China Lake Astronomical Society Members and Friends of CLAS

Total Page:16

File Type:pdf, Size:1020Kb

China Lake Astronomical Society Members and Friends of CLAS Volume 58 No. 1 January 01, 2021 January 4 CLAS Meeting – Members’ Astrophotography Showcase 2020 Have you taken any pictures of the night sky this year? Please share them with CLAS members at the January online Zoom meeting, and give us a brief explanation of the subjects and how you photographed them. Show us your favorite shots, and even the ones you tried that didn’t quite work out. Send us your photos (and videos) via email and we’ll add them to the program, and you can talk about them if you wish when yours are shown We’ll also share them on our website. Guidelines 1. Email photos to Ralph Paonessa: [email protected] by Sunday, January 3. 2. Ideal size is around 1920 x 1080 pixels (full screen), but we can resize them if necessary. 3. Include a brief description with each photo including a. Subject and where it was taken b. Equipment and any details about how you shot it c. Your name We look forward to seeing your astrophotography! Zoom Meeting China Lake Astronomical Society is inviting you to a scheduled Zoom meeting. Topic: AS Meeting Time: January 04, 2021 07:30 PM Pacific Time (US and Canada) Join Zoom Meeting https://us02web.zoom.us/j/6727499334?pwd=VWhuVGZ3aFphL283THRKNUNoZ0RSZz09 Meeting ID: 672 749 9334 Passcode: 9V8FQM One tap mobile +14086380968,,6727499334#,,,,,,0#,,562029# US (San Jose) +16699006833,,6727499334#,,,,,,0#,,562029# US (San Jose) Dial by your location +1 408 638 0968 US (San Jose) +1 669 900 6833 US (San Jose) +1 253 215 8782 US (Tacoma) +1 346 248 7799 US (Houston) +1 301 715 8592 US (Germantown) +1 312 626 6799 US (Chicago) +1 646 876 9923 US (New York) Meeting ID: 672 749 9334 Passcode: 562029 Find your local number: https://us02web.zoom.us/u/keA8HEm1mp President’s Message While 2020 is a year we’d mostly like to forget, it at least has some notable memories for astronomers. My favorite was the appearance of magnificent Comet NEOWISE in July. This was the best comet in the Northern Hemisphere since Hale-Bopp in 1996-97. This year, twenty-three years later, newly-discovered C/2020 F3 (NEOWISE) finally arrived with its long tail I could see my naked eyes from a dark sky—and spectacular in binoculars or a camera. I’m still hoping for the appearance of a true “Great Comet,” one that is easily visible to the naked eye—maybe even during the day! But I’m very satisfied with NEOWISE. The planets also put on a good display this year. On July 14, Jupiter was at opposition—directly opposite the Sun and thus high overhead at midnight. And nearest its closest to Earth, and so at its brightest and largest in our telescopes. One week later, it was Saturn’s turn at opposition on July 20, making this lovely ringed world bright and large in our scopes. Throughout the summer, they remained high and bright in the sky, perfect for observing. Not to be outdone, the red globe of Mars spend most of 2020 brightening until it reached opposition October 13, high in the winter sky where good views could be had in telescopes. (This year was the first time I could clearly see details on the Martian surface in a large telescope, a surprise that left me a little awe-struck.) Fearing that their glory might be eclipsed by Mars, Jupiter and Saturn picked up the pace and sped to their historic Great Conjunction on December 21—the closest they’ve been visible in the sky in 794 years!! That was in the year 1226. (They were close in 1623, but then they were also close to the sun and so almost impossible for anyone to see.) Sadly, we weren’t able to hold our planned viewing event because of the spike in coronavirus cases, but all you had to do was walk outside shortly after sunset and there they were, as close together as one-sixth the diameter of the Full Moon. A great way to celebrate the Winter Solstice and the longest night of the year, even if you had to do it alone. (But we’re planning another event for 2080, when they’ll be close again!) This year has been one for the record books, and mostly in bad ways! But I hope you were at least able to get occasional comfort from going out at night and gazing at the heavens and all their wonders, from here on our little rock. Here’s hoping to a Happier and healthier New Year for all! — Ralph Paonessa, President Next CLAS Meeting: February 1st, 2021 at 7:30 PM. Citizen astronomers map near-Earth asteroid Professional and backyard astronomers have teamed up to measure the shape of an asteroid using a unique new instrument. By Mark Zastrow | Published: Tuesday, December 29, 2020 The Unistellar eVscope is pictured here at Meteor Crater in this press kit photo. SETI Institute, Unistellar In the battle to defend the planet from hazardous asteroids, amateur astronomers have taken on a new role — for the first time, helping to map a near-Earth asteroid (NEA), revealing its shape.The effort came as a collaboration between researchers at the SETI Institute and 26 citizen observers from seven countries who observed the 1.2-mile- wide (2 kilometers) asteroid 1999 AP10. All of the observers were using an eVscope — a new “smart” telescope model produced by the startup Unistellar. Amateur astronomers have always been on the front lines of planetary defense as discoverers of asteroids and comets. Their observations and submissions to organizations like the Minor Planet Center are invaluable in tracking objects that could one day collide with Earth.But this is the first time that amateur observers have teamed with researchers to generate a detailed model of the shape of an asteroid. They used a technique called light curve inversion, which analyzes how an object changes brightness as it tumbles and rotates through space, reflecting sunlight differently at every angle. Using the 81 sets of observations that eVscope users collected over October and November — plus some archival data from 2009 — the researchers were able to reverse engineer the asteroid’s physical shape.Previously, astronomers had determined the shapes of only 68 other near-Earth asteroids, mostly using powerful planetary radar facilities to do so.The team presented their results on December 9 at the 2020 fall meeting of the American Geophysical Union, held online.The results are also a milestone for the eVscope, which began as a Kickstarter campaign in 2017. The initial campaign was so successful it spawned the company Unistellar, which has now shipped about 3,000 eVscopes to users.The eVscope’s main claim to fame is that instead of an optical eyepiece, it has a built-in CMOS sensor and can stack images on the fly. Users can view the results on a paired smartphone or peer into the telescope’s electronic “eyepiece,” which projects an image from an OLED screen, similar to electronic viewfinders commonly found on mirrorless cameras.Another key feature is that users can participate in observing campaigns developed through a partnership between Unistellar and scientists from the SETI Institute. The observations from citizen astronomers resulted in this model of the near-Earth asteroid 1999 AP10. Credit: Josef Hanuš, Charles University & Franck Marchis, SETI Institute Franck Marchis of the SETI Institute tells Astronomy that the ability to tap into a network of thousands of identical eVscopes is a “game-changer” because results from standardized equipment can be combined more consistently. “You know that the telescopes react with the same sensitivity, the same quantum efficiency, the same profile of different colors,” he says. “That means we can clearly identify if there is an issue coming from the seeing, from the sky quality, or from the wind.”Plus, instead of relying only on advanced amateurs who know how to calibrate their equipment and process their data, the science team can program the eVscope to do it automatically, allowing anyone to participate.Marchis hopes to compare their model of 1999 AP10 with forthcoming results from the Goldstone Solar System Radar, which also observed the asteroid this fall. But already the campaign has demonstrated the eVscope’s potential for including amateur astronomers in scientific research, he says.Other researchers agree. “I think this is a great public engagement project that can provide useful and helpful data for asteroid research, including planetary defense,” says Anne Virkki, who heads the planetary radar team at Arecibo Observatory.Arecibo’s 1,000-foot-wide (305 meters) radio telescope was the world’s most powerful planetary radar before it collapsed following a series of cable failures this fall. Its loss was a big blow to planetary defense efforts — NASA funded the observatory to observe near-Earth objects, mapping their shapes and surfaces.Although comparing the eVscope to a planetary radar like Arecibo is “a bit of an apples-and oranges comparison,” says Virkki, “more data is always a plus, and having the public engaged in participating and helping is even a bigger plus.”The crowdsourced light curve approach does have limitations. Unlike planetary radars such as Arecibo, the eVscope network struggles to detect depressions on an asteroid’s surface (e.g., impact craters). That’s because the math behind the light curve inversion approach assumes the object is entirely convex, with no low-lying regions.Arecibo could also observe more objects, obtaining high-resolution images of 20 to 30 NEAs per year, according to Virkki. Marchis hopes that the eVscope network will map one or two NEAs annually.
Recommended publications
  • The Copernican Principle Rules out BLC1 As a Technological Radio Signal from the Alpha Centauri System
    Draft version January 13, 2021 Typeset using LATEX twocolumn style in AASTeX62 The Copernican Principle Rules Out BLC1 as a Technological Radio Signal from the Alpha Centauri System Amir Siraj1 and Abraham Loeb1 1Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA ABSTRACT Without evidence for occupying a special time or location, we should not assume that we inhabit privileged circumstances in the Universe. As a result, within the context of all Earth-like planets orbiting Sun-like stars, the origin of a technological civilization on Earth should be considered a single outcome of a random process. We show that in such a Copernican framework, which is inherently optimistic about the prevalence of life in the Universe, the likelihood of the nearest star system, Alpha Centauri, hosting a radio-transmitting civilization is ∼ 10−8. This rules out, a priori, Breakthrough Listen Candidate 1 (BLC1) as a technological radio signal from the Alpha Centauri system, as such a scenario would violate the Copernican principle by about eight orders of magnitude. We also show that the Copernican principle is consistent with the vast majority of Fast Radio Bursts being natural in origin. Keywords: technosignatures; astrobiology; search for extraterrestrial intelligence; biosignatures 1. INTRODUCTION lihood of searches for primitive and intelligent life, us- The Copernican principle asserts that we are not priv- ing a Drake-type approach. Westby & Conselice(2020) ileged observers of the Universe. Successes of its appli- applied the Copernican principle to the search for intel- cation include the rejection of Ptolemaic geocentrism ligent life, but in forms that featured strict boundaries and the adoption of the modern cosmological princi- in time, thereby not reflecting a truly random process.
    [Show full text]
  • YETI – Search for Young Transiting Planets
    YETI – search for young transiting planets Ronny Errmann, Astrophysikalisches Institut und Universitäts-Sternwarte Jena, in collaboration with: Ralph Neuhäuser, AIU Jena Gracjan Maciejewski, Centre for Astronomy of the Nicolaus Copernicus University Ronald Redmer, University of Rostock Martin Seeliger, AIU Jena YETI Observers, all over the world Mercury transit Hot Planets and Cool Stars 8. Nov. 06 (SOHO) Garching 12. November 2012 Venus transit 6. June 12 Motivation youngest transiting planets: ●Corot 2: 130 – 500 Myr (from star spots) 30 – 40 Myr (from planet radius) ●Corot 20: 100 – 800 Myr (from Li-abundance) M = 1 MJup ●Wasp 10: 200 – 350 Myr (from gyro-chronology) → younger transiting planets (Radius+true Mass) needed, to test models, and planet formation scenarios Observation strategies increase probability for transiting planet: monitoring of many young stars -> Young open clusters orbital periods: ~1 to ~10 days transit duration: ~1 to few hours → 1 to 5% of orbit in transit phase observation with single telescope: data gaps because of daytime, weather, ... increase probability for observing transit signal: long continuous observation -> YETI YETI-network (Young Exoplanet Transit Initiative) Tenagra II Llano del Gettysburg Sierra Nevada Jena Stara Lesna Byurakan Xinglong Gunma Hato Astrophysical 0.8-m telescope Observatory Collage Astronomical 1.0 and 2.6 Observatory Astronomical 1.5-m telescope Institute Observatory Institute telescopes 90/60 cm Observatory 0.9/0.6-m 0.6-m telescope 1.5-m telescope 1-m Schmidt 0.4-m telescope
    [Show full text]
  • Searching For, Finding, and Imaging Young Extrasolar Planets with HST
    Searching for, Finding, and Imaging Young Extrasolar Planets with HST/NICMOS 2MASSWJ 1207-334-393254b (2M1207b): A Common Proper Motion Companion of Planetary Mass to a Young Brown Dwarf G. Schneider (Steward Obs., UofA), I. Song, J. Farihi, (Gemini Obs.), B. Zuckerman, E. Becklin (UCLA), P. Lowrance (Caltech), B. Macintosh (LLNL), M. Bessell (ANU) ABSTRACT: Imaging discovery and subsequent characterization of extrasolar planet NICMOS CORONAGRAPHY DETECTION LIMITS & UNCERTAINTIES (EP) mass companions to stars has been observationally challenging due to the severe planet-to-star contrast ratios. Since the detection of the extrasolar giant planet (EGP) The ability to detect faint point sources near bright objects (e.g., planetary mass SINGLE ORBIT observations which roll the telescope about the target axis companion to 51 Peg [1], continuing discoveries of 1 – 10 Jupiter mass companions by companions to stars) is instrumentally enhanced by reducing the brightness of the (unfortunately, technically unfeasible with HST's soon to be implemented two-gyro indirect methods have revealed an unanticipated diversity in mass ranges, dynamical central star. To enable such observations, HST has provided unique resources for high guiding mode) are highly efficient and permit optimal self-subtraction of the properties, and primary-star characteristics. The past decade has seen an explosion of contrast imaging with its panchromatic complement of coronagraphically augmented underlying coronagraphic point-spread function. Such observations yield total indirect detections of EGP companions to solar-like stars through radial velocity imagers: NICMOS (near-IR), ACS (UV/Optical) and, until recently, STIS (broadband integration times of, typically, ~ 1300s. Highly repeatable point source detection limits surveys [2] and more recently, in much smaller numbers, via photometric transits [e.g., Optical).
    [Show full text]
  • A Moving Cluster Distance to the Exoplanet 2M1207 B in the TW Hya
    accepted to Astrophysical Journal, 18 July 2005 A Moving Cluster Distance to the Exoplanet 2M1207 B in the TW Hya Association Eric E. Mamajek1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-42, Cambridge, MA 02138 [email protected] ABSTRACT A candidate extrasolar planet companion to the young brown dwarf 2MASSW J1207334-393254 (2M1207) was recently discovered by Chauvin et al. They find that 2M1207 B’s temperature and luminosity are consistent with being a young, ∼5 MJup planet. The 2M1207 system is purported to be a member of the TW Hya association (TWA), and situated ∼70 pc away. Using a revised space mo- tion vector for TWA, and improved proper motion for 2M1207, I use the moving cluster method to estimate the distance to the 2M1207 system and other TWA members. The derived distance for 2M1207 (53 ± 6 pc) forces the brown dwarf and planet to be half as luminous as previously thought. The inferred masses for 2M 1207 A and B decrease to ∼21 MJup and ∼3-4MJup, respectively, with the mass of B being well below the observed tip of the planetary mass function and the theoretical deuterium-burning limit. After removing probable Lower arXiv:astro-ph/0507416v1 18 Jul 2005 Centaurus-Crux (LCC) members from the TWA sample, as well as the prob- able non-member TWA 22, the remaining TWA members are found to have distances of 49 ± 3 (s.e.m.) ± 12(1σ) pc, and an internal 1D velocity dispersion of +0.3 −1 0.8−0.2 km s . There is weak evidence that the TWA is expanding, and the data are consistent with a lower limit on the expansion age of 10 Myr (95% confidence).
    [Show full text]
  • Arxiv:2011.11698V2 [Astro-Ph.EP] 19 May 2021
    Draft version May 20, 2021 Typeset using LATEX default style in AASTeX61 ULTRA SHORT PERIOD PLANETS IN K2 III: NEIGHBORS ARE COMMON WITH 13 NEW MULTI-PLANET SYSTEMS AND 10 NEWLY VALIDATED PLANETS IN CAMPAIGNS 0-8, 10 Elisabeth R. Adams,1 Brian Jackson,2 Samantha Johnson,3 David R. Ciardi,4 William D. Cochran,5 Michael Endl,6 Mark E. Everett,7 Elise Furlan,8 Steve B. Howell,9 Prasanna Jayanthi,2 Phillip J. MacQueen,6 Rachel A. Matson,10 Ciera Partyka-Worley,2 Joshua Schlieder,11 Nicholas J. Scott,9 Sevio M. Stanton,2 and Carl Ziegler12 1Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719, USA 2Department of Physics, Boise State University, 1910 University Drive, Boise ID 83725, USA 3Department of Physics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA 4NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91125, USA 5Center for Planetary Systems Habitability and McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA 6McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA 7NSF's Optical Infrared Astronomy Research Laboratory, 950 North Cherry Avenue Tucson, AZ 85719, USA 8NASA Exoplanet Science Institute, Caltech/IPAC, 770 South Wilson Avenue, Pasadena, CA 91125, USA 9NASA Ames Research Center, Moffett Field, CA 94035, USA 10U.S. Naval Observatory, 3450 Massachusetts Avenue NW, Washington, D.C. 20392, USA 11NASA Goddard Space Flight Center, Greenbelt, MD, USA 12Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St.
    [Show full text]
  • Discovery of a Brown Dwarf Companion to the Star HIP 64892? A
    A&A 615, A160 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832650 & © ESO 2018 Astrophysics Discovery of a brown dwarf companion to the star HIP 64892? A. Cheetham1, M. Bonnefoy2, S. Desidera3, M. Langlois4,5, A. Vigan5, T. Schmidt6, J. Olofsson7,8,9, G. Chauvin2,8, H. Klahr7, R. Gratton3, V. D’Orazi3, T. Henning7, M. Janson7,10, B. Biller7,11, S. Peretti1, J. Hagelberg1,2, D. Ségransan1, S. Udry1, D. Mesa3,12, E. Sissa3, Q. Kral6,13, J. Schlieder7,14, A.-L. Maire7, C. Mordasini7,15, F. Menard2, A. Zurlo5,16, J.-L. Beuzit2, M. Feldt7, D. Mouillet2, M. Meyer17,18, A.-M. Lagrange2, A. Boccaletti6, M. Keppler7, T. Kopytova7,19,20, R. Ligi5, D. Rouan6, H. Le Coroller5, C. Dominik21, E. Lagadec22, M. Turatto3, L. Abe22, J. Antichi23, A. Baruffolo3, P. Baudoz6, P. Blanchard5, T. Buey6, M. Carbillet22, M. Carle5, E. Cascone24, R. Claudi3, A. Costille5, A. Delboulbé2, V. De Caprio24, K. Dohlen5, D. Fantinel3, P. Feautrier2, T. Fusco25, E. Giro3, L. Gluck2, N. Hubin26, E. Hugot5, M. Jaquet5, M. Kasper26, M. Llored5, F. Madec5, Y. Magnard2, P. Martinez22, D. Maurel2, D. Le Mignant5, O. Möller-Nilsson7, T. Moulin2, A. Origné5, A. Pavlov7, D. Perret6, C. Petit25, J. Pragt27, P. Puget2, P. Rabou2, J. Ramos7, F. Rigal21, S. Rochat2, R. Roelfsema27, G. Rousset6, A. Roux2, B. Salasnich3, J.-F. Sauvage25, A. Sevin6, C. Soenke26, E. Stadler2, M. Suarez28, L. Weber1, and F. Wildi1 (Affiliations can be found after the references) Received 16 January 2018 / Accepted 6 March 2018 ABSTRACT We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey.
    [Show full text]
  • Direct Imaging Discovery of a Second Planet Candidate Around the Possibly Transiting Planet Host CVSO 30 ⋆
    Astronomy & Astrophysics manuscript no. CVSO c ESO 2016 March 17, 2016 Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30 ⋆ T. O. B. Schmidt1, 2, R. Neuhäuser2, C. Briceño3, N. Vogt4, St. Raetz5, A. Seifahrt6, C. Ginski7, M. Mugrauer2, S. Buder2, 8, C. Adam2, P. Hauschildt1, S. Witte1, Ch. Helling9, and J. H. M. M. Schmitt1 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany, e-mail: [email protected] 2 Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, 07745 Jena, Germany 3 Cerro Tololo Inter-American Observatory CTIO/AURA/NOAO, Colina El Pino s/n. Casilla 603, 1700000 La Serena, Chile 4 Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, 2340000 Valparaíso, Chile 5 European Space Agency ESA, ESTEC, SRE-S, Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands 6 Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA 7 Sterrewacht Leiden, PO Box 9513, Niels Bohrweg 2, NL-2300RA Leiden, the Netherlands 8 Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 9 School of Physics and Astronomy SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, UK Received 2015; accepted ABSTRACT Context. Direct Imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can both be followed astrometrically on their orbits and observed spectroscopically, and thus provide an essential tool for our understanding of the early Solar System. Aims. We surveyed the 25 Ori association for Direct Imaging companions, having an age of only few million years.
    [Show full text]
  • Investigating Exoplanet Habitability and the Stellar Magnetism of Cool Stars Across Half the Southern Sky Via Superflares, Starspots, and Stellar Rotation
    INVESTIGATING EXOPLANET HABITABILITY AND THE STELLAR MAGNETISM OF COOL STARS ACROSS HALF THE SOUTHERN SKY VIA SUPERFLARES, STARSPOTS, AND STELLAR ROTATION Ward S. Howard A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy. Chapel Hill 2021 Approved by: Nicholas M. Law Andrew W. Mann Fabian Heitsch Reyco Henning Daniel M. Scolnic ©2021 Ward S. Howard ALL RIGHTS RESERVED ii ABSTRACT Ward S. Howard: Investigating exoplanet habitability and the stellar magnetism of cool stars across half the Southern sky via superflares, starspots, and stellar rotation (Under the direction of Nicholas M. Law) Stellar flares are stochastic events that occur when a star's magnetic field re-connects, releasing intense radiation across the electromagnetic spectrum. Rocky planets in the habitable zones of M-dwarfs are often subjected to superflares, events of at least 1033 erg and 10-1000× the energy of the largest solar flares. Frequent superflares can erode the ozone layer of an Earth-like atmosphere and allow lethal amounts of UV flux to reach the surface. Conversely, too few flares may result in insufficient UV radiation to power pre-biotic chemistry due to the inherent faintness of M-dwarfs in the UV. Cool stars are often found to exhibit superflares. Cool stars are the most common type of star, and are known to frequently host rocky planets. As a result, they may host most of the universe's Earth-size planets orbiting in the habitable zones of main sequence stars.
    [Show full text]
  • Imaging Low-Mass Planets Within the Habitable Zone of α Centauri
    ARTICLE https://doi.org/10.1038/s41467-021-21176-6 OPEN Imaging low-mass planets within the habitable zone of α Centauri ✉ K. Wagner 1,2 , A. Boehle 3, P. Pathak 4, M. Kasper4, R. Arsenault4, G. Jakob4, U. Käufl 4, S. Leveratto4, A.-L. Maire5, E. Pantin6, R. Siebenmorgen 4, G. Zins4, O. Absil 5, N. Ageorges7, D. Apai1,2,8, A. Carlotti9, É. Choquet 10, C. Delacroix 5, K. Dohlen 10, P. Duhoux4, P. Forsberg11, E. Fuenteseca4, S. Gutruf7, O. Guyon1,12,13,14, E. Huby15, D. Kampf7, M. Karlsson 11, P. Kervella 15, J.-P. Kirchbauer4, P. Klupar13, J. Kolb4, D. Mawet16,M.N’Diaye 17, G. Orban de Xivry 5, S. P. Quanz 3, A. Reutlinger7, G. Ruane16,18, M. Riquelme4, C. Soenke4, M. Sterzik 4, A. Vigan 10 & T. de Zeeuw4,19,20 1234567890():,; Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, α Centauri. Based on 75–80% of the best quality images from 100 h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of α Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around α Centauri A.
    [Show full text]
  • Dharma Planet Survey of Fgkm Dwarfs: Survey Preparation and Early Science Results
    DHARMA PLANET SURVEY OF FGKM DWARFS: SURVEY PREPARATION AND EARLY SCIENCE RESULTS By SIRINRAT SITHAJAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 ⃝c 2018 Sirinrat Sithajan I dedicate this to my family and friends who always love and support me unconditionally. ACKNOWLEDGMENTS I greatly appreciate many people for helping me achieve this success. Firstly, I would like to thank my parents for encouraging me to follow the career path I love, being an astronomer. This has brought my life full of great experiences and happiness. I especially want to thank my husband, San, who loves me unconditionally and always stands by my side. He usually gives me good advice and cheers me up when I have a hard time. I also would like to thank my advisor, Dr. Jian Ge, who has given me many great work opportunities including working at Kitt Peak Observatory. Staying overnight at the observatory, monitoring target stars, and taking data were a marvelous experience and made me more appreciate my research work. I would like to thank my dissertation committee: Dr. Jian Ge, Dr. Jonathan Tan, Dr. Katia Matcheva, and Dr. James Fry for their constructive advice. I want to thank my close friends from high school for always keeping in touch with me wherever they are in the world. We have been sharing stories about our life living abroad and how to deal with various difficulties. We sometimes meet up and travel together, so I never feel lonely.
    [Show full text]
  • Astronomy News KW RASC 101 FRIDAY MARCH 26 2021
    Astronomy News KW RASC 101 FRIDAY MARCH 26 2021 JIM FAIRLES Global telescope creates exquisite map of black hole’s swirling magnetic field https://astronomy.com/news/2021/03/global-telescope-creates- exquisite-map-of-black-holes-magnetic-field The Event Horizon Telescope’s newest images of M87’s supermassive black hole hint at how its jets are fired far into space. The elliptical galaxy M87 sits 55 million light-years away, at the heart of the nearby Virgo Cluster. Deep inside this galaxy lurks a supermassive black hole that weighs 6.5 billion times the mass of our Sun. That black hole instantly became famous in 2019 when the Event Horizon Telescope (EHT) collaboration released its portrait — the first ever direct image of the shadow of a black hole. Now, the EHT collaboration has released updated views of M87 that offer an unprecedented look at the light streaming from just outside its black hole. These pictures reveal the complex structure of a powerful magnetic field that astronomers believe is responsible for shooting a 5,000 light-year-long jet from the black hole at nearly the speed of light. Data taken with ALMA show the orientation of light within a portion of M87’s far-reaching jet. The light’s orientation is related to the structure and strength of the magnetic field in that region. When did we first consider life might exist elsewhere in the universe? https://astronomy.com/news/2021/03/when-did-we-first-consider-life-might-exists- elsewhere-in-the-universe Ancient people looked up at the night sky and pondered the question of alien life, too.
    [Show full text]
  • 1 the Solar Neighborhood III: a Near Infrared Search for Widely Separated Low Mass Binaries
    The Solar Neighborhood III: A Near Infrared Search for Widely Separated Low Mass Binaries D. A. Simons Gemini Telescopes Project, 950 N. Cherry Ave., Tucson AZ 85719 Todd J. Henry Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 J. Davy Kirkpatrick JPL/IPAC Caltech, MS 100-22, Pasadena, CA., 91125 Gemini Preprint # 3 1 The Solar Neighborhood III: A Near Infrared Search for Widely Separated Low Mass Binaries D. A. Simons Gemini Telescopes Project, 950 N. Cherry Ave., Tucson AZ 85719 E-mail: [email protected] Todd J. Henry Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 E-mail: [email protected] J. Davy Kirkpatrick JPL/IPAC Caltech, MS 100-22, Pasadena, CA., 91125 E-mail: [email protected] Submitted for publication in the Astronomical Journal Submitted 19 April 1996 Received ___________________ Editorial correspondence to: Douglas Simons Gemini Telescopes Project 950 N. Cherry Ave. Tucson, AZ. 85719 2 ABSTRACT A near infrared survey designed to detect widely separated, very low mass companions to M dwarfs within 8 pc stars is described. This survey is unique in that it is sensitive to companions with separations of ~100-1400 AU from primaries and with masses down to the 0.03 Mk level, thereby sampling rarely explored parameter space. In Phase I of this program, described here, candidate stellar and brown dwarf companions are identified by creating color magnitude plots of all detected point sources in the fields surrounding primaries and searching for objects that are bright enough to be stellar (MJ £ 11) or that fall close to theoretical brown dwarf isochrones like GD 165B (MJ ~ 13).
    [Show full text]