Zootaxa, a Revision of the Thyropygus Allevatus Group. Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa, a Revision of the Thyropygus Allevatus Group. Part 2 Zootaxa 2165: 1–15 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A revision of the Thyropygus allevatus group. Part 2: the T. bifurcus subgroup (Diplopoda, Spirostreptida, Harpagophoridae) PIYATIDA PIMVICHAI1,2, HENRIK ENGHOFF3,4& SOMSAK PANHA1,2,4 1Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2Biological Science Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand E-mail: [email protected] and [email protected] 3Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark E-mail: [email protected] 4Corresponding authors Abstract The Thyropygus bifurcus subgroup of the T. allevatus group is revised. Four new species are described from Thailand: T. demangei n. sp., T. quadricuspis n. sp., T. richardhoffmani n. sp., from Trang province and T. casjeekeli n. sp., from Krabi province. The other species of the T. bifurcus subgroup, viz., T. bifurcus (Demange, 1986), and T. enghoffi (Demange, 1989), are redescribed. Key words: millipede, taxonomy, new species, Thailand Introduction The genus Thyropygus Pocock, 1894 is distributed broadly in Southeast Asia (Jeekel, 2006; Enghoff, 2005). Currently the genus Thyropygus, including its synonym Cornugonus Demange, 1961 (Pimvichai et al., 2009) comprises 43 named species and a number of named subspecies (Jeekel, 2006, Pimvichai et al., 2009). Hoffman (1975) grouped the species of Thyropygus in four species groups, including the T. allevatus (Karsch, 1881) group. Pimvichai et al. (2009) provided diagnoses of the genus Thyropygus and the T. allevatus group and revised one subgroup of the latter, viz., the T. opinatus subgroup, They also mentioned a second subgroup, viz., the T. bifurcus subgroup which is the subject of the present paper. Further subgroups of the T. allevatus group will be defined and treated in forthcoming papers. Materials and methods Newly collected specimens were hand-collected and preserved partly in 70% ethanol, and some were placed in a freezer at -20 ºC for subsequent molecular studies. Specimens were examined from the following collections: CUMZ Museum of Zoology, Chulalongkorn University, Bangkok, Thailand MNHN Muséum national d’ Histoire Naturelle, Paris, France NMNH National Museum of Natural History, Bulgarian Academy of Sciences, Bulgaria ZMUC Natural History Museum of Denmark (Zoological Museum), University of Copenhagen, Denmark Accepted by W. Shear: 23 Jun. 2009; published: 22 Jul. 2009 1 Drawings were based on photographs and examination of specimens under a stereo microscope. Pimvichai et al. (2009: 21, figs 1–3) defined a number of terms for gonopods of the T. allevatus group. Most of these are used in the following descriptions, viz., (terms not in Pimvichai et al. 2009 in bold) - Anterior coxal fold (ac): The main part of gonopod in anterior view. Confusingly called posterior coxal fold by Demange (1961) and Hoffman (1975). - Lateral process of anterior coxal fold (alp): The distolateral part of the anterior coxal fold. - Mesal process of anterior coxal fold (amp): An additional projection on the anterior coxal fold, protruding from its mesal margin. - Blepharochaete (pl. -ae) (bp): The normal form of apical setae, long, slender, stiffened, and usually pigmented, somewhat reminiscent of the mammalian eyelash (Hoffman, 1975). - Longitudinal crest in gutter of palette (cr): A crest which runs along the middle in gutter near the tip of palette. - Femoral spine (fe, fe 1, fe 2): A usually long, curved spine on the telopodite, originating slightly distal to the point where the telopodite emerges from the coxa. - Lamellar lobe (ll): A small, slightly folded lobe at the basis of the apical part of the telopodite. - Palette (pa): The distalmost lobe of the apical part, carrying the row of blepharochaetae. - Posterior coxal fold (pc): The main part of gonopod in posterior view, usually shorter than ac and forming shelf for accommodation of telopodite shaft. - Lateral process of posterior coxal fold (plp): The lateral part of the posterior coxal fold, normally digitiform. - Mesal process of posterior coxal fold (pmp): The mesal part of the posterior coxal fold, normally forming a shelf (sh) for accommodation of telopodite shaft. - Paracoxite (px): The basal, lateral part of the posterior coxal fold. - Shelf (sh): The distal surface of the posterior coxal fold. - Small spine (ss): An additional small spine at the base of the apical part of telopodite in posterior view. - Sternum (st): A small, usually triangular sclerite between the basal parts of the anterior coxal folds. - Tibial spine (ti): A usually long spine on the telopodite, originating distal to the femoral spine, at the basis of the apical part of the telopodite, usually curved in the opposite direction of the femoral spine, the two together forming a circle. - Apical part: The part of the telopodite distal to the tibial spine. The Thyropygus bifurcus subgroup A subgroup of the T. allevatus group, characterized by 1. An additional projection on the anterior coxal fold 2. A doubled femoral spine (exception: T. casjeekeli n. sp., and quadricuspis n. sp., which have a single femoral spine) 3. No spatulate lobe on the telopodite 4. A longitudinal rounded crest near tip of palette The T. bifurcus subgroup includes T. bifurcus (Demange, 1986), T. enghoffi (Demange, 1989), and 4 new species; T. casjeekeli n. sp., T. demangei n. sp., T. quadricuspis n. sp., and T. richardhoffmani n. sp. The species within this subgroup not only share the diagnostic characters listed above but also many other characters. 2 · Zootaxa 2165 © 2009 Magnolia Press PIMVICHAI ET AL. General description of the T. bifurcus subgroup The general gonopod structure, as well as the characters of body rings, antennae, mandibles, gnathochilarium, collum, epiproct, paraprocts, hypoproct and first pair of male legs, are similar to those described for the T. opinatus subgroup by Pimvichai et al., (2009). We give here a general description of males of the bifurcus subgroup, emphasizing the differences from the opinatus subgroup. Head smooth, 5–6 supralabral setae, eyes moderate in size, ocelli in 7–8 horizontal rows: 13–14, 12–14, 10–12, 8–10, 7–8, 5–7, 4–5, 2–4, total: 61–74. Sterna smooth, stigmatal grooves distinct, long. Legs relatively long; tip of postfemora, tibiae and tarsi visible from above when legs are extended laterad; coxae of anterior and posterior pair markedly dissimilar, posterior coxae humped; coxae with 1–6 setae, prefemora with 1–4 setae, femora with 2–4 setae in a median row and 2 larger subapical setae; tarsi typically with 6 irregularly placed ventral setae and 1–2 large dorsal apical spurs. Postfemora and tibiae without setae. Gonopods: Sternum (st) triangular. Anterior coxal fold (ac) basally slender, becoming broader towards tip, lateral margins diverging; distally with two processes: a lateral process (alp) and the mesal process (amp); the shape of these processes is species-specific. Posterior coxal (pc) fold much lower than anterior coxal fold, basally with moderately high lateral paracoxites (px) distally always with a smooth area over which the telopodite shaft can slide; mesal process of posterior coxal fold (pmp) usually slender, directed distolaterad. Telopodite with two femoral spines (rarely one) and a long, slender, curved tibial spine (ti). A small and slightly folded lateral lamella (ll) at the apical part of telopodite. Apical palette (pa) simple, forming a broad gutter, with a longitudinal crest in the concavity; apically with a row of 7–10 brownish blepharochaetae (bp). Key to species of the T. bifurcus subgroup 1 Telopodite with a single femoral spine......................................................................................................................... 2 1* Telopodite with a double femoral spine........................................................................................................................ 3 2 Lateral process of anterior coxal fold (alp) without an apical crest; mesal process of anterior coxal fold (amp) shorter than and as broad as alp, directed distad; femoral spine (fe) very long and slender..........Thyropygus casjeekeli n. sp. 2* Lateral process of anterior coxal fold (alp), with a sharp crest on the posterior surface near the tip (Fig. 5C, arrow); mesal process of anterior coxal fold (amp) almost as long as alp, straight, directed distad; femoral spine (fe) very long, slender, with an additional lamella at base (Fig 5D, arrow) ................................Thyropygus quadricuspis n. sp. 3 Lateral process of anterior coxal fold (alp) broader, terminating in a very short external spine and a very long inter- nal one; mesal process of anterior coxal fold (amp) as long as alp; first femoral spine (fe 1) very short, pointed; sec- ond femoral spine (fe 2) very long, as long as tibial spine (ti); an additional lamella at both side of base of fe 2......... ............................................................................................................................... Thyropygus richardhoffmani n. sp. 3* Lateral process of anterior coxal fold (alp) slender, regularly curved, sickle-shaped ................................................. 4 4 Mesal margin of lateral process of anterior coxal fold (alp) simple, without a caudad spine or crest; mesal process
Recommended publications
  • A New Species of the Genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441382; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A new species of the genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India. Somnath Bhakat Department of Zoology, Rampurhat College, Rampurhat-731224, Dist. Birbhum, W. B., India Email: [email protected] ORCID: 0000-0002-4926-2496 Abstract A new species of Carlogonus, Carlogonus bengalensis is described from West Bengal, India. The adult is blackish brown in colour with a yellowish curved tail, round body with 60 segments, 55 mm in length, 5th segment of male bears a hump, telopodite of the gonopod long, flat and band like with a single curved antetorsal process, mesal process with a red spine, proplical lobe with a curved orange spine, inner surface of metaplical fold with sigilla, palette spatula like and a few blepharochatae at the apical margin. Male bears white pad on femur and tibia. Comparison was made with the “exaratus group” of the genus Carlogonus. Keywords: Hump, red spine, sigilla, Suri, whitish pad, yellow tail Introduction A few reports mostly on different aspects of millipedes (except taxonomy) especially on Polydesmid millipedes are available from West Bengal (India). Except the study of Bhakat (2014), there is no report on any aspect of Spirostreptid millipede from this region. Of the Spirostreptid millipede, genus Carlogonus Demange, 1961 includes three Harpagophorid millipede species described in the Southeast Asian genus Thyropygus Pocock, 1894 and the South Asian genus Harpurostreptus Attems, 1936.
    [Show full text]
  • Genetic Diversity of Populations of a Southern African Millipede, Bicoxidens Flavicollis (Diplopoda, Spirostreptida, Spirostreptidae)
    Genetic diversity of populations of a Southern African millipede, Bicoxidens flavicollis (Diplopoda, Spirostreptida, Spirostreptidae) by Yevette Gounden 212502571 Submitted in fulfillment of the academic requirements for the degree of Master of Science (Genetics) School of Life Sciences, University of KwaZulu-Natal Westville campus November 2018 As the candidate’s supervisor I have/have not approved this thesis/dissertation for submission. Signed: _____________ Name: _____________ Date: _____________ ABSTRACT The African millipede genus Bicoxidens is endemic to Southern Africa, inhabiting a variety of regions ranging from woodlands to forests. Nine species are known within the genus but Bicoxidens flavicollis is the most dominant and wide spread species found across Zimbabwe. Bicoxidens flavicollis individuals have been found to express phenotypic variation in several morphological traits. The most commonly observed body colours are brown and black. In the Eastern Highlands of Zimbabwe body colour ranges from orange- yellow to black, individuals from North East of Harare have a green-black appearance and a range in size (75–110 mm). There is disparity in body size which has been noted with individuals ranging from medium to large and displaying variation in the number of body rings. Although much morphological variation has been observed within this species, characterization based on gonopod morphology alone cannot distinguish or define variation between phenotypically distinct individuals. Morphological classification has been found to be too inclusive and hiding significant genetic variation. Taxa must be re-assessed with the implementation of DNA molecular methods to identify the variation between individuals. This study aimed to detect genetic divergence of B. flavicollis due to isolation by distance of populations across Zimbabwe.
    [Show full text]
  • Download Article (PDF)
    Rec. zool. Stlr~. India, 96 (1-4): 229-235, 1997 REPORT ON THE MILLIPEDE FAUNA OF SOUTH ARCOT DISTRICT, TAMILNADU M. MARY BAI and T. J. INDRA Southern Regional Station, Zoological Survey of India, Madras. INTRODUCTION South Arcot district lies in the northeastern part of Tamilnadu State, between 11 °11' and 12°35' and 78°38' 800 E and covers an area of 13355 sq. km. As there is neither a conlprehensive account on the Millipede fauna of this district available in the district Gazetteer, nor is the work of Attems (1936) complete, the authors carried out an extensive survey of the district in 1993-94 under the District Survey Programme of Southern Regional Station, Zoological Survey of India, Madras, Tamilnadu to study the Millipedes of this area. Collections were made from 31 different localities (Fig. 1). A total of 1214 specimens belonging to 2 orders, 2 families and 4 species of Millipedes were collected and identified through this study. The present study is of use to improve our knowledge on the Millipede fauna of South Arcot district. These species, the first to be reported from the region undoubtedly represent but a fraction of the millipede fauna occurring there. The identification and classification of species basically are after Hoffman, 1982. List of C allee/ion S lations: TINDIVANAM TALUK : CUDDALUR TALUK: 1. Vedur dam 7. Murukespettai 2. Iyyanpuram PANNURUTTI TALUK : 3. Kumarapuram reserve forest 8. Gadilam river VANUR TALUK: 9. Pula vunur 4. Thenkodipakkam CHIDAMBARAM TALUK: 5. Nallavur 10. Killai 6. Ennarpalayam 11. Portonova 12. Chidambaram 230 Records of the Zoological Survey of India KALLAKURICHI SOUTH AReor DISTRICT (SHOWING COLLECTION SITES) K.A TTUMANNARKOVIL T ALUK : VRIDDHACHALAM TALUK: 13.
    [Show full text]
  • Taita Hills Biodiversity Project Report
    TAITA HILLS BIODIVERSITY PROJECT REPORT Compiled by Benny Bytebier Project Co-ordinator National Museums of Kenya January 2001 This report should be cited as Bytebier, B. 2001. Taita Hills Biodiversity Project Report. National Museums of Kenya, Nairobi. Cover Picture Ronald Mulwa and Taita White-eye, Zosterops (poliogaster) silvanus Photograph by Thierry Geenen Taita Hills Biodiversity Project Report TABLE OF CONTENTS 1. THBP Project Fact Sheet 7 2. Executive Summary 9 2.1. Introduction 9 2.2. Project History 9 2.3. Ornithology research component 11 2.3.1. Effects of forest fragmentation on the bird fauna 11 2.3.2. Ecology of the Taita Thrush 12 2.3.3. Ecology of the Taita White-eye 12 2.3.4. Ecology of the Taita Apalis 12 2.4. Mammalogy research component 13 2.5. Invertebrate zoology research component 14 2.6. Botany research component 16 2.7. Other research 18 2.8. Training 19 2.9. Conclusions 20 3. Research 23 3.1. Introduction 23 3.2. Study area 23 3.2.1. Dabida 24 3.2.2. Mbololo 24 3.2.3. Mount Sagala 24 3.2.4. Mount Kasigau 25 3.3. Ornithological research 27 3.3.1. The effects of forest fragmentation on the forest- dependent birds of the Taita Hills 29 3.3.1.1. Introduction 29 3.3.1.2. Aims and objectives 29 3.3.1.3. Material and methods 30 3.3.1.4. Collaborators 31 3.3.1.5. Time frame of activities 31 3.3.1.6. Results 32 3.3.1.7.
    [Show full text]
  • Distribution of Millipedes in Family Harpagophoridae from Different Tropical Forest Types
    Journal of Agricultural Technology 2015 Vol. 11(8): 1755-1766 Available online http://www.ijat-aatsea.com ISSN 1686-9141 Distribution of harpagophoridmillipedes in differenttropical forest types Sirirut Sukteeka1, Nathawut Thanee1*, Somsak Punha2, Suwit Jitpukdee3 and Samai Sewakhonburi4 1School of Biology, Institute of Science, Suranaree University of Technology, NakhonRatchasima, 30000, Thailand, 2Department of Biology, Faculty of Science, Chulalongkorn University, 10330 Thailand, 3Faculty of Science and Fisheries Technology, Rajamangala University of Technology, Trang, 92150, Thailand, 3Sakaerat Environmental Research Station, NakhonRatchasima 30370 Sukteeka S., Thanee N. , Punha S., Jitpukdee S. and Sewakhonburi S. (2015). Distribution of Millipedes in Family Harpagophoridae from different tropical forest types. Journal of Agricultural Technology 11(8):1755-1766. The distributions of harpagophoridmillipedes were examined in different forest types in Sakaerat Environmental Research Station (SERS), NakhonRatchasima, Thailand. All millipedes were collected between June 2010 to May 2011 from each permanent plot of 20 m x 20 m (400 m2). For each plot, the millipedes were collected in a small plot of 30×30×30 cm3 within four forest types: dry evergreen forest (DEF); dry dipterocarp forest (DDF); plantation forest (PTF); and ecotone (ECO). The results revealed that the highest index of diversity (Shannon - Wiener index) was 1.67 and the highest species richness (6) was found in the ecotone of dry evergreen forest and the dry dipterocarp forest (ECO).The most abundance of this family was found in DEF during raining season (p≤0.05). This work suggestedthat the DEF had a good factor for supporting the distribution of harpagophorid millipedes in SakaeratEnvironmental Research Station. Harpagophoridmillipedes diversity wasnegatively correlatedwith light intensity, soil pH, soil temperature, soil moisture and litter moisture, while organic matter showed the highest positive correlation (p≤0.05).
    [Show full text]
  • The Myriapoda of Halimun-Salak National Park (Java, Indonesia): Overview and Faunal Composition
    Biodiversity Data Journal 7: e32218 doi: 10.3897/BDJ.7.e32218 Research Article The Myriapoda of Halimun-Salak National Park (Java, Indonesia): overview and faunal composition Michael Hilgert‡§, Nesrine Akkari , Cahyo Rahmadi|,¶, Thomas Wesener# ‡ Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany § Naturhistorisches Museum Wien, Wien, Austria | Indonesian Institute of Sciences, Cibinong, Indonesia ¶ Indonesia Speleological Society, Bogor, Indonesia # Zoological Research Museum A. Koenig, Leibniz Institue for Animal Biodiversity, Bonn, Germany Corresponding author: Thomas Wesener ([email protected]) Academic editor: Pavel Stoev Received: 06 Dec 2018 | Accepted: 04 Apr 2019 | Published: 15 Apr 2019 Citation: Hilgert M, Akkari N, Rahmadi C, Wesener T (2019) The Myriapoda of Halimun-Salak National Park (Java, Indonesia): overview and faunal composition. Biodiversity Data Journal 7: e32218. https://doi.org/10.3897/BDJ.7.e32218 Abstract The myriapod fauna of the mega-diverse country of Indonesia is so far insufficiently known, with no species lists or determination keys. In order to obtain an overview of the faunal composition of the Myriapoda in an Indonesian forest system, the fauna of the Halimun- Salak National Park in western Java was explored during the dry season (September– October 2015) in the framework of the German-Indonesian INDOBIOSYS project (Indonesian Biodiversity Discovery and Information System). A total of 980 Myriapoda specimens were collected by hand by 3–4 researchers from three different sites in the national park, from which 796 specimens were determined to a higher taxonomic level (class, order, family) and 617 specimens were determined to morphospecies. Among these, 27 were Symphyla (4%) (excluded from further analyses), 226 Chilopoda (28%) and 543 Diplopoda (68%).
    [Show full text]
  • Diplopoda: Spirostreptida: Harpagophoridae), with Discussion of Species Groups in the Genus Guy T
    African Invertebrates Vol. 51 (2) Pages 385–396 Pietermaritzburg December, 2010 Description of two new species of Zinophora Chamberlin, 1927 (Diplopoda: Spirostreptida: Harpagophoridae), with discussion of species groups in the genus Guy T. Redman1,3, Michelle L. Hamer2,3, Robert H. Slotow3 and David A. Barraclough3,4 1Durban Natural Science Museum, P.O. Box 4085, Durban, 4000 South Africa; [email protected] 2South African National Biodiversity Institute, Pretoria, 0001 South Africa; [email protected] 3School of Biological & Conservation Sciences, University of KwaZulu-Natal, Westville, P. Bag X5400, Durban, 4000 South Africa; [email protected], [email protected] 4Natal Museum, P. Bag 9070, Pietermaritzburg, 3200 South Africa ABSTRACT The millipede genus Zinophora (Chamberlin, 1927) was previously revised based on the species present south of the Zambezi and Kunene Rivers. Since that revision, two additional new species have been discovered and are here described: Zinophora lobata (Mozambique) and Z. taromberai (Zimbabwe and Tanzania). This brings the total number of described species in the genus to 21. An updated key to species in the genus is presented. Detailed illustrations of the gonopods supplement the descriptions and a distribution map of Z. taromberai in Zimbabwe is provided. There appear to be up to three species groups in the genus and the character states defining these groups are discussed. KEY WORDS: Harpagophoridae, Zinophora, millipedes, Mozam bique, Tanzania, Zimbabwe, new species. INTRODUCTION The millipede family Harpagophoridae is not only found in Africa, but also occurs in Southeast Asia and the East Indies (Hoffman 1993), and is probably the most charac- teristic and conspicuous element of the millipede fauna of that region (Hoffman 1975).
    [Show full text]
  • Diplopoda ()F India~
    DIPLOPODA ()F INDIA~ By C.... L\.TTEMo Vienna. CONTENTS. PAGE. Introduction 136 List of Literature 1::l9 DistributiQn of Indian Genera . 140 List of Species 143 Systematic Account 152 Sphaerotheridae ]52 Arthrosphaera Poe. 153 Zephronia Gray 167 Lophozephronia, gen. nov. 182 Indosphaera, gen. nov. 183 Kophosphaera, gen. nov. 187 Chinosphaera Att. 191 TonI inobelum Verh. • 192 ~:' Prionobelum Verh. 0 • 192 Sphae'J'obelum Verh. 192 Borneopoeus Verh. 193 Glomeridae . 194 Rhopalome'!"is Verh. 194 Dinoglomeris Silv. 194 Hyperglomeris Verh.. 194 Annameris Verh. 194 .A. piomeris C~ok 195 • Glomeridesmidae . 195 Termitodesmus Silv. 195 Strongylosomidae ]95 O"thomo'fpha Poe. ]97 Orthomorpha Att. H17 Kalo'fthomorpha Att. 200 Anoplodesmus Poe. ~O6 Ohondrornorpha Silv. 209 Euphyodesrn~ls Att. 213 P'rionopeltis Poe. 215 H elicortlwmorpha Att. 215 Pagioprium Att. 215 Streptogonopus Att. 215 Eudasypeltis Poe. 218 133 B 134 lJiemoirs of the Indian J.l1usewJn. [VOL. XI, ; A E. N edyopus Att. 219 Paranedyopus Carl 219 Singalorthornorpha Att. 219 Sundanina Att .. 219 Dasypharkis, gen. nov. 223 Kronopolites Att. 225 H imantogonus Carl 233 Telodrepanurn Carl 233 Polydfi'epanum Carl 233 Gramrnorhabdus Carl 233 X iphidiogonus Carl . 233 Yunnanina, gen. nov. 234 Delarthrurn, gen. nov. 236 GOllobelus, gen. nov. 237 Alogolykus, gen. nov. 238 Akribosoma Carl 240 Hillgstonia Carl 240 Strongylosorna Brdt. 240 Leptodesmidae 241 Fontaria Gray . 241 PIatyr hachidae 241 Platyrhacus Koch 241 Vanhoeffeniidae . 242 Ootacodesmus Carl 242 Pseudosphaeroparia Carl 243 Lankadesrnus Carl 243 K ukkalodesrnus Carl . 243 Sholaphilus Carl 243 Coonoorophilus Carl . 243 Eutriclwdesrnus Silv. 244 CryptodeSluidae . 244 Trichodesrnus Poe. 244 Trichopeltis Poe. 244 Archandrodesmus Carl 244 Pagodesmus Carl 245 Akreiodesrnus Carl 24[.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9* black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE BIOLOGY OF THE HETEROZERCONIDAE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Beverly Swaim Gerdeman, M.S.
    [Show full text]
  • Physico-Chemical Properties of Haemolymph of Chilopoda and Diplopoda (Myriapoda, Arthropoda): Protein Content, Ph, Osmolarity
    SOIL ORGANISMS Volume 81 (3) 2009 pp. 431–439 ISSN: 1864 - 6417 Physico-chemical properties of haemolymph of Chilopoda and Diplopoda (Myriapoda, Arthropoda): protein content, pH, osmolarity Willi E. R. Xylander Senckenberg Museum für Naturkunde Görlitz, P.O. Box 300154, 02806 Görlitz, Germany; e-mail: [email protected] Abstract Different physico-chemical properties of the haemolymph of various chilopod ( Lithobius forficatus and Scolopendra cingulata ) and diplopod species ( Rhapidostreptus virgator , Chicobolus spec.) were investigated. Haemolypmph pH ranged from 7.0 to 8.5 being slightly more alkaline in the millipede species. Protein content and osmolarity was higher in chilopods (between 296 and 371 mOsm and 65 to 73 mg protein/ml haemolymph) than in diplopods (200 to 229 mOsm and 21 to 56 mg/ml). A chromatogram-spectrophotometry of SDS-PAGEs of haemolymph samples showed 42 to 53 protein fractions in R. virgator and 43 in Chicobolus spec. (19 and 16 respectively, represented larger fractions). A haemocyte lysate only showed 12 protein fractions none of which exclusively occurred in the lysate. The results are discussed with regard to earlier investigations which partly differed significantly. Keywords: immune response, protein spectrum, haemocytes, plasma 1. Introduction Whereas several investigations dealt with haemocyte types and functions (Ravindranath 1973, Nevermann & Xylander 1996, Kania & Rzeski 1997, Xylander & Nevermann 2006, Xylander 2009a), antibacterial substances (Xylander & Nevermann 1990, review in Xylander 2009b) and the phenoloxidase system in Diplopoda and Chilopoda (Xylander & Bogusch 1992, 1997, Xylander 1996) only little information is available on their general haemolymph protein composition and physico-chemical properties. Thus, Rajulu (1969, 1970, 1971, 1974) investigated the haemolymph of various diplopods, chilopods and other arthropods with regard to protein content, carbohydrates, and lipids.
    [Show full text]
  • Biodiversity, Abundance and Prevalence of Kleptoparasitic Nematodes Living Inside the Gastrointestinal Tract of North American Diplopods
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods Gary Phillips University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Phillips, Gary, "Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4837 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Gary Phillips entitled "Life where you least expect it: Biodiversity, abundance and prevalence of kleptoparasitic nematodes living inside the gastrointestinal tract of North American diplopods." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Entomology,
    [Show full text]
  • A Revision of the Thyropygus Allevatus Group. Part 3: the T. Induratus Subgroup (Diplopoda: Spirostreptida: Harpagophoridae)
    Zootaxa 2941: 47–68 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A revision of the Thyropygus allevatus group. Part 3: the T. induratus subgroup (Diplopoda: Spirostreptida: Harpagophoridae) PIYATIDA PIMVICHAI1, HENRIK ENGHOFF2,3 & SOMSAK PANHA1,3 1Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. E-mail: [email protected] and [email protected] 2Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. E-mail: [email protected] 3Corresponding author. E-mail: [email protected] Abstract The Thyropygus induratus subgroup of the T. allevatus group is revised. Three new species are described from Thailand: T. dormiens n. sp., T. laterolobatus n. sp. and T. macrosiamensis n. sp. The following species are redescribed and re-ele- vated from subspecies status under T. allevatus (Karsch, 1881): Thyropygus induratus Attems, 1936 (= T. punctatus At- tems, 1938, new synonym), Thyropygus quietus Attems, 1938, Thyropygus resimus Attems, 1938, and Thyropygus uncinatus (Demange, 1961). Thyropygus siamensis Verhoeff, 1938 (= Thyropisthus ligulus Demange, 1961, new syn- onym), is re-described. A case of species with identical gonopods but very different body size (T. induratus and T. quietus) is discussed. Key words: millipede, taxonomy, new species, Thailand, size difference Introduction Following our revisions of the opinatus and bifurcus subgroups of the Thyropygus allevatus group (Pimvichai et al. 2009a, b), we here revise a hitherto unrecognized subgroup which we name the induratus subgroup after its first described member. Like the previously revised subgroups, the induratus subgroup occurs in continental SE Asia: Thailand, Laos and Vietnam.
    [Show full text]