Metabolic Engineering of Terpenoid Biosynthesis in Plants

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Engineering of Terpenoid Biosynthesis in Plants Phytochemistry Reviews (2006) 5: 49–58 Ó Springer 2006 DOI 10.1007/s11101-005-3747-3 Metabolic engineering of terpenoid biosynthesis in plants Asaph Aharoni1,*, , Maarten A. Jongsma2, Tok-Yong Kim2,4, Man-Bok Ri2,4, Ashok P. Giri2,5, Francel W. A. Verstappen2, Wilfried Schwab3 & Harro J. Bouwmeester2 1Weizmann Institute of Science, 26 Rehovot 76100 Israel; 2Plant Research International, 16 6700 AA Wageningen The Netherlands; 3Biomolecular Food Technology, TU Mu¨nchen, Lise-Meitner-Str. 3485354 Freising, Mu¨nchen Germany; 4Research Institute of Agrobiology, Academy of Agricultural Sciences, Ryongsong Pyongyang, Democratic People’s Republic of Korea; 5Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008 India; *Author for correspondence (Tel: +0972-(0)8-9343643; Fax: +0972-(0)8-9344181; E-mail: asaph.aharoni@ weizmann.ac.il) Key words: linalool, MEP pathway, mevalonate pathway, monoterpene, sesquiterpene Abstract Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On the one hand, the various biological activities of these compounds make their engineering a new tool for improving a considerable number of traits in crops. These include for example enhanced disease resistance, weed control by producing allelopathic compounds, better pest management, production of medicinal compounds, increased value of ornamentals and fruit and improved pollination. On the other hand, the same plants altered in the profile of terpenoids and their precursor pools make a most important contri- bution to fundamental studies on terpenoid biosynthesis and its regulation. In this review we describe our recent results with terpenoid engineering, focusing on two terpenoid classes the monoterpenoids and ses- quiterpenoids. The emerging picture is that engineering of these compounds and their derivatives in plant cells is feasible, although with some requirements and limitations. For example, in terpenoid engineering experiments crucial factors are the subcellular localisation of both the precursor pool and the introduced enzymes, the activity of endogenous plant enzymes which modify the introduced terpenoid skeleton, the costs of engineering in terms of effects on other pathways sharing the same precursor pool and the phyto- toxicity of the introduced terpenoids. Finally, we will show that transgenic plants altered in their terpenoid profile exert novel biological activities on their environment, for example influencing insect behaviour. Abbreviations: DMADP – dimethylallyl diphosphate; FDP – farnesyl diphosphate; GDP – geranyl diphosphate; GGDP – geranylgeranyl diphosphate; IDP – isopentenyl diphosphate; MEP – methylerythritol 4-phosphate; TPSs – terpene synthases. Introduction agents, pharmaceuticals, perfumes, insecticides and anti-microbial agents (Martin et al., 2003). In Terpenoids are the most structurally varied class nature, they play significant roles in plant–envi- of plant natural products. They are commercially ronment interactions, plant–plant communication important due to their wide application in a vast and plant–insect and plant–animal interactions number of industrial products such as flavouring (Pichersky and Gershenzon, 2002). Although A. Aharoni is an Incumbent of the Adolfo and Evelyn Blum Career Development chair. 50 many of them are associated with primary terpenoid structures (Lucker et al., 2001). Terpe- metabolism (e.g. the phytol side chain of chloro- noid biosynthesis occurs in the cytosol and the phyll, carotenoid pigments, and the plant hormone plastids (Figure 1). IDP and DMADP are synthe- gibberellin) others are typical plant secondary sized through the 2-methylerythritol 4-phosphate metabolites. pathway (MEP) via deoxy-D-xylulose 5-phosphate All terpenoids are synthesized through the in plastids. However, IDP is also synthesized in the condensation of isopentenyl diphosphate (IDP) cytosol via the mevalonate pathway (Bick and and its allylic isomer dimethyl allyl diphos- Lange, 2003). It is generally accepted that GDP phate (DMADP) (Carretero-Paulet et al., 2002). and GGDP in the plastids are used as substrate for The sequential head-to-tail addition of IDP units monoterpene and diterpene biosynthesis, respec- to DMADP yields the prenyl diphosphates geranyl tively whereas FDP in the cytosol is used for ses- diphosphate (GDP), farnesyl diphosphate quiterpene biosynthesis (Figure 1). (FDP) and geranylgeranyl diphosphate (GGDP) Why would we like to engineer terpenoid pro- (Figure 1). These three components serve as pre- duction in plants? Primarily, plants engineered for cursors for the monoterpenes, sesquiterpenes and their terpenoid profile could serve as a tool for diterpenes, respectively. Terpenoid synthases or improving a large number of traits in different cyclases catalyze the reactions in which the pri- crop species. Examples for such traits are mary terpene skeletons are formed from these enhanced disease resistance, weed control by pro- substrates. The parent skeletal type of mono-, ducing allelopathic compounds, improved pest sesqui- and diterpenes is normally further modified control, increased value of ornamentals and fruit by the activity of an array of different enzymes (fragrance and flavour) and improved pollination (e.g. hydroxylases, dehydrogenases, reductases and by altering scent profiles. In addition, large-scale glycosyl, methyl and acyl transferases) which to- production of terpenoids in plants, either for gether generate the many thousands of different medicinal uses or for other industries such as Figure 1. The mevalonate and MEP pathways producing different terpenoid classes in the cytosol and plastids, respectively. GA3P, D-glyceraldehyde-3-phosphate; TPSs, terpene synthases; IDP, isopentenyl diphosphate; DMADP, dimethylallyl diphosphate; FDP, farnesyl diphosphate; MEP, methylerythritol 4-phosphate; GDP, geranyl diphosphate; GGDP, geranylgeranyl diphosphate. Broken arrows represent multiple enzymatic steps. 51 cosmetics and food would be attractive. A second, The FaNES1 protein as a ‘sensor’ for both but not less important reason is that plants altered mono- and sesquiterpene precursors in the profile of terpenoids (and pool of precur- sors) make an important contribution to funda- We chose the strawberry FaNES1 (Fragaria anan- mental studies on their biosynthesis and assa Nerolidol Synthase 1) gene for performing regulation. For example, metabolic engineering metabolic engineering experiments in several plant experiments often reveal undiscovered branches to species (Aharoni et al., 2004). The recombinant an already known metabolic pathway or point to FaNES1 protein was previously shown to catalyze feedback loops within a pathway or between the conversion of GDP and FDP to (S)-linalool pathways. and (3S)-(E)-nerolidol, respectively with equal In recent years attempts to produce high levels efficiency. The ability of other recombinant terpene of monoterpenes in transgenic plants have been synthases to generate both sesquiterpenes and successful. Several different plant species were monoterpenes was already observed earlier (Crock engineered, mainly by overexpressing terpene et al., 1997; Steele et al., 1998). However, in these synthases under constitutive promoters. Petunia, cases the recombinant enzyme could generate the tomato, carnation, potato and Arabidopsis plants sesquiterpene with high efficiency while a combi- were generated that over-expressed genes encoding nation of monoterpenes would be formed from linalool synthases. Such plants produced and GDP but with low efficiency. FaNES1 could emitted the monoterpene linalool and its glycosy- therefore serve as an excellent ‘sensor’ for levels of lated or hydroxylated derivatives (Lewinson et al., both monoterpene and sesquiterpene precursors in 2001; Lucker et al., 2001; Lavy et al., 2002; the cell or even, as will be described later in this Aharoni et al., 2003). Mint and tobacco plants report, in a specific sub-cellular compartment. expressing limonene, c-terpinene and a-pinene synthases were also altered in their terpenoid Engineering monoterpenoids in Arabidopsis plants profile (Diemer et al., 2001; Lucker et al., 2004b). Levels of terpenoid precursors could also be ele- Recent research in Arabidopsis revealed that what vated by overexpressing genes encoding enzymes at first seemed a metabolically simple plant species from various steps of the MEP pathway (DXR and is in reality a reasonable producer of secondary HDR) (Mahmoud and Croteau, 2001; Botella- metabolites (D’Auria and Gershenzon, 2005). For Pavia et al., 2004). In addition, genes encoding example, nearly two dozen monoterpenes and ses- enzymes which modify monoterpene structures quiterpenes are emitted from its flowers (Aharoni have been successfully over-expressed or knocked et al., 2003; Chen et al., 2003; Tholl et al., 2005). down in tobacco and mint (Mahmoud and Leaves of Arabidopsis on the other hand emit only Croteau, 2001; Wang et al., 2001; Lucker et al., traces of one monoterpene, limonene. Transgenic 2004a; Mahmoud et al., 2004). In conclusion, in Arabidopsis plants were raised which expressed the many studies it was demonstrated that it is feasible FaNES1 gene driven by the CaMV 35S promoter. to engineer several steps of the monoterpenoid The FaNES1 protein was targeted to the plastids pathway. However, attempts to engineer sesquit- by fusing the wild strawberry FvNES1 (Fragaria erpenes in plants using terpene synthases resulted vesca Nerolidol Synthase 1) plastid
Recommended publications
  • Plant-To-Plant Communication Triggered by Systemin Primes Anti
    www.nature.com/scientificreports OPEN Plant-to-plant communication triggered by systemin primes anti- herbivore resistance in tomato Received: 10 February 2017 Mariangela Coppola1, Pasquale Cascone2, Valentina Madonna1, Ilaria Di Lelio1, Francesco Accepted: 27 October 2017 Esposito1, Concetta Avitabile3, Alessandra Romanelli 4, Emilio Guerrieri 2, Alessia Vitiello1, Published: xx xx xxxx Francesco Pennacchio1, Rosa Rao1 & Giandomenico Corrado1 Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant- to-plant communication allows specifc neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were signifcantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream efects of this class of molecules to intraspecifc plant-to-plant communication.
    [Show full text]
  • Chapter 2 Molecular Plant Volatile Communication
    CHAPTER 2 MOLECULAR PLANT VOLATILE COMMUNICATION Jarmo K. Holopainen* and James D. Blande Department of Environmental Science, Kuopio, Campus, University of Eastern Finland, Kuopio, Finland *Corresponding Author: Jarmo K. Holopainen—Email: [email protected] Abstract: Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above‑ground plant self‑recognition is available. INTRODUCTION Plants are literally rooted to the ground and therefore unable to change location. Consequently, they are easy targets to organisms that wish to feed on them. Plants have evolved a vast array of defensive features that effectively reduce the number of their enemies.1 However, defences are rarely flawless, meaning that plants cannot Not for Distribution ©2012 Copyright Landes Bioscience and Springer.
    [Show full text]
  • The Biosemiotics of Plant Communication
    The Biosemiotics of Plant Communication Günther Witzany Telos — Philosophische Praxis, Austria Abstract: This contribution demonstrates that the development and growth of plants depends on the success of complex communication processes. These communication processes are primarily sign-mediated interactions and are not simply an mechanical exchange of ‘information’, as that term has come to be understood (or misunderstood) in science. Rather, such interactions as I will be describing here involve the active coordination and organisation of a great variety of different behavioural patterns — all of which must be mediated by signs. Thus proposed, a biosemiotics of plant communication investigates com- munication processes both within and among the cells, tissues, and organs of plants as sign-mediated interactions which follow (1) combinatorial (syntactic), (2) context-sensitive (pragmatic) and (3) content-specific (semantic) levels of rules. As will be seen in the cases under investigation, the context of interactions in which a plant organism is interwoven determines the content arrangement of its response behaviour. And as exemplified by the multiply semiotic roles played by the plant hormone auxin that I will discuss below, this means that a molecule type of identical chemical structure may function in the instantiation of different meanings (semantics) that are determined by the different contexts (pragmatics) in which this sign is used. 1. Introduction iosemiotics investigates the use of signs within and between organ- isms. Such signs may be signals or symbols, and many of them are Bchemical molecules. In the highly developed eukaryotic kingdoms, the behavioural patterns of organisms may also serve as signs, as for example, the dances of bees.
    [Show full text]
  • Effects of Plant-Plant Airborne Interactions on Performance of Neighboring Plants Using Wild Types and Genetically Modified Lines of Arabidopsis Thaliana
    EFFECTS OF PLANT-PLANT AIRBORNE INTERACTIONS ON PERFORMANCE OF NEIGHBORING PLANTS USING WILD TYPES AND GENETICALLY MODIFIED LINES OF ARABIDOPSIS THALIANA Claire Thelen A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2020 Committee: Maria Gabriela Bidart, Advisor Heidi Appel Vipa Phuntumart ii ABSTRACT M. Gabriela Bidart, Advisor Understanding plant-plant communication further elucidates how plants interact with their environment, and how this communication can be manipulated for agricultural and ecological purposes. Part of understanding plant-plant communication is discovering the mechanisms behind plant-plant recognition, and whether plants can distinguish between genetically like and unlike neighbors. It has been previously shown that plants can “communicate” with neighboring plants through airborne volatile organic compounds (VOCs), which can act as signals related to different environmental stressors. This study focused on the interaction among different genotypes of the annual plant Arabidopsis thaliana. Specifically, a growth chamber experiment was performed to compare how different genotypes of neighboring plants impacted a focal plant’s fitness-related phenotypes and developmental stages. The focal plant genotype was wild type Col-0, and the neighboring genotypes included the wild type Landsberg (Ler-0), and the genetically modified (GM) genotypes: Etr1-1 and Jar1-1. These GM lines have a single point-mutation that impacts their ability to produce a particular VOC. This allows for the evaluation of a particular role that a VOC may have on plant-plant airborne communication. Plants were grown in separate pots to eliminate potential belowground interactions through the roots, and distantly positioned to avoid aboveground physical contact between plants.
    [Show full text]
  • Sexual and Genotypic Variation in Terpene Quantitative and Qualitative Profiles in the Dioecious Shrub Baccharis Salicifolia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship - University of California UC Irvine UC Irvine Previously Published Works Title Sexual and genotypic variation in terpene quantitative and qualitative profiles in the dioecious shrub Baccharis salicifolia. Permalink https://escholarship.org/uc/item/52m1532z Journal Scientific reports, 9(1) ISSN 2045-2322 Authors Moreira, Xoaquín Abdala-Roberts, Luis Nell, Colleen S et al. Publication Date 2019-10-10 DOI 10.1038/s41598-019-51291-w License CC BY 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Sexual and genotypic variation in terpene quantitative and qualitative profles in the dioecious Received: 1 May 2019 Accepted: 28 September 2019 shrub Baccharis salicifolia Published: xx xx xxxx Xoaquín Moreira 1, Luis Abdala-Roberts2, Colleen S. Nell3, Carla Vázquez-González1, Jessica D. Pratt4, Ken Keefover-Ring 5 & Kailen A. Mooney4 Terpenoids are secondary metabolites produced in most plant tissues and are often considered toxic or repellent to plant enemies. Previous work has typically reported on intra-specifc variation in terpene profles, but the efects of plant sex, an important axis of genetic variation, have been less studied for chemical defences in general, and terpenes in particular. In a prior study, we found strong genetic variation (but not sexual dimorphism) in terpene amounts in leaves of the dioecious shrub Baccharis salicifolia. Here we build on these fndings and provide a more in-depth analysis of terpene chemistry on these same plants from an experiment consisting of a common garden with male (N = 19) and female (N = 20) genotypes sourced from a single population.
    [Show full text]
  • On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators
    On the biosynthesis and evolution of apocarotenoid plant growth regulators. Item Type Article Authors Wang, Jian You; Lin, Pei-Yu; Al-Babili, Salim Citation Wang, J. Y., Lin, P.-Y., & Al-Babili, S. (2020). On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in Cell & Developmental Biology. doi:10.1016/ j.semcdb.2020.07.007 Eprint version Post-print DOI 10.1016/j.semcdb.2020.07.007 Publisher Elsevier BV Journal Seminars in cell & developmental biology Rights NOTICE: this is the author’s version of a work that was accepted for publication in Seminars in cell & developmental biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Seminars in cell & developmental biology, [, , (2020-08-01)] DOI: 10.1016/j.semcdb.2020.07.007 . © 2020. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by- nc-nd/4.0/ Download date 27/09/2021 08:08:14 Link to Item http://hdl.handle.net/10754/664532 1 On the Biosynthesis and Evolution of Apocarotenoid Plant Growth Regulators 2 Jian You Wanga,1, Pei-Yu Lina,1 and Salim Al-Babilia,* 3 Affiliations: 4 a The BioActives Lab, Center for Desert Agriculture (CDA), Biological and Environment Science 5 and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi 6 Arabia.
    [Show full text]
  • Molecular Regulation of Carotenoid Biosynthesis in Tomato Fruits. New Biotechnological Strategies Lucio D'andrea
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en molecular regulation of carotenoid biosynthesis in tomato fruit new biotechnological strategies Lucio D’Andrea 2016 Universitat Autónoma de Barcelona Facultat de Biociències Doctorat de Biologia i Biotecnologia Vegetal 2016 Molecular regulation of carotenoid biosynthesis in tomato fruits New biotechnological strategies Memoria presentada por Lucio D’Andrea para optar al título de doctor por la Universitat Autónoma de Barcelona Lucio D’Andrea Candidato a doctor Manuel Rodriguez-Concepción Briardo Llorente Director Co-director Joan Barceló Coll Tutor “Procuremos inventar pasiones nuevas, o reproducir las viejas con pareja intensidad” Del libro Rayuela de Julio Cortázar “Caminando en línea recta no puede uno llegar muy lejos” Del libro El Principito de Antoine de Saint-Exupéry. Esta tesis se la dedico A mi abuela Nelly y a mi madre. A la primera por las raíces y a la segunda por las alas. Table of contents Agradecimientos i Resumen iii Summary v Index of Figures vii Index of Tables xi Introduction 1 Section I: The tomato fruit 3 o Stages of tomato fruit development 4 .
    [Show full text]
  • Identification and Functional Characterization of Tissue-Specific
    International Journal of Molecular Sciences Article Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana 1, 1, 1, 1 Savitha Dhandapani y, Mi Jung Kim y, Hui Jun Chin y, Sing Hui Leong and In-Cheol Jang 1,2,* 1 Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; [email protected] (S.D.); [email protected] (M.J.K.); [email protected] (H.J.C.); [email protected] (S.H.L.) 2 Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore * Correspondence: [email protected] These authors contributed equally to this work. y Received: 8 October 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: In addition to the well-known diterpenoid steviol glycosides, Stevia rebaudiana (Stevia) produces many labdane-type diterpenoids and a wide range of mono- and sesquiterpenoids. However, biosynthesis of mono- and sesquiterpenoids in Stevia remains unknown. Here we analyzed the extracts of Stevia leaves, flowers, stems, and roots by Gas Chromatography–Mass Spectrometry and putatively identified a total of 69 volatile organic compounds, most of which were terpenoids with considerably varied quantities among the four tissues of Stevia. Using Stevia transcriptomes, we identified and functionally characterized five terpene synthases (TPSs) that produced major mono- and sesquiterpenoids in Stevia. Transcript levels of these Stevia TPSs and levels of corresponding terpenoids correlated well in Stevia tissues. Particularly, the root-specific SrTPS4 and SrTPS5 catalyzed the formation of γ-curcumene/zingiberene/β-sesquiphellandrene and α-longipinene/β-himachalene/himachalol as multifunctional sesqui-TPSs, respectively.
    [Show full text]
  • The Role of Terpenes in the Defensive Responses of Conifers Against Herbivores and Pathogens
    The role of terpenes in the defensive responses of conifers against herbivores and pathogens PhD Thesis Ander Achotegui Castells to be eligible for the doctor degree Supervised by: Prof. Josep Peñuelas Reixach Dr. Joan Llusià Benet Universitat Autònoma de Barcelona, September 2015 1 2 The role of terpenes in the defensive responses of conifers against herbivores and pathogens PhD Thesis Ander Achotegui Castells With the approval of the supervisors Prof. Josep Peñuelas Reixach Dr. Joan Llusià Benet Universitat Autònoma de Barcelona, September 2015 3 4 Li faig un tall a l’arbre i surt un broll de lletra Perejaume 5 6 Table of contents Abstract ....................................................................................................................... 9 General introduction ................................................................................................. 14 Chapter 1. Needle terpene concentrations and emissions of two coexisting subspecies of Scots pine attacked by the pine processionary moth (Thaumetopoea pityocampa) ................................................................................... 35 Chapter 2. Down-regulation of the expression of two sesquiterpene synthase genes after severe infestation of Scots pine by the pine processionary moth (Thaumetopoea pityocampa) ................................................................................... 60 Chapter 3. Contrasting terpene and nutritional responses to previous defoliation by the pine processionary moth (Thaumetopoea pityocampa) in two Scots
    [Show full text]
  • Plant Communication with Herbivores
    ARTICLE IN PRESS Plant Communication With Herbivores J.D. Blande University of Eastern Finland, Kuopio, Finland E-mail: james.blande@uef.fi Contents 1. Introduction 2 1.1 Plant Communication With Herbivores e Communication or Arms Race? 2 2. Herbivores Use Plant Volatile Signals to Locate Their Hosts 3 3. Induction of Volatiles by Herbivores 5 3.1 Herbivore Oral Secretions as Signal Providers or Plant Manipulators 7 4. Herbivores Eavesdropping on Informative Chemical Cues 7 5. True Communication Between Plants and Herbivores 10 6. Plant Eavesdropping on Herbivore-Emitted Chemical Cues 13 7. Communication Between Plants and Higher Trophic Levels 16 8. Summary and Future Directions 17 Acknowledgements 18 References 18 Abstract Plants and herbivores both release volatile organic compounds that have important roles in mediating important biological functions related to defence and reproduction. Plants emit complex blends of chemicals that are involved in multitrophic interactions, coordination of systemic defence responses and pollination, whereas herbivorous in- sects release pheromones that play important roles in attracting mates, instigating defence responses and initiating aggregation. Interactions between plants and herbi- vores have been subject to a wealth of studies and knowledge on their biology, biochemistry, ecology and evolution is constantly expanding. In this chapter the idea of communication between plants and herbivores will be explored. Communication between organisms of consecutive trophic levels is somewhat controversial due to uni- directional reliance and competition precluding some of the requirements of a conven- tional communication process, but there are growing examples of where chemically mediated interactions between plants and herbivores can be viewed as eavesdropping by a signal recipient, or even as true communication where both chemical emitter and Advances in Botanical Research, Volume 82 ISSN 0065-2296 © 2016 Elsevier Ltd.
    [Show full text]
  • PAH Toxicity Dependence on Ingested Plant Species
    Dissipation and Phytotoxicity of Oil Sands Naphthenic Acids in Wetland Plants A thesis submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Toxicology Graduate Program University of Saskatchewan Saskatoon, Saskatchewan Canada By Sarah Anne Armstrong ©Copyright Sarah Anne Armstrong, July 2008. All rights reserved. i PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work, in their absence, by the Graduate Chair of the program or Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to: Chair of the Toxicology Graduate Program Toxicology Centre University of Saskatchewan 44 Campus Drive Saskatoon, SK, Canada S7N 5B3 i ABSTRACT Naphthenic acids (NAs) are toxic organic acid compounds released during the caustic hot-water extraction of crude oil from oil sands in north-eastern Alberta, Canada.
    [Show full text]
  • Methyl Salicylate and Sesquiterpene Emissions Are Indicative for Aphid Infestation on Scots Pine
    Article Methyl Salicylate and Sesquiterpene Emissions Are Indicative for Aphid Infestation on Scots Pine Minna Kivimäenpää 1,*, Aishat B. Babalola 1, Jorma Joutsensaari 2 and Jarmo K. Holopainen 1 1 Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; [email protected] (A.B.B.); jarmo.holopainen@uef.fi (J.K.H.) 2 Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; jorma.joutsensaari@uef.fi * Correspondence: minna.kivimaenpaa@uef.fi Received: 24 April 2020; Accepted: 17 May 2020; Published: 20 May 2020 Abstract: Biotic stresses on forest trees are caused by various pest insects and plant pathogens. Attack by these parasites is known to induce the emissions of various biogenic volatile organic compounds (BVOCs), and the profile of these emissions often differs between infested and healthy plants. This difference in emission profile can be used for the non-destructive early-stage diagnosis of the stressor organism. We studied how phloem feeding by a large pine aphid (Cinara pinea Mordvilko) on the branch bark of Scots pine (Pinus sylvestris L.) affects BVOC emissions compared to those of healthy plants in two experiments. We found that in aphid-infested plants, methyl salicylate (MeSA) emissions significantly increased, and the emission rates were dependent on aphid density on the studied branch. Aphid infestation did not significantly affect total monoterpene emission, while the emissions of total sesquiterpenes were substantially higher in aphid-infested saplings than in uninfested plants. Sesquiterpene (E, E)-α-farnesene was emitted at increased rates in both experiments, and the aphid alarm pheromone sesquiterpene (E)-β-farnesene, only in the experiment with higher aphid pressure.
    [Show full text]