Direct Evidence for Shock-Powered Optical Emission in a Nova

Total Page:16

File Type:pdf, Size:1020Kb

Direct Evidence for Shock-Powered Optical Emission in a Nova Direct evidence for shock-powered optical emission in a nova Elias Aydi1∗, Kirill V. Sokolovsky1;2;3∗, Laura Chomiuk1∗, Elad Steinberg4;5, Kwan Lok Li6;7, Indrek Vurm8, Brian D. Metzger4, Jay Strader1, Koji Mukai9;10, Ondrejˇ Pejcha11, Ken J. Shen12, Gregg A. Wade13, Rainer Kuschnig14, Anthony F. J. Moffat15, Herbert Pablo16, Andrzej Pigulski17, Adam Popowicz18, Werner Weiss19, Konstanze Zwintz20, Luca Izzo21, Karen R. Pollard22, Gerald Handler23, Stuart D. Ryder24, Miroslav D. Filipovic´25, Rami Z. E. Alsaberi25, Perica Manojlovic´25, Raimundo Lopes de Oliveira26;27, Frederick M. Walter28, Patrick J. Vallely29, David A. H. Buckley30, Michael J. I. Brown,31, Eamonn J. Harvey32, Adam Kawash1, Alexei Kniazev30;33;34, Christopher S. Kochanek29, Justin Linford35;36;37, Joanna Mikolajewska23, Paolo Molaro38, Marina Orio39;40, Kim L. Page41, Benjamin J. Shappee42 and Jennifer L. Sokoloski4 1Center for Data Intensive and Time Domain Astronomy, Department of Physics and As- tronomy, Michigan State University, East Lansing, MI 48824, USA 2Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 3Astro Space Center of Lebedev Physical Institute, Profsoyuznaya St. 84/32, 117997 Moscow, Russia 4Columbia Astrophysics Laboratory and Department of Physics, Columbia University, New York, NY 10027, US 5Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel 6Department of Physics, UNIST, Ulsan 44919, Korea 7Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan 8Tartu Observatory, University of Tartu, Toravere˜ 61602, Tartumaa, Estonia 9CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA 10Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 11Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic 12Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720, US 13Department of Physics and Space Science, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, ON K7K 7B4, Canada 14Institute of Communication Networks and Satellite Communications, Graz University of arXiv:2004.05562v1 [astro-ph.HE] 12 Apr 2020 Technology, Infeldgasse 12, 8010 Graz, Austria 15Dept.´ de physique, Univ. De Montreal,´ C.P. 6128, Succ. Centre-Ville, and Centre de Recherche en Astrophysique du Queebec,´ Montreeal,´ QC H3C 3J7, Canada 1 16AAVSO, 49 Bay State Rd. Cambridge, MA 02138, USA 17Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 51-622 Wrocław, Poland 18Silesian University of Technology, Institute of Electronics, Akademicka 16, 44-100 Gli- wice, Poland 19Institute for Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180 Vi- enna, Austria 20Universitat¨ Innsbruck, Institut fur¨ Astro- und Teilchenphysik, Technikerstrasse 25, A- 6020 Innsbruck Austria 21DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copen- hagen Ø, Denmark 22School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8120, New Zealand 23Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL 00716 Warsaw, Poland 24Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia 25School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia. 26Departamento de F´ısica, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, 49000-000, Sao˜ Cristov´ ao,˜ SE, Brazil 27Observatorio´ Nacional, Rua Gal. Jose´ Cristino 77, 20921-400, Rio de Janeiro, RJ, Brazil 28Dept. of Physics & Astronomy, Stony Brook University, Stony Brook, NY, USA. 29Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 30South African Astronomical Observatory, P.O. Box 9, 7935 Observatory, South Africa 31School of Physics and Monash Centre for Astrophysic, Monash University, Clayton, Vic- toria3800, Australia 32Astrophysics Research Institute, Liverpool John Moores Univ., Liverpool, L3 5RF, UK 33Southern African Large Telescope Foundation, PO Box 9, Observatory 7935, South Africa 34Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskii pr. 13, Moscow, 119992 Russia 35Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Mor- gantown, WV 26506, USA 36Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505, USA 37National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA 38INAF-Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste, Italy 39INAF–Osservatorio di Padova, vicolo dell Osservatorio 5, I-35122 Padova, Italy 40Department of Astronomy, University of Wisconsin, 475 N. Charter Str., Madison, WI 2 53704, USA 41School of Physics & Astronomy, University of Leicester, LE17RH, UK 42Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3 Classical novae are thermonuclear explosions that occur on the surfaces of white dwarf stars in interacting binary systems1. It has long been thought that the lumi- nosity of classical novae is powered by continued nuclear burning on the surface of the white dwarf after the initial runaway2. However, recent observations of GeV γ- rays from classical novae have hinted that shocks internal to the nova ejecta may dominate the nova emission. Shocks have also been suggested to power the luminos- ity of events as diverse as stellar mergers3, supernovae4, and tidal disruption events5, but observational confirmation has been lacking. Here we report simultaneous space- based optical and γ-ray observations of the 2018 nova V906 Carinae (ASASSN-18fv), revealing a remarkable series of distinct correlated flares in both bands. The optical and γ-ray flares occur simultaneously, implying a common origin in shocks. During the flares, the nova luminosity doubles, implying that the bulk of the luminosity is shock-powered. Furthermore, we detect concurrent but weak X-ray emission from deeply embedded shocks, confirming that the shock power does not appear in the X- ray band and supporting its emergence at longer wavelengths. Our data, spanning the spectrum from radio to γ-ray, provide direct evidence that shocks can power sub- stantial luminosity in classical novae and other optical transients. 1 −7 −3 In a classical nova, the accreted envelope (mass ≈ 10 − 10 M ) expands and is ejected at velocities of ∼500–5000 km s−1. The result is an optical transient where the luminosity of the system increases by a factor of ∼ 103 −106, sometimes making the source visible to the naked eye6. After the initial ejection of the envelope, residual nuclear burning continues on the surface of the hot white dwarf, leading to a phase of quasi-constant, near- Eddington luminosity powered by the hot white dwarf2, 7. This should manifest as an optical light curve smoothly declining from maximum light, as the photosphere recedes and the peak of the spectral energy distribution moves blueward from the optical into the ultraviolet and finally into soft X-ray1. However, some novae show erratic flares around maximum light with a variety of timescales and amplitudes8; these features are still poorly explored and their origin remains a matter of debate. Proposed explanations include instabilities in the envelope of the white dwarf leading to multiple ejection episodes9, 10, instabilities in an accretion disk that survived the eruption11, and variations in mass transfer from the secondary to the white dwarf12. The optical transient V906 Carinae (ASASSN-18fv) was discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN13) on 2018 March 20.3 UT, and was shortly thereafter spectroscopically confirmed as a classical nova14, 15. Serendipitously, V906 Car happened to occur in a field being monitored by the BRight Target Explorer (BRITE) nanosatellite constellation16 (Figure 1), resulting in a high cadence optical light curve track- ing the evolution of the eruption from its start (2018 March 16.13 UT; Figure 2). The 4 continuous, high cadence BRITE optical light curve (presented with 1.6 hr resolution in Figure 2, the orbital period of the satellite) revealed a series of eight post-maximum flares during the first month of the outburst, each lasting ∼ 1 – 3 days with amplitudes . 0.8 mag (Figure 2; for more details see Methods and Supplementary Information.1, hereafter SI). Typically, novae are observed using ground-based instruments at lower cadence, and light curves often contain substantial gaps, implying that such short timescale variability would be difficult to resolve. V906 Car was detected in GeV γ-rays around 23 days after eruption by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The γ-rays persisted at least until day 46 after eruption17 (Figure 2). The start time of the γ-ray emission is uncon- strained, as the LAT was offline during the first 23 days of the eruption. The GeV γ-ray flux reached 2:1 × 10−9 erg cm−2 s−1 on days 25 and 29, making V906 Car the bright- est γ-ray nova to date18, 19. Current theory suggests that the GeV γ-rays originate from shocks internal to the nova ejecta—specifically as a fast biconical wind slams into a slower equatorial torus20, 21. The shocks accelerate particles to relativistic speeds and γ-rays are produced when these relativistic particles interact with either
Recommended publications
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Solar Writer Report for Abraham Lincoln
    FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • OGLE2-TR-L9: an Extrasolar Planet Transiting a Fast-Rotating F3 Star
    Astronomy & Astrophysics manuscript no. aa˙uvesplan c ESO 2018 November 5, 2018 OGLE2-TR-L9b: An exoplanet transiting a fast-rotating F3 star⋆ Snellen I.A.G.1, Koppenhoefer J.2,3, van der Burg R.F.J.1, Dreizler S.4, Greiner J.3, de Hoon M.D.J.1, Husser T.O.5, Kr¨uhler T.3,6, Saglia R.P.3, Vuijsje F.N.1 1 Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden, The Netherlands 2 Universit¨ats-Sternwarte M¨unchen, Munich, Germany 3 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching, Germany 4 Institut f¨ur Astrophysik, Georg-August-Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, 37077 G¨ottingen, Germany 5 South African Astronomical Observatory, P.O. Box 9, Observatory 7935, South Africa 6 Universe Cluster, Technische Universit¨at M¨unchen, Boltzmannstraße 2, D-85748, Garching, Germany ABSTRACT Context. Photometric observations for the OGLE-II microlens monitoring campaign have been taken in the period 1997−2000. All light curves of this campaign have recently been made public. Our analysis of these data has revealed 13 low-amplitude transiting objects among ∼15700 stars in three Carina fields towards the galactic disk. One of these objects, OGLE2-TR-L9 (P∼2.5 days), turned out to be an excellent transiting planet candidate. Aims. In this paper we report on our investigation of the true nature of OGLE2-TR-L9, by re-observing the photometric transit with the aim to determine the transit parameters at high precision, and by spectroscopic observations, to estimate the properties of the host star, and to determine the mass of the transiting object through radial velocity measurements.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • A Binary Engine Fuelling HD87643's Complex Circumstellar Environment
    UvA-DARE (Digital Academic Repository) A binary engine fuelling HD 87643's complex circumstellar environment Millour, F.; Chesneau, O.; Borges Fernandes, M.; Meilland, A.; Mars, G.; Benoist, C.; Thiébaut, E.; Stee, P.; Hofmann, K.H.; Baron, F.; Young, J.; Bendjoya, P.; Carciofi, A.; Domiciano de Souza, A.; Driebe, T.; Jankov, S.; Kervella, P.; Petrov, R.G.; Robbe-Dubois, S.; Vakili, F.; Waters, L.B.F.M.; Weigelt, G. DOI 10.1051/0004-6361/200811592 Publication date 2009 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Millour, F., Chesneau, O., Borges Fernandes, M., Meilland, A., Mars, G., Benoist, C., Thiébaut, E., Stee, P., Hofmann, K. H., Baron, F., Young, J., Bendjoya, P., Carciofi, A., Domiciano de Souza, A., Driebe, T., Jankov, S., Kervella, P., Petrov, R. G., Robbe-Dubois, S., ... Weigelt, G. (2009). A binary engine fuelling HD 87643's complex circumstellar environment. Astronomy & Astrophysics, 507(1), 317-326. https://doi.org/10.1051/0004- 6361/200811592 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website.
    [Show full text]
  • Observer's Handbook 1980
    OBSERVER’S HANDBOOK 1980 EDITOR: JOHN R. PERCY ROYAL ASTRONOMICAL SOCIETY OF CANADA CONTRIBUTORS AND ADVISORS A l a n H. B a t t e n , Dominion Astrophysical Observatory, Victoria, B.C., Canada V 8 X 3X3 (The Nearest Stars). Terence Dickinson, R.R. 3, Odessa, Ont., Canada K0H 2H0 (The Planets). M arie Fidler, Royal Astronomical Society of Canada, 124 Merton St., Toronto, Ont., Canada M4S 2Z2 (Observatories and Planetariums). V ictor Gaizauskas, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Sunspots). J o h n A. G a l t , Dominion Radio Astrophysical Observatory, Penticton, B.C., Canada V2A 6K3 (Radio Sources). Ian Halliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Miscellaneous Astronomical Data). H e le n S. H o g g , David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (Foreword). D o n a l d A. M a c R a e , David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (The Brightest Stars). B r ia n G. M a r s d e n , Smithsonian Astrophysical Observatory, Cambridge, Mass., U.S.A. 02138 (Comets). Janet A. M attei, American Association o f Variable Star Observers, 187 Concord Ave., Cambridge, Mass. U.S.A. 02138 (Variable Stars). P e t e r M. M illm a n , Herzberg Institute o f Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Meteors, Fireballs and Meteorites). A n t h o n y F. J. M o f f a t , D épartement de Physique, Université de Montréal, Montréal, P.Q., Canada H3C 3J7 (Star Clusters).
    [Show full text]
  • Senior Thesis
    University of Texas at Austin Senior Year Thesis White Dwarf Astronomy and the Freshman Research Initiative Author: Advisor: George Miller Dr. Don Winget Dr. Don Winget Date Supervising Professor Dr. Gregory Shields Date Honors Advisor in Astronomy White Dwarf Astronomy and the Freshman Research Initiative George F. Miller University of Texas at Austin [email protected] ABSTRACT Pulsating white dwarf stars provide vast amounts of information in nearly every field of astronomy. Using precision asteroseismology, we can explore, for example, a star's mass, rotation rate, equation of state, and nuclear reaction rates. By studying the rate of change of WD pulsations we can explore galactic time measurements, orbiting planets, dark matter theories, or interior crystalliza- tion. Yet, to obtain accurate pulsation measurements, astronomers require long stretches of time-resolved data often spanning years. Thus, telescope time and travel funds often are the greatest constraint placed on WD pulsation studies. I believe the MONET telescope can help alleviate this problem. The MONET telescope is a remotely controlled 1.2m telescope operated by the Georg-August- Universit¨atG¨ottingenand McDonald Observatory. By using the MAT-LAB oriented MAESTRO reduction process, I have successfully created a pipeline for producing accurate Fourier transforms of known WD pulsators using the MONET telescope. By comparing similar runs in similar weather conditions, the 82 telescope produces only roughly twice the signal-to-noise as the MONET. The accessibility of the MONET creates a number of scientific advantages. For ex- ample, time critical data can be obtained quickly without waiting for scheduled 82 observing runs. Moreover, data can be obtained evenly throughout the year rather than every few months.
    [Show full text]
  • R Aquarii: Understanding the Mystery of Its Jets by Model Comparison Michelle Marie Risse Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 R Aquarii: Understanding the mystery of its jets by model comparison Michelle Marie Risse Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Risse, Michelle Marie, "R Aquarii: Understanding the mystery of its jets by model comparison" (2009). Graduate Theses and Dissertations. 10565. https://lib.dr.iastate.edu/etd/10565 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. R Aquarii: Understanding the mystery of its jets by model comparison by Michelle Marie Risse A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Astrophysics Program of Study Committee: Lee Anne Willson, Major Professor Steven D. Kawaler Craig A. Ogilvie David B. Wilson Iowa State University Ames, Iowa 2009 Copyright c Michelle Marie Risse, 2009. All rights reserved. ii TABLE OF CONTENTS LISTOFTABLES ................................... iv LISTOFFIGURES .................................. v CHAPTER1. Intent ................................. 1 CHAPTER2. Introduction ............................. 2 2.1
    [Show full text]