Rare Earth Element Mines, Deposits, and Occurrences by Greta J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ngualla Rare Earth Project
CORPORATE INFORMATION JULY 2013 DEVELOPING A LOW COST RARE EARTH PROJECT Ngualla Rare Earth Project UGANDA Corporate Profile Peak Resources Limited is developing its 100% owned Ngualla Rare Earth Project in Tanzania. Favourable mineralogy enables a simple, low risk and low cost processing route which, together with high grades and extremely low uranium and thorium levels, distinguishes Ngualla from other rare earth projects. The Scoping Study Update completed in May 2013 defines robust project economics further improved by the TANZANIA new Mineral Resource estimate released in April 2013 and recent beneficiation test work results. The revised Dar Es Salaam Scoping Study confirms Ngualla as a leading rare earth project with an NPV of US$1.768 billion, IRR of 60%, Ngualla Project Indian Ocean ! annual revenues of US$378 million and payback within 3 years. Ngualla is a new discovery and one of the Mbeya largest and highest grade rare earth deposits in the world. N 0 100 200 400km Peak’s strategy for growth is to develop Ngualla into production rapidly via lower capital costs and establishg the Ngualla Project location, Tanzania. Company as a lower cost quartile, long term producer of clean, high purity rare earth products. Capital Share Structure Ngualla0 50 100 –200m a quality Bastnaesite Zone Monazite Zone As of 3o June 2013 Northern Zone rare earth project Southern Rare Earth Zone (SREZ) Trading Symbol1 toAustralia 2% REO / 0.5 to 1% Nb2O5 / 200 to 500ppm Ta2O5 / +20% phosphate Geological fundamentals Colluvium Ngualla Hill >2% REO ASX: PEK Ferricrete 1600distinguish Ngualla from other SW Alluvials Fresh Weathered projects and have enabled the 100m Trading Symbol US >3% REO rapid development(Bastnaesite and Monazite)achieved OTCQX: PKRLY 1 to 2% REO fromAlluvium discovery just over two Ordinary Shares on issue: 1500years ago. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
A New Species of Mioeuoticus (Lorisiformes, Primates) from the Early Middle Miocene of Kenya
ANTHROPOLOGICAL SCIENCE Vol. 125(2), 59–65, 2017 A new species of Mioeuoticus (Lorisiformes, Primates) from the early Middle Miocene of Kenya Yutaka KUNIMATSU1*, Hiroshi TSUJIKAWA2, Masato NAKATSUKASA3, Daisuke SHIMIZU3, Naomichi OGIHARA4, Yasuhiro KIKUCHI5, Yoshihiko NAKANO6, Tomo TAKANO7, Naoki MORIMOTO3, Hidemi ISHIDA8 1Faculty of Business Administration, Ryukoku University, Kyoto 612-8577, Japan 2Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai 981-8551, Japan 3Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 4Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan 5Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan 6Graduate School of Human Sciences, Osaka University, Suita 565-0871, Japan 7Japan Monkey Center, Inuyama 484-0081, Japan 8Professor Emeritus, Kyoto University, Kyoto 606-8502, Japan Received 24 November 2016; accepted 22 March 2017 Abstract We here describe a prosimian specimen discovered from the early Middle Miocene (~15 Ma) of Nachola, northern Kenya. It is a right maxilla that preserves P4–M3, and is assigned to a new species of the Miocene lorisid genus Mioeuoticus. Previously, Mioeuoticus was known from the Early Miocene of East Africa. The Nachola specimen is therefore the first discovery of this genus from the Middle Mi- ocene. The presence of a new lorisid species in the Nachola fauna indicates a forested paleoenvironment for this locality, consistent with previously known evidence including the abundance of large-bodied hominoid fossils (Nacholapithecus kerioi), the dominance of browsers among the herbivore fauna, and the presence of plenty of petrified wood. -
Tectono-Sedimentary Evolution of the Offshore Hydrocarbon Exploration Block 5, East Africa: Implication for Hydrocarbon Generation and Migration
Open Journal of Geology, 2018, 8, 819-840 http://www.scirp.org/journal/ojg ISSN Online: 2161-7589 ISSN Print: 2161-7570 Tectono-Sedimentary Evolution of the Offshore Hydrocarbon Exploration Block 5, East Africa: Implication for Hydrocarbon Generation and Migration Ezekiel J. Seni1, Gabriel D. Mulibo1*, Giovanni Bertotti2 1Department of Geology, University of Dar es Salaam, Dar es Salaam, Tanzania 2Department of Geoscience and Civil engineering, Deft University of Technology, Delft, The Netherland How to cite this paper: Seni, E.J., Mulibo, Abstract G.D. and Bertotti, G. (2018) Tectono-Sedi- mentary Evolution of the Offshore Hydro- Sedimentary deposits in Block 5, offshore Tanzania basin have been imaged carbon Exploration Block 5, East Africa: using two-dimensional (2D) seismic data. The seismic data and well data re- Implication for Hydrocarbon Generation veal four tectonic units representing different tectonic events in relation to and Migration. Open Journal of Geology, 8, 819-840. structural styles, sedimentation and hydrocarbon potential evolved in Block 5. https://doi.org/10.4236/ojg.2018.88048 Results show that during Early to Late Jurassic, Block 5 was affected by the break-up of Gondwana and the drifting of Madagascar as evidenced by pat- Received: June 8, 2018 Accepted: August 1, 2018 terns of sediments and structural features. The chaotic and discontinuous Published: August 3, 2018 reflectors are characteristics features on the sediments pattern indicating a possible transitional setting following the breakup of Gondwana. From the Copyright © 2018 by authors and Late Cretaceous, Block 5 sits in more stable subsiding sag as the consequence Scientific Research Publishing Inc. -
Well-Groomed Predecessors Assigned to the Lorisid Species Nycticeboides Simpsoni
536 Nature Vol. 289 12 February 1981 from the late Miocene Siwalik deposits of Pakistan (some 7-10 million years old) Well-groomed predecessors assigned to the lorisid species Nycticeboides simpsoni. This newly from R. D. Martin discovered species definitely had a tooth RECONSTRUCTIONS of mammalian phy It has been claimed 7 that the tooth-comb in comb, and Rose et a/. have applied their logeny have depended heavily on dental small-bodied lemurs and lorises is too SEM procedure to the crowns of one evidence, since teeth are preferentially fragile to allow for its use in feeding, but canine and two incisors. These teeth closely preserved in the fossil record. As a rule fruit pulp provides no great resistance and resemble their counterparts in modern anterior teeth (especially incisors) are easily gums are usually collected in a semi-liquid lorisids and SEM examination revealed the lost in fossilization and most weight has state. It is therefore a moot point whether fine vertical grooves characteristic of use in been placed on the characteristics of cheek grooming or feeding was the primary grooming. Thus, the use of the lorisid teeth (premolars and molars). However, function of the tooth comb in lemurs and tooth-comb in grooming can be definitely there are some striking modifications of the lorises, but it is certain that both functions traced back at least 7 million years. Un lower anterior teeth among living are served in extant species. fortunately, though, feeding on gum or mammals and these provide not only useful Our understanding of the origin of soft fruit pulp is not known to leave diagnostic features but also valuable tooth-comb grooming has now been con characteristic wear patterns on the tooth functional clues. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
Niobian Rutile and Its Associations at Jolotca, Ditrau Alkaline Intrusive Massif, East Carpathians, Romania
THE PUBLISHING HOUSE GEONOMY OF THE ROMANIAN ACADEMY Review article NIOBIAN RUTILE AND ITS ASSOCIATIONS AT JOLOTCA, DITRAU ALKALINE INTRUSIVE MASSIF, EAST CARPATHIANS, ROMANIA Paulina HIRTOPANU1, Robert J. FAIRHURST2 and Gyula JAKAB3 1Department of Mineralogy, University of Bucharest, 1, Nicolae Balcescu Blv., 010041 Bucharest, RO; 2Technical Laboratory at Lhoist North America, Inc., 3700 Hulen Street, Forth Worth, Texas 76107, US; 3IG Mineral Gheorgheni, Romania Corresponding author: Paulina HIRTOPANU, E-mail: [email protected] Accepted December 17, 2014 The Nb-rutile at Jolotca, situated in Ditrau alkaline intrusive complex occurs as intergrowths with ilmenite, Mn-ilmenite, Fe-pyrophanite and has ferrocolumbite, manganocolumbite, aeshynite-(Ce), aeshynite-(Nd), fergusonite-(Y), euxenite-(Y) and polycrase-(Y) exsolutions. The textural relations in this association show the replacement of niobian rutile by ilmenite and Mn ilmenite. Niobian rutile is the oldest mineral. Ilmenite and Mn-ilmenite occur as lamellar exsolutions in niobian rutile and as veins, and separately, in grains as solid solution with Fe-pyrophanite. The range of Nb2O5 content in Nb rutile varies generally from 2 to 15% wt. Sometimes, the values of Nb2O5 (up to 37.5% wt) are higher than any previously recorded for rutile from alkaline suites, pegmatites and carbonatites, having a chemical composition similar to that of old name „ilmenorutile”. Because of such a big difference in chemical composition, and the different kind of appearances of the two rutiles, they can be separated into two Nb rutile generations. The first niobian rutile (niobian rutile I) formed on old rutile, has low Nb2O5 (10-15wt%), and oscillatory composition. Its composition is characteristically close to stoichiometric TiO2. -
Unusual Silicate Mineralization in Fumarolic Sublimates of the Tolbachik Volcano, Kamchatka, Russia – Part 2: Tectosilicates
Eur. J. Mineral., 32, 121–136, 2020 https://doi.org/10.5194/ejm-32-121-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 2: Tectosilicates Nadezhda V. Shchipalkina1, Igor V. Pekov1, Natalia N. Koshlyakova1, Sergey N. Britvin2,3, Natalia V. Zubkova1, Dmitry A. Varlamov4, and Eugeny G. Sidorov5 1Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia 2Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia 3Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184200 Apatity, Russia 4Institute of Experimental Mineralogy, Russian Academy of Sciences, Akademika Osypyana ul., 4, 142432 Chernogolovka, Russia 5Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia Correspondence: Nadezhda V. Shchipalkina ([email protected]) Received: 19 June 2019 – Accepted: 1 November 2019 – Published: 29 January 2020 Abstract. This second of two companion articles devoted to silicate mineralization in fumaroles of the Tol- bachik volcano (Kamchatka, Russia) reports data on chemistry, crystal chemistry and occurrence of tectosil- icates: sanidine, anorthoclase, ferrisanidine, albite, anorthite, barium feldspar, leucite, nepheline, kalsilite, so- dalite and hauyne. Chemical and genetic features of fumarolic silicates are also summarized and discussed. These minerals are typically enriched with “ore” elements (As, Cu, Zn, Sn, Mo, W). Significant admixture of 5C As (up to 36 wt % As2O5 in sanidine) substituting Si is the most characteristic. Hauyne contains up to 4.2 wt % MoO3 and up to 1.7 wt % WO3. -
Peak Resources Ngualla Project
Peak Resources Ngualla Project Indaba 2016 For personal use only NGUALLA RARE EARTH PROJECT Disclaimer The information in this document has been prepared as at February 2016. The document is for information purposes only and has been extracted entirely from documents or materials publicly filed with the Australian Stock Exchange and/or the Australian Securities and Investments Commission. This presentation is not an offer or invitation to subscribe for or purchase securities in the Company. The release, publication or distribution of this presentation in certain jurisdictions may be restricted by law and therefore persons in such jurisdictions into which this presentation is released, published or distributed should inform themselves about and observe such restrictions. Certain statements contained in this document constitute “forward-looking statements” within the meaning of the United States Private Securities Litigation Reform Act of 1995 and forward looking information under the provisions of Canadian provincial securities laws. When used in this document, the words “anticipate”, “expect”, “estimate”, “forecast”, “will”, “planned”, and similar expressions are intended to identify forward-looking statements or information. Such statements include without limitation: statements regarding timing and amounts of capital expenditures and other assumptions; estimates of future reserves, resources, mineral production, optimization efforts and sales; estimates of mine life; estimates of future internal rates of return, mining costs, cash costs, -
A Geological Excursion to Port Cygnet in Connection with the Australasian Association for the Advancement of Science, 1902
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tasmania Open Access... A GEOLOGICAL EXCURSION TO PORT CYGNET IN CONNECTION WITH THE AUSTRALASIAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, 1902. By W. H. Twelvetrees, F.G.S., Go vernmerd Geo log i.st [Read May 12. 1903.] The interest attaching to tlie plexus of felspathoid rocks, now known to occur at Port Cygnet, led to a flying visit being paid to the locality by members of Section C. (Geology) of the Anstralasian Association for the Advancement of Science, in January, 1902. The occurrence of this division of eruptive rocks in Tasmania is so restricted, and their development is exposed so instructively, that a brief account of the excursion will be interesting to others besides the actual visitors. Seventeen members took advantage of the opportunity, and travelled to Port Cygnet by one of the Channel steamers, making the trip in a few -hours. A call was made at Kettering, in the D'Entrecasteaux Channel, where Professor E. C. Hogg led the party to an exposure of Permo- Carboni- ferous till, with glaciated pebbles. Oyster Cove, where the belt of alkali rocks comes through from Port Cygnet, was not visited, the entire energies of the expedition being reserved for the better known area at Lovett. Elaeolite syenite, essexite and alkali rocks with trachytoidal ground- mass, occur at Oyster Cove. The assistance rendered to the cause of Science by the Hon. Edward Mulcahy, the then Minister of Lands, Works, and Mines, in lending the services of the two State geologists, was appreciated by the members and duly acknowledged at the time. -
High Grade Fluorite Mineralisation Discovered at Ngualla
1st February 2017 High grade fluorite mineralisation discovered at Ngualla Peak Resources Limited (“Peak”; ASX Code: PEK) is pleased to report the discovery of high grade fluorite and a new area of rare earth mineralisation at its Ngualla Rare Earth Project in Tanzania. Highlights: . Outcropping high grade (up to 96%) fluorite mineralisation identified from reconnaissance rock sampling and geological mapping . Fluorite mineralisation occurs within a zone of brecciation that can be traced over a strike length of 3.8km within the alteration zone surrounding the Ngualla Carbonatite . New occurrences of rare earth mineralisation were identified within the same zone. Rock grab samples returned assays up to 4.54% rare earth oxide (REO) . The discovery reinforces the multi commodity endowment of the Ngualla Carbonatite and the potential for supplementary value add products for a future rare earth operation at Ngualla . Rare Earths remain the Company’s focus and value driver, with the Bankable Feasibility Study for the Ngualla Rare Earth Project on schedule for completion late in the first quarter or early in the second quarter of 2017 With the Rare Earth Bankable Feasibility Study nearing completion, the Company continues to assess the potential for additional economic minerals within the Ngualla Carbonatite. Recent field programs in the previously unexplored alteration zone that forms a ring of hills around the carbonatite have identified zones of high grade fluorite mineralisation as well as new occurrences of rare earth mineralisation. Early stage reconnaissance rock sampling and geological mapping has identified a 3.8km long, largely soil covered, zone of brecciation and carbonatite dykes containing fluorite and rare earth mineralisation that warrants further evaluation. -
The Crystal Structure of Hauyne at 293 and 153 K
Canadian Mineralogist Vol.29, pp. 123-130(1991) THE CRYSTALSTRUCTURE OF HAUYNEAT 293 AND 153 K ISHMAEL HASSAN{. ANDH. DOUGLAS GRUNDY Departmentof Geology,McMaster University, Hamilton, Ontario L8S4Ml ABSTRAcT dre de position dansle casdes atomes d'oxygdne du r6seau, du moins dansnotre echantillon, et nous ne voyons aucune The structure of hauyne, ideally Na6Ca2[Al6Si6O24] r€flexion satellitedans les clich6sde prdcession.Ces r6sul- (SOa)2,has beenrefined using separateintensity data-sets tats diffArent donc du cas de la nosdaneet de la lazurite' collected from the same single crystal at temperatures of danslesquels les atomc d'oxygbnedu r$eau occupentdeux 293 and 153 K, respectively.The refinementswere done ensemblesde positions 24(i), et la pr6sencede r6flexions in spacegroup P43n, and the final R indicesare 0.036and sate[itesd6coule d'une modulation dansla position desato- 0.039 for the 293 and 153 K data sets,respectively. The mes d'oxygbne. Al:Si ratio is l:1; theseatoms are completely ordered. There (Traduit par la R6daction) is positionaldisorder of the interstitialcations (Na, K, and Ca) over three independenr8(e) positions (sitesCl, C2, and Mots-clds:groupe de la sodalite,hauyne, structure cristal- C3) that are closeto eachother on the body diagonalsof line, mise en ordre de groupemants,bordures des domai- the cubic cell. The Cl, A, and C3 sitesare occupiedby nes antiphases. K, Ca, and Na, respectively.The sulfuratom of the SOI- group is displacedoff the 2(a)position to an 8(e)position, but the oxygenatoms have remainedat an 8(e) position, Ixtnooucrrou indicatingthat the SOagroup is in one orientationinstead of two.