Medicago Truncatulatruncatula
Total Page:16
File Type:pdf, Size:1020Kb
Metabolic engineering of natural products for plant, animal, and human health Richard Dixon Plant Biology Division Samuel Roberts Noble Foundation Ardmore, Oklahoma and Centre for Novel Agricultural Products, Department of Biology, University of York Molecular biology of plant natural products We study…… We do……. •Lignin • Phytochemistry – Forage digestibility • Enzymology • Isoflavonoids • Gene discovery through – Phytoalexins genomics – Phytoestrogens • Pathway engineering • Condensed tannins – Understanding pathways – Pasture bloat – Addressing function – Health benefits – Improving traits • Triterpene saponins – Palatability – Plant defense – Adjuvants Natural products from legumes 650 genera, >18,000 examined phytochemically • Lignins • Flavonoids • Isoflavonoids • Terpenoids (di-, sesqui- and tri-triterpenes) • Alkaloids (eg. quinolizidine, dipiperidine) • Coumarins • Anthraquinones • Non-protein amino acids • Cyanogenic glycosides IntegratedIntegrated functionalfunctional genomicsgenomics ofof thethe modelmodel legumelegume MedicagoMedicago truncatulatruncatula AAAA AAAA MDKLLV... OH HO CH2OH Agronomic traits in Medicago truncatula • Nitrogen fixation • Mineral nutrition • Forage quality – Protein content – Digestibility – Palatability –Bloat – Silage properties • Disease resistance • Drought tolerance • Grazing tolerance • Source of health-promoting natural products Re-designing alfalfa as the perfect forage Alfalfa has a high protein content and is an excellent quality forage, BUT….. Disease problems (cotton root rot) Digestibility decreases with increasing maturity Causes pasture bloat AA structuralstructural modelmodel ofof ligninlignin Lignin and forage digestibility USDFRC estimates that 15 a 10% increase in fiber digestibility would result in an annual $350 10 million increase in milk/beef production and = 2.8 million tons 5 decrease in manure Klason lignin (% of DM) solids produced each year. 0 1/2345678 Internode number COMT and CCOMT: targets for lignin engineering CCOMT COMT EffectsEffects ofof COMTCOMT andand CCOMTCCOMT downdown-- regulationregulation onon ligninlignin compositioncomposition Transgenic COMT CCOMT S G 5-OHG Lines pkat/mg pkat/mg Lignin Lignin Lignin Wild type 5.98 22.35 158.8 305.4 0.0 COMT downregulated 1.24 22.26 8.6 246.1 8.8 CCOMT 14.39 0.78 159.1 150.2 0.0 downregulated COMT & CCOMT 0.78 5.59 54.0 223.7 0.0 downregulated Guo et al. (2001) Plant Cell 13: 73-88 In-rumen digestibility of transgenic alfalfa forage in fistulated steers 0.9 0.88 0.86 ck 0.84 SC5 ACC305 Guo et al. Transgenic D ig estib0.82 ility Research 10, 457- 0.8 464, 2001 0.78 020406080 Time in Rumen (h) Summary of field data (3 States) 59 58 57 56 55 54 IVD53 % • 52 LSD .05 = 1.14 51 50 49 48 Null 10.5 10.0 WL342 9.5 COMT-4 ADL % 9.0 COMT-5 8.5 COMT-310 8.0 CCOMT-305 Null In vitro digestibility CCOMT-315 WL342 COMT-4 COMT-5 COMT-310 CCOMT-305 Acid detergent lignin CCOMT-315 (lower stem) Profiling of soluble phenolics by HPLC 16K M. truncatula oligo array vs alfalfa stem RNA Absorbence (mAU) Control (leaf) Control (stem) COMT (stem) CCOMT (stem) 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 Retention time (min) E Factor1 Leaf F Factor2 B A Factor3 Stem C D Principle component analysis Data of Fang Chen and Srinu Reddy 2-D NMR reveals novel structures in lignin from COMT down-regulated alfalfa Marita et al. Phytochemistry, 2003 Re-designing alfalfa as the perfect forage • Alfalfa has a high protein content and is an excellent quality forage, BUT….. – Disease problems (cotton root rot) – Digestibility decreases with increasing maturity – Causes pasture bloat Condensed tannins (proanthocyanidins) are oligomers or polymers of flavonoid (i.e.flavan-3-ol) linked R by carbon-carbon bonds. 2 OH 5' 4' may contain 2-50 or greater 1' HO O 2' flavonoid units. 3' 1 2 R1 3 differ in flavonoid units (R1, 4 R n OH 2 R2 =H or OH) and interflavan OH bond sites. OH 5'4' 1' B HO O 2' 8 1 3' R 7 2 1 produce anthocyanidin after A C 3 5 4 HCl-butanol hydrolysis OH produce blue coloration with OH dimethylaminocinnamaldehyde Activities of condensed tannins • Bind to proteins, and reduce their rate of degradation (eg. tanning of leather, reduction of rumen fermentation). Help prevent pasture bloat. •In Medicago and white clover, CTs accumulate in the seed coat but not in the leaves • Toxic to fungi, bacteria and insects. • Antioxidant-cardiovascular benefits (polymers and monomers) • Flavor and astringency (tea, wine, fruit juices) • Urinary tract health (cranberry) BiosynthesisBiosynthesis ofof condensedcondensed tanninstannins andand anthocyaninsanthocyanins.. ban WT M.truncatula homolog of Arabidopsis BAN gene was identified by EST database mining -developing seed library. 1 MASIKQIEIEKKKACVIGGTGFVASLLIKQLLEKGYAVNT 1 MDQT-LTHTGSKKACVIGGTGNLASILIKHLLQSGYKVNT 41 TVRDLDSANKTSHLIALQSLGELNLFKAELTIEEDFDAPI 40 TVRDPENEKKIAHLRQLQELGDLKIFKADLTDEDSFESSF 81 SGCELVFQLATPVNFASQDPENDMIKPAIKGVLNVLKACV 80 SGCEYIFHVATPINFKSEDPEKDMIKPAIQGVINVLKSCL 121 RAKEVKRVILTSSAAAVTINELEGTGHVMDETNWSDVEFL 120 KSKSVKRVIYTSSAAAVSINNLSGTGLVMNEENWTDIDFL 161 NTAKPPTWGYPVSKVLAEKAAWKFAEENNIDLITVIPTLT 160 TEEKPFNWGYPISKVLAEKKAWEFAEENKINLVTVIPALI 201 IGPSLTQDIPSSVAMGMSLLTGNDFLINALKGMQFLSGSI 200 AGNSLLSDPPSSLSLSMSFITGKEMHVTGLKEMQKLSGSI 241 SITHVEDICRAHIFVAEKESTSGRYICCAHNTSVPELAKF 240 SFVHVDDLARAHLFLAEKETASGRYICCAYNTSVPEIADF 281 LSKRYPQYKVPTEFDDFPSKAKLIISSGKLIKEGFSFKHS 280 LIQRYPKYNVLSEFEEGLSIPKLTLSSQKLINEGFRFEYG MtBAN 321 IAETFDQTVEYLKTQGI----K. Identity, 59% 320 INEMYDQMIEYFESKGLIKAKES AtABN R2 R2 OH OH 6' 5' 5' 4' 4' 1' 1' HO 7 O 2' LAR HO 7 O 2' 8 1 3' R 3' 2 1 8 1 2 R1 6 3 6 3 5 4 5 4 OH OH OH OH WT OH Flavan-3-ol Leucoanthocyanidin 35S-BAN R2 ANS R2 6' OH 5' OH 4' 6' 5' 1' 4' HO 7 O 2' 1' 8 + 3' R HO 7 O 2' 2 1 8 1 3' R 6 ANR 2 1 5 4 6 3 3 OH 5 4 OH OH Anthocyanidin ban OH R2 OH 5' 4' 1' HO O 2' 3' 1 2 R1 3 4 R n OH 2 OH OH 5'4' 1' HO O 2' 8 1 3' R 7 2 1 3 5 4 OH OH WT Anthocyanins Condensed tannins CT Xie et al. Science, 299, 396-399, 2003 Ectopic expression of MtBAN in tobacco flowers reduces anthocyanin content and results in accumulation of tannins 7 6 5 4 528nm)3 2 Anthocyanidin1 (absorbance at 0 B-13-B 70 B-19-A 60 50 B-19-C 40 B-21-B FW)30 Plant lines 20 C-4 10 CT (µg cyanidin equivalents/g 0 C-5 121-1-B B-13-B Comparison of 121-4-B anthocyanin content B-19-A B-19-C B-21-B Plant linesC-4 C-5 121-1-B Comparison of 121-4-B CT content R 1 OH Leucoanthocyanidin HO O Genetic support for R 1=R2=H, leucopelargonidin R 2 R 1=OH, R2=H, leucocyanidin OH R 1=R2=OH, leucodelphinidin new pathway to OH OH ANS LAR R condensed R 1 1 OH OH HO O HO O tannins via BAN + R R 2 2 OH OH BAN OH OH Anthocyanidin: (ANR) 2,3-trans-2R,3S-flavan-3-ol R =R =H, pelargonidin 1 2 R R =OH, R =H, cyanidin 1 1 2 OH R 1=R2=OH, delphinidin HO O 2 R 2 4 3 OH 3GT OH 2,3-cis-2R,3R-flavan-3-ol R 1=R2=H, (-)-epiafzelechin R 1=OH, R2=H, (-)-epicatechin R 1=R2=OH, (-)epigallocatechin Anthocyanins R1 Col tt18 ban OH HO O R 2 R n OH 1 OH OH HO O R 2 OH OH Condensed tannins Species and tissue ANR enzyme activity (pmol/min/mg protein) Lotus corniculatus Leaf 721 Desmodium uncinatum Leaf 563 Flower 342 Pod 122 Grape Skin 143 Barley Grain 33* Alfalfa Leaf No reaction Data of Deyu Xie Moving tannins into alfalfa Provision of anthocyanin substrate? Need for LAR? Need for transporters, etc? Anthocyanin flower pigments- natural or engineered? WT BAN PAPIxBAN PAP1 Anthocyanin Epicatechin Production of WT --epicatechin BAN --in transgenic tobacco PAP1 ++++++ - leaves PAP1xBAN ++ ++ Redesigning alfalfa – triterpene saponins • Growth inhibitory to poultry • Anti-palatability and possibly toxic to monogastric animals • Anti-insect • Antifungal (avenacins in oats) • Hypocholesterolemic • Anticancer (desert Acacia spp.) Profiling saponins in Medicago spp Intens. x10 6 (a) 22 [Sumner and Huhman, Alfalfa 1.5 21 (cv. Radius) Phytochemistry, 2002] 16 23 1.0 56 8 0.5 4 10 25 LC/MS profiling reveals 35 0.0 0 1020304050Time [min] Intens. more than 30 triterpene x10 6 22 1.50 (b) 21 Alfalfa saponins in M. truncatula 1.25 16 (cv. Kleszczewska) 1.00 6 23 (more complex pattern 5 0.75 8 0.50 10 than alfalfa) 4 25 0.25 35 0.00 0 10 20 30 40 50 Time [min] Intens. x10 6 21 (c) 22 Medicago truncatula CO2H 1.25 16 HO 27 (Jemalong a17) 1.00 15 23 25 26 0.75 30 4 10 24 31 HO 29 0.50 9 CO2H 1 5 0.25 MedicagenicAcid 0.00 0 1020304050Time [min] Saponin aglycones from Medicago truncatula 30 29 Medicagenic Acid Soyasapogenol B 20 mw = 502 19 21 mw = 458 12 18 22 11 13 17 OH 25 26 CO H 14 16 28 2 15 HO 1 9 2 10 8 E 3 7 27 4 5 6 C HO D COOR HO 24 CO H HO 2 CH OH 23 2 2 A B R1O HOH2C Bayogenin mw = 488 O COOR2 R1O HO HOH2C CH2OH Hederagenin Soyasapogenol E mw = 472 mw = 456 Early steps in the biosynthesis of triterpenes and sterols in plants PPO Sesquiterpenes Mevalonic acid FPP Squalene synthase (SS) Squalene Squalene epoxidase (SE) O 2,3-Oxidosqualene β-Amyrin synthase (AS) 30 29 19 20 21 12 13 18 22 11 25 26 17 O 1 9 14 28 2 16 10 8 15 3 5 4 27 HO 7 HO Cycloartenol 6 β-Amyrin 24 23 Time post-elicitation (hr) 700 600 500 SS 01 2 4 8 12 24 48 400 300 SS 200 100 0 SS 0 1020304050 700 600 500 400 SE2 300 SE2 SE2 200 ) 100 0 % ( 0 1020304050 l e 3000 v 2500 e l βAS βAS 2000 A 1500 βAS N 1000 R 500 m 0 0 1020304050 e v i PAL t 180 a l 150 PAL e 120 R 90 PAL 60 30 CHS 0 0 1020304050 120 90 rRNA 60 CHS CHS 30 0 Differential responsivenes of 0 1020304050 triterpene and phenylpropanoid Time post-elicitation (hr) biosynthesis to MeJA in M.