects of the biology of copepods infecting marine fish commer- cially cultured at fish farms or held as broodstock at governmental hatcheries in Japan. In total, 20 species of parasitic copepods have been reported from these fish: they are mostly caligids (12 spp.), followed by lernaeopodids (4 spp.), pennellid (1 sp.), chondracanthid (1 sp.), taeniacanthid (1 sp.), and unidentified species (1 sp.). The identified copepods are: Caligus fugu, C. lagocephalus, C. lalandei, C. latigenitalis, C. longipedis, C. macarovi, C. orientalis, C. sclerotinosus, C. spinosus, Lepeophtheirus longiventralis, L. paralichthydis, L. salmonis (Caligidae); Alella macrotrachelus, Clavella parva, Parabrachiella hugu, P. seriolae (Lernaeopodidae); Peniculus minuti- caudae (Pennellidae); Acanthochondria priacanthi (Chondracanthidae); and Biacanthus pleuronichthydis (Taeniacanthidae). The fish recorded as hosts include carangids (4 spp.), sparids (2 spp.), monacanthids (2 spp.), salmonids (2 spp.), scom- brid (1 sp.), tetraodontid (1 sp.), pleuronectid (1 sp.), paralichthyid (1 sp.), and trichodontid (1 sp.). Only five species (C. orientalis, L. longiventralis, L. salmonis, C. parva and A. priacanthi) parasitize farmed fish in subarctic waters, while all other species (15 spp.) infect farmed fish in temperate waters. No information is yet avail- able on copepods from fish farmed in subtropical waters. Three species of Caligus (C. fugu, C. sclerotinosus and C. -
2016 Seafood Products Market Brief Korea
THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 8/2/2016 GAIN Report Number: KS1624 Korea - Republic of Post: Seoul ATO 2016 Seafood Products Market Brief Report Categories: Fishery Products Approved By: Mark Myers, Acting Ag. Minister-Counselor Prepared By: Sun Young Yoo, Market Promotion Specialist Report Highlights: In 2015, total Korean imports of seafood were $4.24 billion, up 1.9 percent from 2014 due to rising prices. Imports of American seafood increased by 4.9 percent to $233 million, making the United States the fourth largest exporter with a market share of 5.5 percent. U.S. seafood is generally considered high quality and safe, but less price competitive when competing with other origins. By volume, Alaska Pollack Surimi, flatfish, frozen Alaskan Pollack, Cod, Alaskan Pollack roe, Monkfish, ray, Pacific salmon, Hagfish, Atka Mackerel, lobster, etc. are some of the major species imported in large quantities from the United States. By value, Alaskan Pollack Surimi, lobsters, flatfish, live Hagfish, Monkfish, frozen Alaskan Pollack, Cod, Alaskan Pollack roe, skate, and frozen Hagfish were the top ten imported species. Executive Summary: General Information: SECTION I: KOREAN SEAFOOD MARKET OVERVIEW In 2015, Korea’s seafood imports from all origins amounted to $4.24 billion, up 1.9 percent from $4.16 billion in 2014. The United States was the fourth largest exporter of seafood products to Korea. The largest seafood supplying country in 2015 was China at $1.1 billion, followed by Russia at $705 million, Vietnam at $574 million, USA at $233 million, Norway at $218 million, Thailand at $168 million, Japan at $116 million, Taiwan at $102 million, Peru at $99 million and Chile at $97 million. -
Fishes of the Deep Demersal Habitat at Ngazidja (Grand Comoro) Island, Western Indian Ocean
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) 444 South African Journal of Science 102, September/October 2006 Coelacanth Research Fishes of the deep demersal habitat at Ngazidja (Grand Comoro) Island, Western Indian Ocean Phillip C. Heemstraa*, Karen Hissmannb, Hans Frickeb, Malcolm J. Smalec and Jürgen Schauerb (with hook and line or traps) in the daytime habitat of the coela- canth, we were able to identify 65 species (Table 1). For various Underwater observations of the coelacanth, Latimeria chalumnae reasons, the remaining taxa are identified only to genus or Smith, 1939, from a research submersible provided opportunities family level. Our list of the deep demersal fish at Ngazidja is to study the deep demersal fish fauna at the Comoro Islands. The obviously incomplete, as we made no attempt to collect small demersal habitat in depths of 150–400 m at the volcanic island of cryptic species (e.g. Scorpaenidae, Callionymidae, Draconettidae, Ngazidja is low in fish diversity and biomass, compared with the Percophidae, Epigonidae and Plectranthias). In addition, larger, shallow-water coral reef habitat of Ngazidja or the deep demersal elusive species (e.g. congrid and ophichthid eels and several habitats of other localities in the Indo-Pacific region. The resident species of sharks) that are known to occur at depths of 150–400 m deep demersal fish fauna at Ngazidja is dominated by the coela- in the Western Indian Ocean but have not yet been seen or canth, an ancient predator that is specially adapted for this caught at these depths at Ngazidja are not included in our low-energy environment.