Sex in Southern African Spirostreptida Millipedes: Mechanisms of Sperm Competition and Cryptic Female Choice

Total Page:16

File Type:pdf, Size:1020Kb

Sex in Southern African Spirostreptida Millipedes: Mechanisms of Sperm Competition and Cryptic Female Choice SEX IN SOUTHERN AFRICAN SPIROSTREPTIDA MILLIPEDES: MECHANISMS OF SPERM COMPETITION AND CRYPTIC FEMALE CHOICE MANDY 8ARNETI University of Cape Town A THESIS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE ZOOLOGY DEPARTMENT UNIVERSITY OF CAPE TOWN FEBRUARY 1997 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town ACKNOWLEDGMENTS I am grateful to a large number of people who inspired, guided, assisted and supported me during the various phases of this work. Sincere thanks to Mark Cooper, Mark Dangerfield, Willem Ferguson, Chido Mparnhanga and the many others who helped collect millipedes from around southern Africa, to Peter Croeser for help in animal identification and for the introduction to the South African millipede collection, and to Dr Leo Braak of the Kruger National Park for kind permission to work and collect animals in the park. Thanks also to Solly, Lindy, Jess and Kira Levy for accommodation during the Zimbabwe fieldwork, to Prof. John Loveridge for the use of his laboratory space at the University of Zimbabwe, and to Prof. Gerhard van der Horst for the use of his laboratory space and photographic equipment at the University of the Western Cape. To the staff of the Electron Microscopy Units at the Universities of Pretoria (Prof. Jan Coetzee and Chris van der Merwe) and Cape Town (Miranda Waldron, Dane Gerneke and especially Charlie Bruintjies ), I am grateful for guidance and assistance in specimen preparation. Thanks also to Dane for initially teaching me to drive the S200. Thanks to Babsie Potgieter and Wendy Sutton for advice and assistance in histological preparation, Adrian Baron for inspiration in micro-dissection techniques, to Brian Tibbles for initially introducing me to the use of radioisotopes and to Bruce Dell for technical assistance and the custom made light box. Special thanks to Neville Eden for all the technical support, photography and general patience with my inability to focus! Thanks also to Mark Cooper for the millipede chats, Daniel Polakow for statistical advice, Veronique Suiro for translating the French literature, and especially to Andreas Tadler for sending me copies of much needed scarce papers, deciphering the German literature and helpful discussion. In particular, I would like to thank my principal supervisor Dr Steven Telford for the many hours of discussion, assistance and guidance, and for his invaluable contribution to my academic development. Thanks also to my co-supervisors Dr Sue Nicolson and Prof. Alec Brown for administrative advice and support. Finally, special thanks to my family and Dana, Dena, Franz and especially Marco for logistical, moral and spiritual support. Financial support from the Universities of Cape Town and Pretoria and the F.R.D. is gratefully acknowledged. ii ABSTRACT Spirostreptida millipedes comprise three families, the Harpagophoridae, Spirostreptidae and Odontopygidae. They are polygynandrous. Males transfer sperm via species­ specific accessory genitalia called gonopods, that comprise three components, two of which, the emote and telopodite, are involved in processes of sperm transfer. The emotes function to translocate ejaculates from the penes to the vulvae, where they are stored. A delay between insemination and fertilisation provides an arena for syn- and postcopulatory sexual competition. These operate at the gametic level via sperm competition and cryptic female choice. By combining studies of genital form and function with single and double mating experiments, this study elucidates these processes in some southern African Spirostreptida millipedes. Scanning electron and light microscopy are used to describe gonopod morphology for 26 Spirostreptida species (6 Harpagophoridae, 13 Spirostreptidae, 7 Odontopygidae). For five of these, gonopod functional morphology is also described. The association of gonopod components is similar within families and more particularly within genera, and it is predicted that the functional morphology and mechanisms of competition are conserved within these groups. With the exception of the Spirostreptidae coxites, which are spined, Spirostreptida telopodites are the most complex regions of the gonopods. Gonopod form and function is not accounted for by sperm transfer alone. Structural evidence implicates both cryptic female choice and sperm competition in their evolution. (Chapter 2). Sperm morphology is described for 18 species (8 Harpagophoridae, 7 Spirostreptidae, 3 Odontopygidae) using bright field and phase contrast microscopy. Sperm are non­ motile and either disc- or triangle-shaped. Sperm immotility has implications for the mechanisms of competition because it precludes independent sperm movement into or within the sperm stores (Chapter 2). External vulval morphology is described for 20 Spirostreptida species (8 Spirostreptidae spp; 6 Harpagophoridae spp; 6 Odontopygidae spp ), and a detailed histological account is provided for representative taxa of each family. In all three families, bursae are located in deeply invaginated vulval sacs. Sperm are stored in the bursae in a series of interconnecting ampullae that are associated with bursal glands and iii muscles. Muscles fan out from the spermathecae to the bursal walls. Bursal muscles may "sanction" cryptic female choice via control of ejaculate storage and manipulation. In A. uncinatus (Spirostreptidae), females store sperm for protracted periods and the non-gametic component ofthe ejaculate, the granules, may function as mating plugs. In the Harpagophoridae, bursae protrude from the gonopore. However, the spermathecal ampullae themselves are not directly accessible to the gonopods because the distal telopodites are broader than they are. In both the Spirostreptidae and Odontopygidae, bursae are situated at the bottom of the vulval sacs, some distance from the gonopores. In spite of this, Spirostreptidae telopodites reach the bursal furrow that gives rise to the spermathecal ampullae. Due to the orientation of the bursae and the size of the distal telopodites, gonopods do not enter the ampullae. The orientation of the bursae and their distance from the gonopore suggest that Odontopygidae telopodites do not have direct access to the sperm stores either (Chapter 3). Processes of ejaculate transfer are quantified for two Spirostreptida species, Alloporus uncinatus (Spirostreptidae) and Poratophilus diplodontus (Harpagophoridae). By radiolabelling ejaculates with tritiated thymidine, and separating copula pairs at varying time intervals from the onset of copulation, it is shown that sperm transfer occurs at the beginning of copulation and the proportion of ejaculate at the bottom of the vulvae increases with time. Early insemination has implications for the mechanisms of competition because males cannot manipulate rival ejaculates without also affecting their own. The adaptive significance of prolonging copulation beyond insemination is discussed (Chapter 4). Radioactive labelling techniques are used to examine mechanisms of competition, and to test whether sperm storage is affected by a temporal delay between successive matings (P. diplodontus and A. uncinatus). Because P2 cannot be inferred from a measure of ejaculate volume, the term V 2 is proposed to describe the proportion of ejaculate contributed to the sperm stores of the female by the second of two males to mate with her. Genital manipulation experiments were performed to test the hypothesis that telopodites function in ejaculate placement and displacement. In P. diplodontus, V2 ::::: 0.62 following a double mating. Ejaculate storage is not affected by a 24 hour delay between matings. Vulval capacity is reached with single ejaculates and for subsequent ones to be accommodated, at least 64.52% of prior iv ejaculates must be removed. Removal is partially effected by the distal telopodites (26.46%) but is not totally accounted for by direct male processes. The balance may be effected by ejaculate flushing, a strategy that concurs with smaller ejaculate volumes remaining within the vulvae than are initially transferred. Partial removal may be a consequence ofboth the early onset of insemination (males would be unable to remove rival ejaculates without also affecting their own) and the storage of ejaculates in inaccessible spermathecal ampullae (Chapter 5). In A. uncinatus, vulval capacity is greater than that of P. diplodontus and single ejaculates are apparently too small to fill the vulvae. Coincident with this is a greater number of spermathecal ampullae. Later males do not affect prior ejaculates. Following a double mating V2 ::::: 0.5, unless a temporal delay is imposed between matings in which case females have been shown to reduce the contribution of the first male and V2 ~ 0.71. Spirostreptidae telopodites are implicated in ejaculate transfer, but not in the movement of ejaculates to the bottom of the vulvae. Only in the Spirostreptidae does complete telopodite retraction bring the distal telopodite in contact with the coxite, and the coxal spines may function to temporarily suspend the sperm during copulation (Chapter 6). Preliminary data from mating experiments on the Odontopygidae are discussed. Patterns of insemination are similar to those of A.
Recommended publications
  • Integrative Revision of the Giant Pill-Millipede Genus Sphaeromimus
    A peer-reviewed open-access journal ZooKeys 414: 67–107 (2014) New Sphaeromimus species from Madagascar 67 doi: 10.3897/zookeys.414.7730 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Integrative revision of the giant pill-millipede genus Sphaeromimus from Madagascar, with the description of seven new species (Diplopoda, Sphaerotheriida, Arthrosphaeridae) Thomas Wesener1,2,†, Daniel Minh-Tu Le1,3,‡, Stephanie F. Loria1,4,§ 1 Field Museum of Natural History, Zoology - Insects, 1400 S. Lake Shore Drive, 60605 Chicago, Illinois, U.S.A. 2 Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Center for Taxonomy and Evolutionary Research (Section Myriapoda), Adenauerallee 160, 53113 Bonn, Germany 3 School of the Art Institute of Chicago, 36 S. Wabash Avenue, 60603 Chicago, Illinois, U.S.A. 4 American Museum of Natural History, Richard Glider Graduate School, Central Park West at 79th Street, New York, U.S.A. † http://zoobank.org/86DEA7CD-988C-43EC-B9D6-C51000595B47 ‡ http://zoobank.org/AD76167C-3755-4803-AEB5-4CD9A7CB820A § http://zoobank.org/ED92B15A-10F9-47B8-A8FA-D7673007F8A5 Corresponding author: Thomas Wesener ([email protected]) Academic editor: D.V. Spiegel | Received 15 April 2014 | Accepted 8 May 2014 | Published 6 June 2014 http://zoobank.org/59FA2886-34C2-4AEF-9783-3347E5EBC702 Citation: Wesener T, Le DM-T, Loria SF (2014) Integrative revision of the giant pill-millipede genus Sphaeromimus from Madagascar, with the description of seven new species (Diplopoda, Sphaerotheriida, Arthrosphaeridae). ZooKeys 414: 67–107. doi: 10.3897/zookeys.414.7730 Abstract The Malagasy giant pill-millipede genusSphaeromimus de Saussure & Zehntner, 1902 is revised. Seven new species, S.
    [Show full text]
  • Supra-Familial Taxon Names of the Diplopoda Table 4A
    Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff,
    [Show full text]
  • Diversity of Millipedes Along the Northern Western Ghats
    Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1.
    [Show full text]
  • Diplopoda, Polyxenida, Lophoproctidae) Extend the Range of the Genus Lophoproctus
    A peer-reviewed open-access journal ZooKeys 510: 209–222 (2015) New records of Lophoproctus coecus Pocock, 1894... 209 doi: 10.3897/zookeys.510.8668 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research New records of Lophoproctus coecus Pocock, 1894 (Diplopoda, Polyxenida, Lophoproctidae) extend the range of the genus Lophoproctus Megan Short1 1 Deakin University, 221 Burwood Highway, Burwood, Melbourne, Australia Corresponding author: Megan Short ([email protected]) Academic editor: Ivan H. Tuf | Received 29 September 2014 | Accepted 5 May 2015 | Published 30 June 2015 http://zoobank.org/4FF544AC-67B8-413A-A544-38A3F299FCF1 Citation: Short M (2015) New records of Lophoproctus coecus Pocock, 1894 (Diplopoda, Polyxenida, Lophoproctidae) extend the range of the genus Lophoproctus. In: Tuf IH, Tajovský K (Eds) Proceedings of the 16th International Congress of Myriapodology, Olomouc, Czech Republic. ZooKeys 510: 209–222. doi: 10.3897/zookeys.510.8668 Abstract The geographic distribution of the genus Lophoproctus Pocock, 1894 has greatly expanded with new re- cords of the species Lophoproctus coecus Pocock, 1894, together with the reassignment of a number of millipedes formerly identified as Lophoproctus lucidus (Chalande, 1888). L. coecus was found to be the sole representative of the family Lophoproctidae in collections examined from Crimea and the Caucasian region. The species was also identified from Iran and Kyrgyzstan.Lophoproctus specimens collected in Italy by Verhoeff were reassigned as L. coecus with the exception of one specimen of L. jeanneli (Brölemann, 1910) from Capri. These data were combined with all available information from the literature to look at the pattern of distribution of the four species in the genus.
    [Show full text]
  • Centre International De Myriapodologie
    N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Mus6umNationald'HistoireNaturelle,Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-75231 ParisCedex05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISIES REPE&TORIEES PANS LA BASE PASCAL DE L' INIST 1995 N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Museum National d'Histoire N aturelle, Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-7 5231 Paris Cedex 05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISTES REPERTORIEES DANS LA BASE PASCAL DE L' INIST 1995 SOMMAIRE CONTENTS ZUSAMMENFASSUNG Pages Seite lOth INTERNATIONAL CONGRESS OF MYRIAPODOLOGY .................................. 1 9th CONGRES INTERNATIONAL DE MYRIAPODOLOGIE.................................................... 1 Contacter le Secretariat permanent par E-M AIL & FA X............................................................ 1 The Proceedings of the 9th International Congress of Myriapodology...................... 2 MILLEPATTIA, sommaire .du prochain bulletin....................................................................... 2 Obituary: Colin Peter FAIRHURST (1942-1994) ............................................................. 3 BULLETIN of the
    [Show full text]
  • MYRIAPODS 767 Volume 2 (M-Z), Pp
    In: R. Singer, (ed.), 1999. Encyclopedia of Paleontology, MYRIAPODS 767 volume 2 (M-Z), pp. 767-775. Fitzroy Dearborn, London. MYRIAPODS JVlyriapods are many-legged, terrestrial arthropods whose bodies groups, the Trilobita, Chelicerata, Crustacea, and the Uniramia, the are divided into two major parts, a head and a trunk. The head last consisting of the Myriapoda, Hexapoda, and Onychophora (vel- bears a single pair of antennae, highly differentiated mandibles (or vet worms). However, subsequent structural and molecular evidence jaws), and at least one pair of maxillary mouthparts; the trunk indicates that there are several characters uniting major arthropod region consists of similar "metameres," each of which is a func- taxa. Moreover, paleobiologic, embryologie, and other evidence tional segment that bears one or two pairs of appendages. Gas demonstrates that myriapods and hexapods are fiindamentally exchange is accomplished by tracheae•a branching network of polyramous, having two major articulating appendages per embry- specialized tubules•although small forms respire through the ological body segment, like other arthropods. body wall. Malpighian organs are used for excretion, and eyes con- A fourth proposal (Figure ID) suggests that myriapods are sist of clusters of simple, unintegrated, light-sensitive elements an ancient, basal arthropod lineage, and that the Hexapoda that are termed ommatidia. These major features collectively char- emerged as an independent, relatively recent clade from a rather acterize the five major myriapod clades: Diplopoda (millipeds), terminal crustacean lineage, perhaps the Malacostraca, which con- Chilopoda (centipeds), Pauropoda (pauropods), Symphyla (sym- tains lobsters and crabs (Ballard et al. 1992). Because few crusta- phylans), and Arthropleurida (arthropleurids). Other features cean taxa were examined in this analysis, and due to the Cambrian indicate differences among these clades.
    [Show full text]
  • A New Species of the Genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441382; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A new species of the genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India. Somnath Bhakat Department of Zoology, Rampurhat College, Rampurhat-731224, Dist. Birbhum, W. B., India Email: [email protected] ORCID: 0000-0002-4926-2496 Abstract A new species of Carlogonus, Carlogonus bengalensis is described from West Bengal, India. The adult is blackish brown in colour with a yellowish curved tail, round body with 60 segments, 55 mm in length, 5th segment of male bears a hump, telopodite of the gonopod long, flat and band like with a single curved antetorsal process, mesal process with a red spine, proplical lobe with a curved orange spine, inner surface of metaplical fold with sigilla, palette spatula like and a few blepharochatae at the apical margin. Male bears white pad on femur and tibia. Comparison was made with the “exaratus group” of the genus Carlogonus. Keywords: Hump, red spine, sigilla, Suri, whitish pad, yellow tail Introduction A few reports mostly on different aspects of millipedes (except taxonomy) especially on Polydesmid millipedes are available from West Bengal (India). Except the study of Bhakat (2014), there is no report on any aspect of Spirostreptid millipede from this region. Of the Spirostreptid millipede, genus Carlogonus Demange, 1961 includes three Harpagophorid millipede species described in the Southeast Asian genus Thyropygus Pocock, 1894 and the South Asian genus Harpurostreptus Attems, 1936.
    [Show full text]
  • Mandrillus Leucophaeus Poensis)
    Ecology and Behavior of the Bioko Island Drill (Mandrillus leucophaeus poensis) A Thesis Submitted to the Faculty of Drexel University by Jacob Robert Owens in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2013 i © Copyright 2013 Jacob Robert Owens. All Rights Reserved ii Dedications To my wife, Jen. iii Acknowledgments The research presented herein was made possible by the financial support provided by Primate Conservation Inc., ExxonMobil Foundation, Mobil Equatorial Guinea, Inc., Margo Marsh Biodiversity Fund, and the Los Angeles Zoo. I would also like to express my gratitude to Dr. Teck-Kah Lim and the Drexel University Office of Graduate Studies for the Dissertation Fellowship and the invaluable time it provided me during the writing process. I thank the Government of Equatorial Guinea, the Ministry of Fisheries and the Environment, Ministry of Information, Press, and Radio, and the Ministry of Culture and Tourism for the opportunity to work and live in one of the most beautiful and unique places in the world. I am grateful to the faculty and staff of the National University of Equatorial Guinea who helped me navigate the geographic and bureaucratic landscape of Bioko Island. I would especially like to thank Jose Manuel Esara Echube, Claudio Posa Bohome, Maximilliano Fero Meñe, Eusebio Ondo Nguema, and Mariano Obama Bibang. The journey to my Ph.D. has been considerably more taxing than I expected, and I would not have been able to complete it without the assistance of an expansive list of people. I would like to thank all of you who have helped me through this process, many of whom I lack the space to do so specifically here.
    [Show full text]
  • Clé D'identification Des Glomerida(1) De France
    Clé d’identification des Glomerida(1) de France Robin Duborget 2017 ( Version 2 ) (1) : exceptées les espèces cavernicoles Avant-Propos Les Gloméris sont des Arthropodes largement méconnus d’une majorité des naturalistes et entomo- logistes amateurs. Ce manque d’intérêt provient d’un manque certain d’outils de détermination simples, facilement disponibles et accessibles. En effet, hors de la sphère professionnelle il n’y a que peu d’informa- tions pratiques et applicables sur le terrain permettant de déterminer un Gloméris. C’est dans le but de pallier à cette lacune que j’ai decidé de réaliser cette clé de détermination illustrée. Celle-ci comprend pour l’instant la totalité des espèces françaises non cavernicoles de l’ordre des Glome- rida, avec des photographies personnelles et des critères de détermination simples et visibles extérieure- ment. La répartition des Gloméris français est actuellement peu connue, aussi ces données, comme le nombre d’espèces présentes dans la clé, sont amenées à évoluer. Cette clé, bien que sans prétention, n’est pourtant pas exempte de rigueur. En effet, elle n’aurait pu voir le jour sans le travail d’Oliver Macek qui a identifié mes spécimens à l’aide des techniques génétiques de «codes-barres moléculaires». Ainsi, j’ai entrepris de corréler à chaque détermination par «barcoding» un ou plusieurs caractères morphologiques externes, permettant de séparer l’espèce identifiée des autres. Il est apparu alors qu’on pouvait, du moins en se limitant à la zone géographique de la France, faire une relation entre certains caractères externes et une espèce de Gloméris. Cela permettant de réaliser une clé de détermination à destination des naturalistes désirant identifier leurs trouvailles.
    [Show full text]
  • (Diplopoda: Penicillata) from Portugal
    Boletín Sociedad Entomológica Aragonesa, n1 42 (2008) : 360. NOTAS BREVES New and first records of Polyxenida (Diplopoda: Penicillata) from Portugal Pedro Cardoso1,2,3,*, Monique Nguyen Duy-Jacquemin4 & Francisco Rasteiro3 1 Azorean Biodiversity Group – CITA-A, Universidade dos Açores, Angra do Heroísmo, Portugal. 2 Natural History Museum of Denmark and Centre for Macroecology, University of Copenhagen, Denmark. 3 Núcleo de Espeleologia da Costa Azul - FPE, Sesimbra, Portugal. 4 Muséum National d'Histoire Naturelle, Département Systématique et Evolution, Paris, France. * Correspondence: Universidade dos Açores, Departamento de Ciências Agrárias, Terra-Chã, 9701-851 Angra do Heroísmo, Portugal. – [email protected] Abstract: To date, no account on the presence of the order Polyxenida, and in fact the subclass Penicillata, was published for mainland Portugal. In this contribution we record the presence of Polyxenus lagurus (Linnaeus, 1758) from Parque Nacional da Peneda-Gerês and of Lophoproctus cf. pagesi Condé, 1982 from Parque Natural da Arrábida. Key words: Lophoproctidae, Polyxenidae, Iberian Peninsula, cave habitat, leaf litter, pitfall traps, troglobionts. Introduction The order Polyxenida is the only order of the subclass Penicillata. This is a basal group of Diplopoda, sister group of all other diplopods (Enghoff, 1984; Sierwald & Bond, 2007). With about 160 known species (Nguyen Duy- Jacquemin & Geoffroy, 2003) the Polyxenida are divided in four families, three of them being known from Europe (Enghoff & Desmond Kime, 2007): Lophoproctidae, distri- buted in Mediterranean Europe; Polyxenidae, present in all Europe; and Synxenidae, only known from Spain. Despite the wide distribution of some species, polyxenids were never cited from mainland Portugal. They were however referenced for Azores, namely Polyxenus lagurus (Lin- naeus, 1758) at the islands of São Miguel and Pico (Condé & Nguyen Duy-Jacquemin, 1994) and Polyxenus fascicula- tus Say, 1821 in Madeira and Selvagens (Enghoff & Des- mond Kime, 2007; Enghoff, in prep.).
    [Show full text]
  • Zootaxa, a Revision of the Thyropygus Allevatus Group. Part 2
    Zootaxa 2165: 1–15 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A revision of the Thyropygus allevatus group. Part 2: the T. bifurcus subgroup (Diplopoda, Spirostreptida, Harpagophoridae) PIYATIDA PIMVICHAI1,2, HENRIK ENGHOFF3,4& SOMSAK PANHA1,2,4 1Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2Biological Science Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand E-mail: [email protected] and [email protected] 3Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark E-mail: [email protected] 4Corresponding authors Abstract The Thyropygus bifurcus subgroup of the T. allevatus group is revised. Four new species are described from Thailand: T. demangei n. sp., T. quadricuspis n. sp., T. richardhoffmani n. sp., from Trang province and T. casjeekeli n. sp., from Krabi province. The other species of the T. bifurcus subgroup, viz., T. bifurcus (Demange, 1986), and T. enghoffi (Demange, 1989), are redescribed. Key words: millipede, taxonomy, new species, Thailand Introduction The genus Thyropygus Pocock, 1894 is distributed broadly in Southeast Asia (Jeekel, 2006; Enghoff, 2005). Currently the genus Thyropygus, including its synonym Cornugonus Demange, 1961 (Pimvichai et al., 2009) comprises 43 named species and a number of named subspecies (Jeekel, 2006, Pimvichai et al., 2009). Hoffman (1975) grouped the species of Thyropygus in four species groups, including the T. allevatus (Karsch, 1881) group. Pimvichai et al. (2009) provided diagnoses of the genus Thyropygus and the T.
    [Show full text]
  • Mating Pattern, Duration and Multiple Mating in Chondromorpha Severini Silvestri (Diplopoda: Polydesmida)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.23.263863; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Mating pattern, duration and multiple mating in Chondromorpha severini Silvestri (Diplopoda: Polydesmida). S. Bhakat Rampurhat College, Rampurhat- 731224, Dist. Birbhum, W. B. India E-mail: [email protected] ORCID: 0000-0002-4926-2496 Abstract Mating behaviour of Chondromorpha severini, a polydesmid millipede was studied in the field and in the laboratory condition. Copulating pair follows the general rule of love play before actual act of coitus. Mating duration varied from one to 25 minute with an average of eight minute. Mating frequency was maximum in early and late hours of day. In the multiple mate preference experiment, 10 pairs of male and female were used to calculate preference index (Pi) of individual sex. Preference index varies from 0.65 to 0.91. The implication of multiple mating has been discussed in detail. The study confirmed that i) the species belongs to polygynandrous mating system where males are the pursuers and females are the accomplishers ii) short and long duration mating is related to mate acquisition and mate guarding respectively Keywords: Love play, preference index, polygynandrous, short and long duration mating, triplet formation bioRxiv preprint doi: https://doi.org/10.1101/2020.08.23.263863; this version posted August 24, 2020.
    [Show full text]