View of the P

Total Page:16

File Type:pdf, Size:1020Kb

View of the P BIOINFORMATIC ANALYSIS AND IN VITRO EXPRESSION OF MALARIA PARASITE TRANSLOCON AND RIBONUCLEASE BINDING–LIKE RHOPTRY GENES MOSES Z. TIMTA Bachelors of Science in Medicine and Surgery University of Maiduguri, Borno, Nigeria January 1991 United States Medical Licensing Examinations Educational Commission for Foreign Medical Graduates Philadelphia, PA October 2005 Submitted in partial fulfillment of the requirements for The degree of MASTER OF SCIENCE IN BIOLOGY at the CLEVELAND STATE UNIVERSITY May 2013 We hereby approve this thesis of MOSES Z. TIMTA Candidate for the Master of Science in Biology degree for the Department of Biological, Geological, and Environmental Sciences and the CLEVELAND STATE UNIVERSITY College of Graduate Studies _________________________________________________________________ Tobili Y. Sam-Yellowe, Ph.D., MPH / Date Thesis Committee Chairperson Department of Biological, Geological, and Environmental Sciences _________________________________________________________________ Girish C. Shukla, Ph.D. / Date Department of Biological, Geological, and Environmental Sciences _________________________________________________________________ Harry VanKeulen, Ph.D. / Date Department of Biological, Geological, and Environmental Sciences DEDICATION This work is dedicated to my daughter for her patience and understanding during the long hours of absence while trying to bring this work to a fruitful end. ACKNOWLEDGEMENT My most sincere and grateful appreciation to my adviser, Dr. Tobili Y. Sam-Yellowe, who let me use her lab and gave me the necessary advice and tools that I needed while carrying out this research. I also thank the members of my committee, Dr. Girish S. Shukla, and Dr. Harry Van Kuelen, who both offered objective and helpful criticisms. I also thank Raghav Yadavalli and Ruth Kebede and friends in the department who also offered their valuable help during the course of this research. BIOINFORMATIC ANALYSIS AND IN VITRO EXPRESSION OF MALARIA PARASITE TRANSLOCON AND RIBONUCLEASE BINDING-LIKE RHOPTRY GENES MOSES Z. TIMTA ABSTRACT Malaria caused by the parasite Plasmodium, still remains a significant public health problem worldwide, due to lack of a vaccine and emerging drug and insecticide resistance, among malaria parasites and mosquito vectors, respectively. Rhoptry proteins of Plasmodium enable merozoite invasion of host erythrocytes. However, only a few of these proteins have been characterized. Thirty-six P. yoelii merozoite rhoptry proteins were identified as putative rhoptry proteins by proteome analysis. Some of these proteins have been characterized while others still remain an intense area of active research. Molecular characterization and understanding of these novel proteins may assist in vaccine development, design of diagnostic assays and better control of malaria disease. This study was aimed at characterizing two Plasmodium rhoptry genes; Translocon and Ribonuclease binding-like (RNB-like) genes using bioinformatics analysis and in vitro cell free expression. Bioinformatics analysis was performed using the databases: PlasmoDB, ExPaSy, PSORTb, SWISSPROT-workspace, GeneDB, National Center for Biotechnology Information (NCBI) and COBALT: Multiple Alignment Tool. Both genes were characterized for features such as conservation profiles, domain architecture and alignment of sequences, both within Plasmodium species and among members of the v phylum apicomplexa. The RNB protein domains are generally conserved across Plasmodium species but protein identity across species is 30%. The amino acid identity is about 40% across species for the Translocon protein. This study revealed that these genes are expressed early upon merozoite invasion of the host erythrocytes. The expressed translocon protein that is annotated as hypothetical or putative has been shown to be part of a transport complex and the Ribonuclease binding-like (RNB) gene expresses a putative RNB-like protein found in all species of Plasmodium. The translocon of Plasmodium falciparum was successfully PCR amplified, cloned and a 23 kDa protein was expressed in vitro. Expression was confirmed with rhoptry specific antibodies. vi TABLE OF CONTENTS DEDICATION ACKNOWLEDGEMENT PAGE ABSTRACT……………………………………………………………………………v LISTS OF TABLES........................................................................................................xii LISTS OF FIGURES…………………………………………………………………..xiii ABBREVIATIONS………………………………………………………………….....xiv CHAPTER I INTRODUCTION……………………………………………………………………...1 CLASSIFICATION OF Plasmodium…………………….……………………….…...2 SPECIES INFECTING HUMANS ……………………..……………………………..2 SPECIES INFECTING RODENTS………………………………………………..…..3 BIOLOGY OF Plasmodium………………………………………………….………..3 LIFE CYCLE OF Plasmodium......................................................................................4 MOSQUITO STAGE…………………………………..…………………………..….5 vii EXO-ERYTHROCYTIC STAGE………………………………………………….…5 ERYTHROCYTIC STAGE…………………………………………………………..6 TROPHOZOITE AND SCHIZONT STAGES……………………..………………...6 GAMETOGENESIS……………….………………………………………………….8 MECHANISM OF ERYTHROCYTE INVASION BY Plasmodium PARASITE…..9 FORMATION OF TIGHT JUNCTION AND PARASITOPHOROUS VACUOLE.12 INVASION MOTOR AND MOVING JUNCTION…………………………………12 APICAL COMPLEX ORGANELLES……………………………………………….15 ROLE OF NECK PROTEINS IN HOST CELL INVASION………………………..16 RHOPTRY PROTEOME…………….………………………………………………17 PURPOSE…………………………………………………………………………….22 OBJECTIVES…………………………..………………………………………….…22 CHAPTER II………………………………………………………………………….23 EXPERIMENTAL APPROACH………………………….………………………..23 BIOINFORMATICS ANALYSIS………………...….……………………………..23 PARASITE CULTURING…….………..…..……………..………………………..23 viii DNA ISOLATION ……………………………………………………………………24 POLYMERASE CHAIN REACTION, CLONING AND PROTEIN EXPRESSION..24 EXPRESSION OF PROTEINS FROM GENES………………………………………25 IN VITRO HUMAN CELL-FREE EXPRESSION SYSTEM…………………………25 SDS-PAGE AND WESTERN BLOT………………………………………………….26 CHAPTER III………………………………………………………………………….28 RESULTS…………………………………………………………………….………..28 BIOINFORMATICS RESULT FOR TRANSLOCON GENE PTEX150 PF3D7_1436300 ..….…………………………..…………………………..28 MECHANISM OF TRANSLOCON FUNCTION…………………………………..30 TRANSLOCON PROTEIN EXPRESSION…………………………………………31 BIOINFORMATICS RESULT FOR RNB-LIKE GENE PF3D7_0906000 …........................................................................................................31 PROTEIN EXPRESSION DATA……………………………………………………..33 RESULTS OF CLONING AND EXPRESSION OF PF3D7_1436300……………..36 RNB-LIKE GENE AMPLIFICATION………………………………………………37 CHAPTER IV…………………………………………………………………………40 ix DISCUSSION………….……………………….…………………………………......40 SUMMARY…………………………………………..……………………….…........48 FUTURE STUDIES.……………………………………………………….…………48 REFERENCES.……………………………………………………………..…,,……49 APPENDICES.………………………………………………….…………..…..……59 Appendix 1. Table1A. GPI-anchored membrane surface proteins (MSP) secreted during RBC invasion ………………………………………………………60 Appendix 2. Multiple sequence alignment for PF3D7_1436300 (PTEX150) in Plasmodium species and Theileria ……………………………………………….65 Appendix 3. Predicted protein sequence of PF3D7_1436300 (PTEX150) translocon gene ………………………………………………………………………66 Appendix 4. PF3D7_1436300 (PTEX150) Multiple sequence alignment for Group OG5161974 ……………………………………………………………….67 Appendix 5. RNB-like protein segment showing amino acid alignment in Plasmodium species and some members of the phylum apicomplexa in the region of location of RNB-like residues 829-1322 (GeneDB) ……………….71 Appendix 6. Point of amino acid sequence homology in RNB-like protein in Plasmodium and E. coli (GeneDB) ………………………………………………72 Appendix 7. RNB-like peptide sequence found in E. coli (Ambler et al. 2006) between residues 85-156 …………………………………………………………...73 Appendix 8. RNB-like protein identity between P. yoelii (XP_723884), P. falciparum (XP_ 002808916) and E. coli (ACI73414) ………………………….73 x Appendix 9. Multiple Sequence Alignment of RNB-like (PF3D7_0906000) for Group 0G5 145111 (clusters of interest) …………………………………….74 xi LIST OF TABLES TABLE 1. SUMMARY OF INVASION-RELATED Plasmodium falciparum MEROZOITE PROTEINS………………………………………………………………………………18 TABLE 2. LIST OF PRIMERS ……………………………………………………… 26 xii LISTS OF FIGURES FIGURE 1. Plasmodium falciparum. Life cycle……………………………………..5 FIGURE 2. Illustration of host cell invasion by Plasmodium …………………………9 FIGURE 3. Illustrated guide to Ultrastructure of Plasmodium merozoite ………….. .16 FIGURE 4. Model for Translocon (PTEX150) function ……………………………..30 FIGURE 5. Summary of RNB domain architecture seen in Plasmodium and some members of the phylum, apicomplexa …………………………….…35 FIGURE 6. Genomic DNA isolation from three Plasmodium falciparum strains, Dd2, FCR3 and 3D7 ……………………….………………………………38 FIGURE 7. Western blot analysis of expressed 23kDa translocon protein …………..39 xiii ABBREVIATIONS AAA ------------------------- ATPases associated with various cellular activities AMA-1 ------------------------- Apical membrane antigen-1 BSA -------------------------- Bovine serum albumin CSD -------------------------- Cold shock domain CR1 -------------------------- Complement receptor-1 DARC --------------------------- Duffy antigen receptor for chemokines DBP ---------------------------- Duffy binding protein EBA --------------------------- Erythrocyte binding antigen EBL ---------------------------- Erythrocyte binding like proteins EDTA ---------------------------- Ethylenediamine tetra acetic acid EGF ----------------------------- Epithelium growth factor ER ----------------------------- Endoplasmic reticulum EXP2 ---------------------------- Exported
Recommended publications
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: a Review
    pathogens Review Clinical Pathology, Immunopathology and Advanced Vaccine Technology in Bovine Theileriosis: A Review Onyinyechukwu Ada Agina 1,2,* , Mohd Rosly Shaari 3, Nur Mahiza Md Isa 1, Mokrish Ajat 4, Mohd Zamri-Saad 5 and Hazilawati Hamzah 1,* 1 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 2 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria Nsukka, Nsukka 410001, Nigeria 3 Animal Science Research Centre, Malaysian Agricultural Research and Development Institute, Headquarters, Serdang 43400, Malaysia; [email protected] 4 Department of Veterinary Pre-clinical sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 5 Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] * Correspondence: [email protected] (O.A.A.); [email protected] (H.H.); Tel.: +60-11-352-01215 (O.A.A.); +60-19-284-6897 (H.H.) Received: 2 May 2020; Accepted: 16 July 2020; Published: 25 August 2020 Abstract: Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia.
    [Show full text]
  • The Nuclear 18S Ribosomal Dnas of Avian Haemosporidian Parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1*
    Harl et al. Malar J (2019) 18:305 https://doi.org/10.1186/s12936-019-2940-6 Malaria Journal RESEARCH Open Access The nuclear 18S ribosomal DNAs of avian haemosporidian parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1* Abstract Background: Plasmodium species feature only four to eight nuclear ribosomal units on diferent chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants origi- nate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during diferent developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemo- proteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phy- logenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemopro- teus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively.
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • Equine Piroplasmosis
    EAZWV Transmissible Disease Fact Sheet Sheet No. 119 EQUINE PIROPLASMOSIS ANIMAL TRANS- CLINICAL SIGNS FATAL TREATMENT PREVENTION GROUP MISSION DISEASE ? & CONTROL AFFECTED Equines Tick-borne Acute, subacute Sometimes Babesiosis: In houses or chronic disease fatal, in Imidocarb Tick control characterised by particular in (Imizol, erythrolysis: fever, acute T.equi Carbesia, in zoos progressive infections. Forray) Tick control anaemia, icterus, When Dimenazene haemoglobinuria haemoglobinuria diaceturate (in advanced develops, (Berenil) stages). prognosis is Theileriosis: poor. Buparvaquone (Butalex) Fact sheet compiled by Last update J. Brandt, Royal Zoological Society of Antwerp, February 2009 Belgium Fact sheet reviewed by D. Geysen, Animal Health, Institute of Tropical Medicine, Antwerp, Belgium F. Vercammen, Royal Zoological Society of Antwerp, Belgium Susceptible animal groups Horse (Equus caballus), donkey (Equus asinus), mule, zebra (Equus zebra) and Przewalski (Equus przewalskii), likely all Equus spp. are susceptible to equine piroplasmosis or biliary fever. Causative organism Babesia caballi: belonging to the phylum of the Apicomplexa, order Piroplasmida, family Babesiidae; Theileria equi, formerly known as Babesia equi or Nutallia equi, apicomplexa, order Piroplasmida, family Theileriidae. Babesia canis has been demonstrated by molecular diagnosis in apparently asymptomatic horses. A single case of Babesia bovis and two cases of Babesia bigemina have been detected in horses by a quantitative PCR. Zoonotic potential Equine piroplasmoses are specific for Equus spp. yet there are some reports of T.equi in asymptomatic dogs. Distribution Widespread: B.caballi occurs in southern Europe, Russia, Asia, Africa, South and Central America and the southern states of the US. T.equi has a more extended geographical distribution and even in tropical regions it occurs more frequent than B.caballi, also in the Mediterranean basin, Switzerland and the SW of France.
    [Show full text]
  • Ungulate Malaria Parasites Thomas J
    www.nature.com/scientificreports OPEN Ungulate malaria parasites Thomas J. Templeton1,2,*, Masahito Asada1,*, Montakan Jiratanh3, Sohta A. Ishikawa4,5, Sonthaya Tiawsirisup6, Thillaiampalam Sivakumar7, Boniface Namangala8, Mika Takeda1, Kingdao Mohkaew3, Supawan Ngamjituea3, Noboru Inoue7, Chihiro Sugimoto9, Yuji Inagaki5,10, Yasuhiko Suzuki9, Naoaki Yokoyama7, Morakot Kaewthamasorn11 & Osamu Kaneko1 Received: 14 December 2015 Accepted: 02 March 2016 Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In Published: 21 March 2016 order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found thatPlasmodium is readily detectable from water buffalo in these countries, indicating that buffaloPlasmodium is distributed in a wider region than India, which is the only area in which buffaloPlasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium.
    [Show full text]
  • Pursuing Effective Vaccines Against Cattle Diseases Caused by Apicomplexan Protozoa
    CAB Reviews 2021 16, No. 024 Pursuing effective vaccines against cattle diseases caused by apicomplexan protozoa Monica Florin-Christensen1,2, Leonhard Schnittger1,2, Reginaldo G. Bastos3, Vignesh A. Rathinasamy4, Brian M. Cooke4, Heba F. Alzan3,5 and Carlos E. Suarez3,6,* Address: 1Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronomicas (CICVyA), Instituto Nacional de Tecnologia Agropecuaria (INTA), Hurlingham 1686, Argentina. 2Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), C1425FQB Buenos Aires, Argentina. 3Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 647040, Pullman, WA, 991664-7040, United States. 4Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, 4870, Australia. 5Parasitology and Animal Diseases Department, National Research Center, Giza, 12622, Egypt. 6Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, P.O. Box 646630, Pullman, WA, 99164-6630, United States. ORCID information: Monica Florin-Christensen (orcid: 0000-0003-0456-3970); Leonhard Schnittger (orcid: 0000-0003-3484-5370); Reginaldo G. Bastos (orcid: 0000-0002-1457-2160); Vignesh A. Rathinasamy (orcid: 0000-0002-4032-3424); Brian M. Cooke (orcid: ); Heba F. Alzan (orcid: 0000-0002-0260-7813); Carlos E. Suarez (orcid: 0000-0001-6112-2931) *Correspondence: Carlos E. Suarez. Email: [email protected] Received: 22 November 2020 Accepted: 16 February 2021 doi: 10.1079/PAVSNNR202116024 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews © The Author(s) 2021. This article is published under a Creative Commons attribution 4.0 International License (cc by 4.0) (Online ISSN 1749-8848). Abstract Apicomplexan parasites are responsible for important livestock diseases that affect the production of much needed protein resources, and those transmissible to humans pose a public health risk.
    [Show full text]
  • Phylogeny of the Malarial Genus Plasmodium, Derived from Rrna Gene Sequences (Plasmodium Falciparum/Host Switch/Small Subunit Rrna/Human Malaria)
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 11373-11377, November 1994 Evolution Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences (Plasmodium falciparum/host switch/small subunit rRNA/human malaria) ANANIAS A. ESCALANTE AND FRANCISCO J. AYALA* Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92717 Contributed by Francisco J. Ayala, August 5, 1994 ABSTRACT Malaria is among mankind's worst scourges, is only remotely related to other Plasmodium species, in- affecting many millions of people, particularly in the tropics. cluding those parasitic to birds and other human parasites, Human malaria is caused by several species of Plasmodium, a such as P. vivax and P. malariae. parasitic protozoan. We analyze the small subunit rRNA gene sequences of 11 Plasmodium species, including three parasitic to humans, to infer their evolutionary relationships. Plasmo- MATERIALS AND METHODS dium falciparum, the most virulent of the human species, is We have investigated the 18S SSU rRNA sequences ofthe 11 closely related to Plasmodium reiehenowi, which is parasitic to Plasmodium species listed in Table 1. This table also gives chimpanzee. The estimated time of divergence of these two the known host and geographical distribution. The sequences Plasmodium species is consistent with the time of divergence are for type A genes, which are expressed during the asexual (6-10 million years ago) between the human and chimpanzee stage of the parasite in the vertebrate host, whereas the SSU lineages. The falkiparun-reichenowi lade is only remotely rRNA type B genes are expressed during the sexual stage in related to two other human parasites, Plasmodium malariae the vector (12).
    [Show full text]
  • Molecular Detection of Theileria, Babesia, and Hepatozoon Spp. In.Pdf
    G Model TTBDIS-632; No. of Pages 8 ARTICLE IN PRESS Ticks and Tick-borne Diseases xxx (2016) xxx–xxx Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Molecular detection of Theileria, Babesia, and Hepatozoon spp. in ixodid ticks from Palestine a,b,c,∗ a,b,c b,c c Kifaya Azmi , Suheir Ereqat , Abedelmajeed Nasereddin , Amer Al-Jawabreh , d b,c Gad Baneth , Ziad Abdeen a Biochemistry and Molecular Biology Department, Faculty of Medicine, Al-Quds University, Abu Deis, The West Bank, Palestine b Al-Quds Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University, Abu-Deis, P.O. Box 20760, The West Bank, Palestine c Al-Quds Public Health Society, Jerusalem, Palestine d Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel a r t i c l e i n f o a b s t r a c t Article history: Ixodid ticks transmit various infectious agents that cause disease in humans and livestock worldwide. Received 16 December 2015 A cross-sectional survey on the presence of protozoan pathogens in ticks was carried out to assess the Received in revised form 1 March 2016 impact of tick-borne protozoa on domestic animals in Palestine. Ticks were collected from herds with Accepted 2 March 2016 sheep, goats and dogs in different geographic districts and their species were determined using morpho- Available online xxx logical keys. The presence of piroplasms and Hepatozoon spp. was determined by PCR amplification of a 460–540 bp fragment of the 18S rRNA gene followed by RFLP or DNA sequencing.
    [Show full text]
  • Evaluation of Oxidative Stress, Hematological and Biochemical Parameters During Toxoplasma Gondii Infection in Gerbils
    Ankara Üniv Vet Fak Derg, 62, 165-170, 2015 Evaluation of oxidative stress, hematological and biochemical parameters during Toxoplasma gondii infection in gerbils Nurgül ATMACA1, Miyase ÇINAR2, Bayram GÜNER2, Ruhi KABAKÇI1, Aycan Nuriye GAZYAĞCI3, Hasan Tarık ATMACA4, Sıla CANPOLAT4 KırıkkaleUniversity, Faculty of Veterinary Medicine, 1Department of Physiology; 2Department of Biochemistry; 3Department of Parasitology; 4Department of Pathology, Kırıkkale, Turkey. Summary: The aim of the present study was to investigate the alterations of oxidative stress, hematological and biochemical parameters in experimental infection caused by Toxoplasma gondii in gerbil. A total of 16 gerbil, 8 of which were control and 8 was infection group, were used in the study. The gerbils were infected by intraperitoneal inoculation of 5000 T. gondii RH strain tachyzoites. In group of, the gerbil were sacrificed at 7th day after inoculation. At the end of this period, blood samples collected and erythrocyte malondialdehyde (MDA) concentrations, superoxide dismutase (SOD), catalase (CAT) activities, plasma aspartat aminotransferase (AST) and alanine aminotranspherase (ALT) activities, total protein, albumin, globulin were determined. Besides, hematological parameters were analysed in whole blood. Aspartat aminotransferase and ALT activities and MDA concentrations and neutrophil percentage and total leukocyte counts increased significantly in infected group when compared to control. In infected group, SOD activities, albumin concentrations and lymhocyte percentage
    [Show full text]
  • Molecular Detection of Theileria Ovis and Theleiria Equi in Livestock From
    www.nature.com/scientificreports Corrected: Author Correction OPEN Molecular Detection of Theileria ovis and Theleiria equi in Livestock from Palestine Received: 19 February 2019 Kifaya Azmi1,2,3, Amer Al-Jawabreh3,4 & Ziad Abdeen2,3 Accepted: 26 July 2019 Theileria and Babesia are intracellular protozoan parasites infecting a wide range of animals. In Palestine, Published online: 09 August 2019 there is limited information on the prevalence of Theileria and Babesia spp. in livestock. We used PCR of the 18S ribosomal RNA gene followed by DNA sequencing to detect and identify parasite DNA in blood samples from sheep (n = 49), goats (n = 48), horses (n = 40), camels (n = 34), donkeys (n = 28) and mules (n = 2) from four districts of Palestine. DNA of T. ovis and T. equi was detected in 19 and 2 ovine blood samples, respectively. None of the camels, donkeys, and goats were positive for T. ovis. Sheep had a signifcantly higher rate of infection than other animals (P < 0.05). Theileria ovis is highly prevalent in sheep, while T. equi DNA was detected in a small proportion of the equids in Palestine. Tick-borne haemoparasitic diseases caused by Teileria, Babesia, Anaplasma, and Ehrlichia are common in many regions of the world and result in a major burden on domestic animal production. Several pathogenic, moderately pathogenic, and non-pathogenic Teileria and Babesia species infect domestic ruminants. Ovine theileriosis; a major protozoal infection of sheep and goats1 is caused by several species of Teileria, of which, Teileria lest- oquardi (syn. Teileria hirci) and Teileria luwenshuni (Teileria spp. China 1)2 are considered highly pathogenic.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]