Level Iii and Iv Ecoregions of Pennsylvania

Total Page:16

File Type:pdf, Size:1020Kb

Level Iii and Iv Ecoregions of Pennsylvania LEVEL III AND IV ECOREGIONS OF DELAWARE, MARYLAND, PENNSYLVANIA, VIRGINIA, AND WEST VIRGINIA by Alan J. Woods1 James M. Omernik2 Douglas D. Brown July, 1999 U.S. Environmental Protection Agency National Health and Environmental Effects Research Laboratory 200 SW 35th Street Corvallis, Oregon 97333 1Dynamac Corporation U.S. EPA National Health and Environmental Effects Research Laboratory 200 SW 35th Street Corvallis, Oregon 97333 2U.S. Environmental Protection Agency National Health and Environmental Effects Research Laboratory 200 SW 35th Street Corvallis, Oregon 97333 TABLE OF CONTENTS BACKGROUND ..................................................................................................................................................... 1 METHODS ..................................................................................................................................................... 2 REGIONAL DESCRIPTIONS ................................................................................................................................... 3 45. Piedmont ................................................................................................................................................... 3 45c. Carolina Slate Belt .................................................................................................................... 4 45e. Northern Inner Piedmont ........................................................................................................... 4 45f. Northern Outer Piedmont .......................................................................................................... 5 45g. Triassic Uplands ......................................................................................................................... 6 58. Northeastern Highlands ............................................................................................................................ 7 58h. Reading Prong ............................................................................................................................ 7 60. Northern Appalachian Plateau and Uplands ............................................................................................. 7 60a. Glaciated Low Plateau ................................................................................................................ 7 60b. Northeastern Uplands ................................................................................................................. 8 61. Erie/Ontario Hills and Lake Plain ............................................................................................................. 9 61b. Mosquito Creek-Pymatuning Lowlands ..................................................................................... 9 61c. Low Lime Till Plain ................................................................................................................. 10 62. North Central Appalachians .................................................................................................................... 11 62a. Pocono High Plateau ................................................................................................................ 11 62b. Low Poconos ............................................................................................................................ 12 62c. Glaciated Allegheny High Plateau ........................................................................................... 13 62d. Unglaciated Allegheny High Plateau ....................................................................................... 13 62e. Low Catskills ............................................................................................................................ 14 63. Middle Atlantic Coastal Plain ................................................................................................................. 15 63a. Delaware River Terraces and Uplands ..................................................................................... 15 63b. Chesapeake-Albemarle Silty Lowlands and Tidal Marshes ..................................................... 16 63c. Dismal Swamp ......................................................................................................................... 17 63d. Barrier Islands-Coastal Marshes ............................................................................................... 17 63e. Mid-Atlantic Flatwoods ........................................................................................................... 18 63f. Delmarva Uplands .................................................................................................................... 18 64. Northern Piedmont Ecoregion ................................................................................................................ 19 64a. Triassic Lowlands ..................................................................................................................... 20 64b. Diabase and Conglomerate Uplands ........................................................................................ 20 64c. Piedmont Uplands .................................................................................................................... 21 64d. Piedmont Limestone/Dolomite Lowlands ................................................................................ 22 65. Southeastern Plains ................................................................................................................................ 23 65m. Rolling Coastal Plain ................................................................................................................ 23 65n. Chesapeake Rolling Coastal Plain ............................................................................................ 24 ii TABLE OF CONTENTS (continued) 66. Blue Ridge Mountains ............................................................................................................................ 24 66a. Northern Igneous Ridges .......................................................................................................... 25 66b. Northern Sedimentary and Metasedimentary Ridges ............................................................... 25 66c. Interior Plateau ......................................................................................................................... 25 66d. Southern Igneous Ridges and Mountains ................................................................................. 26 66e. Southern Sedimentary Ridges .................................................................................................. 26 66f. Limestone Valleys and Coves (66f) ......................................................................................... 26 67. Ridge and Valley .................................................................................................................................... 27 67a. Northern Limestone/Dolomite Valleys .................................................................................... 28 67b. Northern Shale Valleys ............................................................................................................ 28 67c. Northern Sandstone Ridges ...................................................................................................... 28 67d. Northern Dissected Ridges ....................................................................................................... 29 67e. Anthracite ................................................................................................................................. 29 67f. Southern Limestone/Dolomite Valleys and Low Rolling Hills ................................................ 30 67g. Southern Shale Valleys ............................................................................................................ 30 67h. Southern Sandstone Ridges ...................................................................................................... 30 67i. Southern Dissected Ridges ....................................................................................................... 31 69. Central Appalachians .............................................................................................................................. 31 69a. Forested Hills and Mountains ................................................................................................... 31 69b. Uplands and Valleys of Mixed Land Use ................................................................................. 32 69c. Greenbrier Karst ....................................................................................................................... 33 69d. Cumberland Mountains ............................................................................................................ 34 70. Western Allegheny Plateau ..................................................................................................................... 34 70a. Permian Hills ............................................................................................................................ 34 70b. Monongahela Transition Zone ................................................................................................. 35 70c. Pittsburgh Low Plateau ............................................................................................................ 35 83. Eastern Great Lakes and Hudson Lowlands ...........................................................................................
Recommended publications
  • Strategy Habitat: Ponderosa Pine Woodlands
    Habitat: Conservation Summaries for Strategy Habitats Strategy Habitat: Ponderosa Pine Woodlands Ecoregions: Conservation Overview: Ponderosa Pine Woodlands are a Strategy Habitat in the Blue Moun- Ponderosa pine habitats historically covered a large portion of the tains, East Cascades, and Klamath Mountains ecoregions. Blue Mountains ecoregion, as well as parts of the East Cascades and Klamath Mountains. Ponderosa pine is still widely distributed in eastern Characteristics: and southern Oregon. However, the structure and species composition The structure and composition of ponderosa pine woodlands varies of woodlands have changed dramatically. Historically, ponderosa pine across the state, depending on local climate, soil type and moisture, habitats had frequent low-intensity ground fires that maintained an elevation, aspect and fire history. In Blue Mountains, East Cascades open understory. Due to past selective logging and fire suppression, and Klamath Mountains ecoregions, ponderosa pine woodlands have dense patches of smaller conifers have grown in the understory of pon- open canopies, generally covering 10-40 percent of the sky. Their derosa pine forests. Depending on the area, these conifers may include understories are variable combinations of shrubs, herbaceous plants, shade-tolerant Douglas-fir, grand fir and white fir, or young ponderosa and grasses. Ponderosa woodlands are dominated by ponderosa pine, pine and lodgepole pine. These dense stands are vulnerable to drought but may also have lodgepole, western juniper, aspen, western larch, stress, insect outbreaks, and disease. The tree layers act as ladder fuels, grand fir, Douglas-fir, incense cedar, sugar pine, or white fir, depend- increasing the chances that a ground fire will become a forest-destroy- ing on ecoregion and site conditions.
    [Show full text]
  • North Cascades Contested Terrain
    North Cascades NP: Contested Terrain: North Cascades National Park Service Complex: An Administrative History NORTH CASCADES Contested Terrain North Cascades National Park Service Complex: An Administrative History CONTESTED TERRAIN: North Cascades National Park Service Complex, Washington An Administrative History By David Louter 1998 National Park Service Seattle, Washington TABLE OF CONTENTS adhi/index.htm Last Updated: 14-Apr-1999 http://www.nps.gov/history/history/online_books/noca/adhi/[11/22/2013 1:57:33 PM] North Cascades NP: Contested Terrain: North Cascades National Park Service Complex: An Administrative History (Table of Contents) NORTH CASCADES Contested Terrain North Cascades National Park Service Complex: An Administrative History TABLE OF CONTENTS Cover Cover: The Southern Pickett Range, 1963. (Courtesy of North Cascades National Park) Introduction Part I A Wilderness Park (1890s to 1968) Chapter 1 Contested Terrain: The Establishment of North Cascades National Park Part II The Making of a New Park (1968 to 1978) Chapter 2 Administration Chapter 3 Visitor Use and Development Chapter 4 Concessions Chapter 5 Wilderness Proposals and Backcountry Management Chapter 6 Research and Resource Management Chapter 7 Dam Dilemma: North Cascades National Park and the High Ross Dam Controversy Chapter 8 Stehekin: Land of Freedom and Want Part III The Wilderness Park Ideal and the Challenge of Traditional Park Management (1978 to 1998) Chapter 9 Administration Chapter 10 http://www.nps.gov/history/history/online_books/noca/adhi/contents.htm[11/22/2013
    [Show full text]
  • Ecoregions of New England Forested Land Cover, Nutrient-Poor Frigid and Cryic Soils (Mostly Spodosols), and Numerous High-Gradient Streams and Glacial Lakes
    58. Northeastern Highlands The Northeastern Highlands ecoregion covers most of the northern and mountainous parts of New England as well as the Adirondacks in New York. It is a relatively sparsely populated region compared to adjacent regions, and is characterized by hills and mountains, a mostly Ecoregions of New England forested land cover, nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and glacial lakes. Forest vegetation is somewhat transitional between the boreal regions to the north in Canada and the broadleaf deciduous forests to the south. Typical forest types include northern hardwoods (maple-beech-birch), northern hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are primary land uses. Farm-to-forest conversion began in the 19th century and continues today. In spite of this trend, Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and 5 level III ecoregions and 40 level IV ecoregions in the New England states and many Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America – toward a common perspective: Montreal, Commission for Environmental Cooperation, 71 p. alluvial valleys, glacial lake basins, and areas of limestone-derived soils are still farmed for dairy products, forage crops, apples, and potatoes. In addition to the timber industry, recreational homes and associated lodging and services sustain the forested regions economically, but quantity of environmental resources; they are designed to serve as a spatial framework for continue into ecologically similar parts of adjacent states or provinces. they also create development pressure that threatens to change the pastoral character of the region.
    [Show full text]
  • State Game Lands 267 Blair County
    ROAD CLASSIFICATION Secondary Highway Unimproved Road ! Electric Oil Pipeline; Gas Line Other Line l Phone ll Sewer Line; Water Line ± Trail !! Special Trails Stream IA Parking Area ²³F Food & Cover Crew HQ ²³G Garage L Headquarters l ²³O Other YY ²³S Storage l Gate YY Tower Site l l Food Plot Game Land Boundary Other Game Lands Wetland ! ! ! ! ! IAl! l ! ! ! ! PENNSYLVANIA GAME COMMSISSION STATE GAME LANDS 267 BLAIR COUNTY Feet 0 1900 3800 5700 7600 1 inch = 3,000 feet January 2014 Service Layer Credits: Copyright:© 2013 National Geographic Society, i-cubed State game land (SGL) 267 is located in Logan Township, Blair County 12/17/2012 SPORTSMEN'S RECREATION MAP in Wildlife Management Unit 4D and currently has a deeded acreage of 1,041 acres. Approximately 2,200 feet of Laurel Run, a cold water fishery, flows through SGL 267, and all water within this SGL is part of the Susquehanna watershed. The Game Commission currently maintains one public parking area on SGL 267, located on Skyline Drive. There are 0.95 miles of maintained administrative roads throughout SGL 267, providing for public access to this area by foot. The farthest point on SGL 267 by foot from a parking area or public road is approximately 0.75 miles. All roads are currently closed year-round to public motor vehicle traffic and access is controlled with locked gates. The gated roads and rights-of-way provide access for hunters and avenues for hiking, Each time a hunter buys a hunting license, the wildlife photography and bird-watching. money he spends goes toward many facets of wildlife management.
    [Show full text]
  • East and Central Farming and Forest Region and Atlantic Basin Diversified Farming Region: 12 Lrrs N and S
    East and Central Farming and Forest Region and Atlantic Basin Diversified Farming Region: 12 LRRs N and S Brad D. Lee and John M. Kabrick 12.1 Introduction snowfall occurs annually in the Ozark Highlands, the Springfield Plateau, and the St. Francois Knobs and Basins The central, unglaciated US east of the Great Plains to the MLRAs. In the southern half of the region, snowfall is Atlantic coast corresponds to the area covered by LRR N uncommon. (East and Central Farming and Forest Region) and S (Atlantic Basin Diversified Farming Region). These regions roughly correspond to the Interior Highlands, Interior Plains, 12.2.2 Physiography Appalachian Highlands, and the Northern Coastal Plains. The topography of this region ranges from broad, gently rolling plains to steep mountains. In the northern portion of 12.2 The Interior Highlands this region, much of the Springfield Plateau and the Ozark Highlands is a dissected plateau that includes gently rolling The Interior Highlands occur within the western portion of plains to steeply sloping hills with narrow valleys. Karst LRR N and includes seven MLRAs including the Ozark topography is common and the region has numerous sink- Highlands (116A), the Springfield Plateau (116B), the St. holes, caves, dry stream valleys, and springs. The region also Francois Knobs and Basins (116C), the Boston Mountains includes many scenic spring-fed rivers and streams con- (117), Arkansas Valley and Ridges (118A and 118B), and taining clear, cold water (Fig. 12.2). The elevation ranges the Ouachita Mountains (119). This region comprises from 90 m in the southeastern side of the region and rises to 176,000 km2 in southern Missouri, northern and western over 520 m on the Springfield Plateau in the western portion Arkansas, and eastern Oklahoma (Fig.
    [Show full text]
  • The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee
    The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee U.S. GEOLOGICAL SURVEY BULLETIN 1620 . II • r ,j • • ~1 =1 i1 .. ·~ II .I '1 .ill ~ I ... ... II 'II .fi :. I !~ ...1 . ~ !,~ .,~ 'I ~ J ·-=· ..I ·~ tJ 1;1 .. II "'"l ,,'\. d • .... ·~ I 3: ... • J ·~ •• I -' -\1 - I =,. The Logan Plateau, a Young Physiographic Region in West Virginia, Kentucky, Virginia, and Tennessee By WILLIAM F. OUTERBRIDGE A highly dissected plateau with narrow valleys, steep slopes, narrow crested ridges, and landslides developed on flat-lying Pennsylvanian shales and subgraywacke sandstone during the past 1.5 million years U.S. GEOLOGICAL SURVEY BULLETIN 1620 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1987 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Outerbridge, William F. The Logan Plateau, a young physiographic region in West Virginia, Kentucky, Virginia, and Tennessee. (U.S. Geological Survey bulletin ; 1620) Bibliography: p. 18. Supt. of Docs. no.: I 19.3:1620 1. Geomorphology-Logan Plateau. I. Title. II. Series. QE75.B9 no. 1620 557.3 s [551.4'34'0975] 84-600132 [GB566.L6] CONTENTS Abstract 1 Introduction 1 Methods of study 3 Geomorphology 4 Stratigraphy 9 Structure 11 Surficial deposits 11 Distribution of residuum 11 Depth of weathering 11 Soils 11 Landslides 11 Derivative maps of the Logan Plateau and surrounding area 12 History of drainage development since late Tertiary time 13 Summary and conclusions 17 References cited 18 PLATES [Plates are in pocket] 1.
    [Show full text]
  • Southeastern Coastal Plains-Caribbean Region Report
    Southeastern Coastal Plains-Caribbean Region Report U.S. Shorebird Conservation Plan April 10, 2000 (Revised September 30, 2002) Written by: William C. (Chuck) Hunter U.S. Fish and Wildlife Service 1875 Century Boulevard Atlanta, Georgia 30345 404/679-7130 (FAX 7285) [email protected] along with Jaime Collazo, North Carolina State University, Raleigh, NC Bob Noffsinger, U.S. Fish and Wildlife Service, Manteo, NC Brad Winn, Georgia DNR Wildlife Resources Division, Brunswick, GA David Allen, North Carolina Wildlife Resources Commission, Trenton, NC Brian Harrington, Manomet Center for Conservation Sciences, Manomet, MA Marc Epstein, U.S. Fish and Wildlife Service, Merritt Island NWR, FL Jorge Saliva, U.S. Fish and Wildlife Service, Boqueron, PR Executive Summary This report articulates what is needed in the Southeastern Coastal Plains and Caribbean Region to advance shorebird conservation. A separate Caribbean Shorebird Plan is under development and will be based in part on principles outlined in this plan. We identify priority species, outline potential and present threats to shorebirds and their habitats, report gaps in knowledge relevant to shorebird conservation, and make recommendations for addressing identified problems. This document should serve as a template for a regional strategic management plan, with step-down objectives, local allocations and priority needs outlined. The Southeastern Coastal Plains and Caribbean region is important for breeding shorebirds as well as for supporting transient species during both northbound
    [Show full text]
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Analysis of Stream Runoff Trends in the Blue Ridge and Piedmont of Southeastern United States
    Georgia State University ScholarWorks @ Georgia State University Geosciences Theses Department of Geosciences 4-20-2009 Analysis of Stream Runoff Trends in the Blue Ridge and Piedmont of Southeastern United States Usha Kharel Follow this and additional works at: https://scholarworks.gsu.edu/geosciences_theses Part of the Geography Commons, and the Geology Commons Recommended Citation Kharel, Usha, "Analysis of Stream Runoff Trends in the Blue Ridge and Piedmont of Southeastern United States." Thesis, Georgia State University, 2009. https://scholarworks.gsu.edu/geosciences_theses/15 This Thesis is brought to you for free and open access by the Department of Geosciences at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Geosciences Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. ANALYSIS OF STREAM RUNOFF TRENDS IN THE BLUE RIDGE AND PIEDMONT OF SOUTHEASTERN UNITED STATES by USHA KHAREL Under the Direction of Seth Rose ABSTRACT The purpose of the study was to examine the temporal trends of three monthly variables: stream runoff, rainfall and air temperature and to find out if any correlation exists between rainfall and stream runoff in the Blue Ridge and Piedmont provinces of the southeast United States. Trend significance was determined using the non-parametric Mann-Kendall test on a monthly and annual basis. GIS analysis was used to find and integrate the urban and non-urban stream gauging, rainfall and temperature stations in the study area. The Mann-Kendall test showed a statistically insignificant temporal trend for all three variables. The correlation of 0.4 was observed for runoff and rainfall, which showed that these two parameters are moderately correlated.
    [Show full text]
  • HIGH ALLEGHENY PLATEAU ECOREGIONAL PLAN: FIRST ITERATION Conservation Science Support—Northeast and Caribbean
    HIGH ALLEGHENY PLATEAU ECOREGIONAL PLAN: FIRST ITERATION Conservation Science Support—Northeast and Caribbean The High Allegheny Plan is a first iteration, a scientific assessment of the ecoregion. As part of the planning process, other aspects of the plan will be developed in future iterations, along with updates to the ecological assessment itself. These include fuller evaluations of threats to the ecoregion, constraints on conservation activities, and implementation strategies. CSS is now developing a standard template for ecoregional plans, which we have applied to the HAL first iteration draft report, distributed in 2002. Some of the HAL results have been edited or updated for this version. Click on the navigation pane to browse the report sections. What is the purpose of the report template? The purpose of creating a standard template for ecoregional plans in the Northeast is twofold: — to compile concise descriptions of methodologies developed and used for ecoregional assessment in the Northeast. These descriptions are meant to meet the needs of planning team members who need authoritative text to include in future plan documents, of science staff who need to respond to questions of methodology, and of program and state directors looking for material for general audience publications. — to create a modular resource whose pieces can be selected, incorporated in various formats, linked to in other documents, and updated easily. How does the template work? Methods are separated from results in this format, and the bulk of our work has gone into the standard methods sections. We have tried to make each methods section stand alone. Every section includes its own citation on the first page.
    [Show full text]
  • INVESTING in OUR FUTURE Quantifying the Impact of Completing the East Coast Greenway in the Delaware River Watershed
    INVESTING IN OUR FUTURE Quantifying the Impact of Completing the East Coast Greenway in the Delaware River Watershed Report Prepared For: Prepared By: Executive Summary Completing the East Coast Greenway in the Delaware Watershed will provide: 175 2 MILES OF MULTI-USE TRAIL 2,460 TEMPORARY JOBS $840M IN ANNUAL TOURISM BENEFITS ($4.8M/MILE LOCAL ECONOMIC IMPACT) $2.2B ONE-TIME ECONOMIC BENEFITS Table of Contents What is the East Coast Greenway? 5 The East Coast Greenway in the Delaware Watershed 6 What the Greenway Connects 8 Transport + Safety Benefits 10 Case Study: Jack A. Markell Trail 12 Economic Benefits + Planning for Equity 14 Case Study: Bristol Borough 20 Health Benefits 22 Environmental Benefits 24 Case Study: Riverfront North Partnership 26 Conclusion 28 Bartram’s Mile segment of East Coast Greenway along west bank of Schuylkill River in Philadelphia. East Coast Greenway Alliance photo Sources 30 On the cover: celebrations on Schuylkill River Trail Schuylkill Banks photos ME Calais Bangor Augusta Portland NH Delaware Portsmouth MA Boston Watershed NY Hartford New Haven CT Providence NJ RI PA New York Philadelphia Trenton Wilmington MD Baltimore Washington DC Annapolis DE Fredericksburg VA Richmond 4 Norfolk NC Raleigh Fayetteville New Bern Wilmington SC Myrtle Beach Charleston GA Savannah Brunswick Jacksonville St.Augustine FL Melbourne Miami Key West greenway.org What is the East Coast Greenway? The East Coast Greenway is developing into one of the nation’s longest continuous biking and walking paths, connecting 15 states and 450 communities from Key West, Florida, to Calais, Maine. The in-progress Greenway is a place that bicyclists, walkers, runners, skaters, horseback riders, wheelchair users, and cross-country skiers of all ages and abilities can enjoy.
    [Show full text]
  • Historical Development and Problems Within the Pennsylvanian Nomenclature of Ohio.1
    Historical Development and Problems Within the Pennsylvanian Nomenclature of Ohio.1 GLENN E. LARSEN, OHIO Department of Natural Resources, Division of Geological Survey, Fountain Sq., Bldg. B, Columbus, OH 43224 ABSTRACT. An analysis of the historical development of the Pennsylvanian stratigraphic nomenclature, as used in Ohio, has helped define and clarify problems inherent in Ohio's stratigraphic nomenclature. Resolution of such problems facilitates further development of a useful stratigraphy and philosophy for mapping. Investigations of Pennsylvanian-age rocks in Ohio began as early as 1819- From 1858 to 1893, investigations by Newberry, I. C. White, and Orton established the stratigraphic framework upon which the present-day nomenclature is based. During the 1950s, the cyclothem concept was used to classify and correlate Pennsylvanian lithologic units. This classification led to a proliferation of stratigraphic terms, as almost every lithologic type was named and designated as a member of a cyclothem. By the early 1960s, cyclothems were considered invalid as a lithostratigraphic classification. Currently, Pennsylvanian nomenclature of Ohio, as used by the Ohio Division of Geological Survey, consists of four groups containing 123 named beds, with no formal formations or members. In accordance with the 1983 North American Stratigraphic code, the Ohio Division of Geological Survey considers all nomenclature below group rank as informal. OHIO J. SCI. 91 (1): 69-76, 1991 INTRODUCTION DISCUSSION Understanding the historical development of Pennsyl- The Early 1800s vanian stratigraphy in Ohio is important to the Ohio The earliest known references to Pennsylvanian-age Division of Geological Survey (OGS). Such an under- rocks in Ohio are found in Atwater's (1819) report on standing of Pennsylvanian stratigraphy helps define Belmont County, and an article by Granger (1821) on plant stratigraphic nomenclatural problems in order to make fossils collected near Zanesville, Muskingum County.
    [Show full text]