ENVIRONMENTAL ASSESSMENT for HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project—FERC Project No. 12711-005

Total Page:16

File Type:pdf, Size:1020Kb

ENVIRONMENTAL ASSESSMENT for HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project—FERC Project No. 12711-005 ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project—FERC Project No. 12711-005 (DOE/EA1916) Maine Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 January 2012 TABLE OF CONTENTS LIST OF FIGURES............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................ ix 1.0 INTRODUCTION.................................................................................................. 16 1.1 APPLICATION........................................................................................... 16 1.2 PURPOSE OF ACTION AND NEED FOR POWER................................ 16 1.2.1 Purpose of Action.......................................................................... 16 1.2.2 Need for Power.............................................................................. 18 1.3 COOPERATING AGENCY ROLES ......................................................... 19 1.4 STATUTORY AND REGULATORY REQUIREMENTS ....................... 20 1.4.1 Federal Power Act ......................................................................... 21 1.4.2 Clean Water Act ............................................................................ 22 1.4.3 Endangered Species Act................................................................ 22 1.4.4 Marine Mammal Protection Act.................................................... 23 1.4.5 Magnuson-Stevens Fishery Conservation and Management Act . 24 1.4.6 Coastal Zone Management Act ..................................................... 24 1.4.7 National Historic Preservation Act................................................ 24 1.5 PUBLIC REVIEW AND COMMENT....................................................... 25 1.5.1 Comments on the Draft License Application................................ 25 1.5.2 Interventions.................................................................................. 26 1.5.3 Comments on the License Application ......................................... 27 2.0 PROPOSED ACTION AND ALTERNATIVES................................................... 27 2.1 NO-ACTION ALTERNATIVE.................................................................. 27 2.2 APPLICANT’S PROPOSAL...................................................................... 27 2.2.1 Project Facilities ............................................................................ 27 2.2.2 Project Safety................................................................................. 28 2.2.3 Project Operation........................................................................... 29 2.2.4 Proposed Project Maintenance ...................................................... 29 2.2.5 Proposed Environmental Measures............................................... 30 2.3 STAFF ALTERNATIVE ............................................................................ 31 3.0 ENVIRONMENTAL ANALYSIS......................................................................... 33 3.1 GENERAL DESCRIPTION OF THE PROJECT AREA .......................... 33 3.2 SCOPE OF CUMULATIVE EFFECTS ANALYSIS ................................ 34 3.2.1 Geographic Scope.......................................................................... 34 3.2.2 Temporal Scope............................................................................. 34 3.3 PROPOSED ACTION AND ACTION ALTERNATIVES ....................... 35 3.3.1 Geologic and Soil Resources......................................................... 35 i 3.3.1.1 Affected Environment................................................... 35 3.3.1.2 Environmental Effects .................................................. 38 3.3.2 Aquatic Resources......................................................................... 40 3.3.2.1 Affected Environment................................................... 40 3.3.2.2 Environmental Effects .................................................. 61 3.3.2.3 Cumulative Effects ....................................................... 83 3.3.3 Rare, Threatened, and Endangered Species .................................. 84 3.3.3.1 Affected Environment................................................... 84 3.3.3.2 Environmental Effects .................................................. 88 3.3.3.3 Cumulative Effects ....................................................... 91 3.3.4 Terrestrial Resources..................................................................... 92 3.3.4.1 Affected Environment................................................... 92 3.3.4.2 Environmental Effects ................................................ 104 3.3.5 Recreation.................................................................................... 110 3.3.5.1 Affected Environment................................................. 110 3.3.5.2 Environmental Effects ................................................ 118 3.3.6 Navigation ................................................................................... 120 3.3.6.1 Affected Environment................................................. 120 3.3.6.2 Environmental Effects ................................................ 121 3.3.7 Aesthetic Resources..................................................................... 122 3.3.7.1 Affected Environment................................................. 122 3.3.7.2 Environmental Effects ................................................ 123 3.3.8 Cultural Resources....................................................................... 124 3.3.8.1 Affected Environment................................................. 124 3.3.8.2 Environmental Effects ................................................ 125 3.4 NO-ACTION ALTERNATIVE................................................................ 126 4.0 DEVELOPMENTAL ANALYSIS .......................................................................... 127 4.1 POWER AND ECONOMIC BENEFITS OF THE PROJECT ................ 127 4.2 COMPARISON OF ALTERNATIVES.................................................... 128 4.3 COST OF ENVIRONMENTAL MEASURES ........................................ 130 5.0 CONCLUSIONS AND RECOMMENDATIONS............................................... 138 5.1 COMPARISON OF ALTERNATIVES.................................................... 138 5.2 COMPREHENSIVE DEVELOPMENT AND RECOMMENDED ALTERNATIVE ....................................................................................... 142 5.3 UNAVOIDABLE ADVERSE IMPACTS................................................ 149 5.4 FISH AND WILDLIFE AGENCY RECOMMENDATIONS ................. 149 5.5 CONSISTENCY WITH COMPREHENSIVE PLANS............................ 152 6.0 FINDING OF NO SIGNIFICANT IMPACT ...................................................... 155 7.0 LITERATURE CITED......................................................................................... 156 ii 8.0 LIST OF PREPARERS ........................................................................................ 167 APPENDIX A.................................................................................................................. 168 iii LIST OF FIGURES Figure 1. Location of Cobscook Bay Tidal Energy Project ....................................... 17 Figure 2. Illustration of the turbine generating unit mounted on the bottom support frame, collectively referred to as the TidGenTM device .............................. 28 Figure 3. Predicted and observed tides at NOAA tidal gage station (ID 8410140) located in the Passamaquoddy Bay in Eastport, Maine from July 14, 2008, through July 15, 2009.................................................................................. 42 Figure 4. Flow velocity data for the proposed project area in Cobscook Bay from June 1, 2006, through June 1, 2007............................................................. 43 Figure 5. Locations of ADCP deployments by ORPC Maine.................................... 44 Figure 6. Water speed at the Upper Cobscook Bay ADCP deployment site during a 30-day period in April 2010 ........................................................................ 45 Figure 7. Monthly average water temperature at GoMOOS buoy, Cobscook Bay.... 46 Figure 8. Monthly average salinity at GoMOOS buoy, Cobscook Bay..................... 47 Figure 9. Location of Maine DMR water quality sampling stations in vicinity of proposed project area................................................................................... 48 Figure 10. Bathymetric surface and 5-foot contours in the proposed project area at mean low water elevations .......................................................................... 51 Figure 11. Cover-type map ........................................................................................... 94 Figure 12. Cobscook Bay, Maine National Wetland Inventory Map........................... 96 Figure 13. Significant wildlife habitats in the project vicinity..................................... 98 Figure 14. Recreational resources in the vicinity of proposed Cobscook Bay Project.......................................................................................................
Recommended publications
  • Variation in Marine Threespine Stickleback (Gasterosteus Aculeatus) and Its Implications for Adaptive Divergence
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Contemporary ancestor? Variation in marine threespine stickleback (Gasterosteus aculeatus) and its implications for adaptive divergence Morris, Matthew Morris, M. (2017). Contemporary ancestor? Variation in marine threespine stickleback (Gasterosteus aculeatus) and its implications for adaptive divergence (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25434 http://hdl.handle.net/11023/3910 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Contemporary ancestor? Variation in marine threespine stickleback (Gasterosteus aculeatus) and its implications for adaptive divergence by Matthew Richard John Morris A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA JUNE, 2017 © Matthew Richard John Morris 2017 Abstract Standing genetic variation (SGV) can affect the incidence and pace of adaptation and parallel evolution. The role of SGV versus de novo mutation can be tested in ancestral-derived comparisons when the “contemporary ancestor” is extant. Assumptions about SGV in these contemporary ancestors require formal testing. The threespine stickleback is an icon of adaptive divergence, with multiple freshwater forms having evolved in parallel from a presumably panmictic, evolutionarily static marine population – in part from SGV at Ectodysplasin.
    [Show full text]
  • Deep-Water Bottom Dropping Page 6 FISHING
    Doves usher in a new season * September 12, 2008 Texas’ Premier Outdoor Newspaper Volume 5, Issue 2 * Report on Page 6 www.lonestaroutdoornews.com INSIDE Flyway rivalry prompts HUNTING Texas’ dove research Timing of hunt causes stir among hunters BY CRAIG NYHUS on doves. A team was out two days prior to the hunting season to collect Dove hunters in Texas have long bird specimens for a study compar- feared a federal requirement for the ing the effectiveness of lead and non- use of nonlead shot to pursue their lead shot. But some outfitters and hunters were taken aback by the early Grayson County has become quarry. The state holds the same con- cerns, especially after other states in shooting. famous for its big bucks in the the Central Flyway tried to force Texas Parks and Wildlife biologists state’s lone archery-only Texas to require nonlead shot based are in the first year of a multi-year county. A petition to modify on their waterfowl studies, according study to determine the effectiveness the archery-only rule has many GUNNING FOR RESEARCH: Using volunteer hunters, TPW biologists are to officials. of different load types on wild hunters up in arms. conducting a three-year study of shot effectiveness on dove, but the early That was the genesis of Texas’ own mourning doves using trained Page 7 hunt caused a PR nightmare for officials. Photo by TPW. study on the effect of nonlead shot See DOVE, Page 16 Teal are arriving on schedule along the Texas coast in time for the early season.
    [Show full text]
  • Contrasting Tempos of Sex Chromosome Degeneration In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.300236; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Contrasting tempos of sex chromosome 2 degeneration in sticklebacks 3 4 5 Jason M. Sardell1*, Matthew P. Josephson2, Anne C. Dalziel3, 6 Catherine L. Peichel2, and Mark Kirkpatrick1 7 8 1 Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 9 2 Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland 10 3 Department of Biology, Saint Mary’s University, Halifax, NS, Canada B3H 3C3 11 * Corresponding author: [email protected] 12 13 RUNNING TITLE: Blackspotted stickleback sex chromosomes 14 KEY WORDS: Sex chromosomes, stickleback, Gasterosteus, neo-Y chromosome, 15 recombination, fish 16 17 Revised version submitted 16 July 2020; original version submitted 3 April 2020 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.300236; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 20 Abstract 21 The steps of sex chromosome evolution are often thought to follow a predictable pattern and tempo, but 22 few studies have examined how the outcomes of this process differ between closely related species with 23 homologous sex chromosomes.
    [Show full text]
  • Appendix B Wells Harbor Ecology (Materials from the Wells NERR)
    APPENDICES Appendix B Wells Harbor Ecology (materials from the Wells NERR) CHAPTER 8 Vegetation Caitlin Mullan Crain lants are primary producers that use photosynthesis ter). In this chapter, we will describe what these vegeta- to convert light energy into carbon. Plants thus form tive communities look like, special plant adaptations for Pthe base of all food webs and provide essential nutrition living in coastal habitats, and important services these to animals. In coastal “biogenic” habitats, the vegetation vegetative communities perform. We will then review also engineers the environment, and actually creates important research conducted in or affiliated with Wells the habitat on which other organisms depend. This is NERR on the various vegetative community types, giving particularly apparent in coastal marshes where the plants a unique view of what is known about coastal vegetative themselves, by trapping sediments and binding the communities of southern Maine. sediment with their roots, create the peat base and above- ground structure that defines the salt marsh. The plants OASTAL EGETATION thus function as foundation species, dominant C V organisms that modify the physical environ- Macroalgae ment and create habitat for numerous dependent Algae, commonly known as seaweeds, are a group of organisms. Other vegetation types in coastal non-vascular plants that depend on water for nutrient systems function in similar ways, particularly acquisition, physical support, and seagrass beds or dune plants. Vegetation is reproduction. Algae are therefore therefore important for numerous reasons restricted to living in environ- including transforming energy to food ments that are at least occasionally sources, increasing biodiversity, and inundated by water.
    [Show full text]
  • Inventory of Tidepool and Estuarine Fishes in Acadia National Park
    INVENTORY OF TIDEPOOL AND ESTUARINE FISHES IN ACADIA NATIONAL PARK Edited by Linda J. Kling and Adrian Jordaan School of Marines Sciences University of Maine Orono, Maine 04469 Report to the National Park Service Acadia National Park February 2008 EXECUTIVE SUMMARY Acadia National Park (ANP) is part of the Northeast Temperate Network (NETN) of the National Park Service’s Inventory and Monitoring Program. Inventory and monitoring activities supported by the NETN are becoming increasingly important for setting and meeting long-term management goals. Detailed inventories of fishes of estuaries and intertidal areas of ANP are very limited, necessitating the collection of information within these habitats. The objectives of this project were to inventory fish species found in (1) tidepools and (2) estuaries at locations adjacent to park lands on Mount Desert Island and the Schoodic Peninsula over different seasons. The inventories were not intended to be part of a long-term monitoring effort. Rather, the objective was to sample as many diverse habitats as possible in the intertidal and estuarine zones to maximize the resultant species list. Beyond these original objectives, we evaluated the data for spatial and temporal patterns and trends as well as relationships with other biological and physical characteristics of the tidepools and estuaries. For the tidepool survey, eighteen intertidal sections with multiple pools were inventoried. The majority of the tidepool sampling took place in 2001 but a few tidepools were revisited during the spring/summer period of 2002 and 2003. Each tidepool was visited once during late spring (Period 1: June 6 – June 26), twice during the summer (Period 2: July 3 – August 2 and Period 3: August 3 – September 18) and once during early fall (Period 4: September 29 – October 21).
    [Show full text]
  • Maine Legacy, Summer 1998 Significant Conservation Value
    TheNatureConservancy A Family’s Gift A New Hampshire family looks at its extensive assets in real estate uses may be appropriate for these and considers how these undeveloped forest lands should be used in the tracts as well. The family, who wish future. They also weigh pressing estate planning needs and wonder if the to remain anonymous, held these two issues can be addressed through a single dramatic act. They do not rush. lands as timber assets. And com­ They consult among themselves and with trusted professionals, including patible forestry is one possibility for Conservancy staff in their home state. When the family reaches its the future. Other options include remarkable decision, Conservancy records topple in two states. designation as nature preserves, research or educational sites. ver 8,300 acres of forested land field and Lovell. The big news in New Hampshire is Oin Maine and New Hampshire While all the lands will remain as a 2,200-acre tract that is contiguous will be transferred to The Nature undeveloped open space, providing with the Green Hills Preserve in North Conservancy next January. The 5, 539 habitat for wildlife and recreational Conway. The donation will nearly acres in western Maine represent the opportunities for area residents, other double what is already the largest largest single gift of land preserve owned by The Nature in the Maine Chapter’s Conservancy in that state. More history; and the 2,8 25 than that, the parcel also abuts acres in New Hampshire both the White Mountain Na­ represent the largest tional Forest and the Conway single gift of land in that Town Forest, furthering the chapter’s history as well.
    [Show full text]
  • Environmental Effects Monitoring Program Annual Report: 2017
    Environmental Effects Monitoring Program Annual Report: 2017 January 2018 Fundy Ocean Research Center for Energy PO Box 2573, Halifax, NS B3J 3N5 (902) 406-1166 www.fundyforce.ca Executive Summary The Fundy Ocean Research Center for Energy (FORCE) is Canada’s leading research centre for the demonstration and evaluation of tidal in-stream energy conversion (TISEC) technology. This technology (commonly known as “in-stream tidal turbines”) is part of an emerging sector designed to generate electricity from the ebb and flow of the tide. It also has application in river systems and has the potential to introduce another non-carbon emitting source of electricity to the Nova Scotia electrical grid. The first demonstration in-stream tidal energy turbine was operational at the FORCE site for a short time in 2009 and removed in 2010. There were no turbines present at FORCE until Cape Sharp Tidal Venture (CSTV) deployed a two-megawatt demonstration turbine in November 2016 and began a commissioning process. In April 2017, CSTV announced the turbine would be disconnected for temporary retrieval; on June 15th, the turbine was retrieved and moved to Saint John, New Brunswick shortly thereafter. Environmental effects monitoring programs (EEMPs) began at FORCE 2009; to-date, over 90 tidal-related research studies have been completed or are underway with funding from FORCE and the Offshore Energy Research Association. In 2016/2017, EEMP work is being conducted with academic and research partners, including the University of Maine, the Sea Mammal Research Unit Consulting (Canada), Envirosphere Consultants, Acadia University, Luna Ocean Consulting, JASCO Applied Scientists, Ocean Sonics, and Nexus Coastal Resource Management.
    [Show full text]
  • Marine Science
    ICES Journal of Marine Science ICES Journal of Marine Science (2015), 72(3), 992–996. doi:10.1093/icesjms/fsu232 Contribution to the Themed Section: ‘Risk Assessment’ Introduction Risk assessment and risk management: a primer for marine scientists Mark T. Gibbs1,2 and Howard I. Browman3* 1Department of Mathematics and Physics, University of Queensland, St Lucia, QLD, Australia 2AECOM 540, Wickham Street, Fortitude Valley, QLD 4007, Australia 3Institute of Marine Research, Marine Ecosystem Acoustics Disciplinary Group, Austevoll Research Station, N-5392 Storebø, Norway *Corresponding author: e-mail: [email protected] Gibbs, M. T., and Browman, H. I. Risk assessment and risk management: a primer for marine scientists. – ICES Journal of Marine Science, 72: 992–996. Received 29 November 2014; accepted 30 November 2014. Risk assessment is the management approach or framework of choice in many disciplines, including health care and research, engineering design, and particularly the insurance sector which relies on the best available forward projections of natural hazards and accidents. The marine manage- ment community, which includes researchers, practitioners, and resource managers responsible for individual targeted stocks, aquaculture activ- ities, and the marine environment in general, has been slower to take up quantitative risk assessment approaches. Whilst there are prominent examples where risk assessment and management approaches have been applied, they are relatively few. This article theme set presents examples of such and identifies tools and approaches that can be applied to coastal and oceanic marine systems worldwide. The methods developed and the lessons learned from these studies can be used to guide researchers, practitioners, and resource managers.
    [Show full text]
  • Revision Draft
    MRAG-MSC-F13-v1.1 March 2020 Shark Bay Prawn Managed Fishery Public Certification Report Prepared for the Western Australian Fishing Industry Council Certificate Number: MSC-F-31208 10 December 2020 Conformity Assessment Body MRAG Americas, Inc. (CAB) Richard Banks (TL/P3), Kevin McLoughlin (P1) and Mihaela Zaharia Assessment team (P2) Fishery client Western Australian Fishing Industry Council Assessment Type First Reassessment 1 MRAG Americas – US2733 Shark Bay Prawn Managed Fishery PCR MRAG-MSC-F13-v1.1 March 2020 Document Control Record Document Draft Submitted By Date Reviewed By Date ACDR RB, MZ, KM 8 March 2020 ASP 9 March 2020 CDR/PRDR RB, MZ, KM 8 June 2020 RB 9 June 2020 PCDR RB, MZ,KM 10 July 2020 RB 13 July 2020 ASP 12 August 2020 FRD RB, MZ,KM 29 Sept 2020 RB and ASP 13 Nov 2020 PCR RB, MZ, KM 8 December 2020 EW 9 Dec 2020 2 MRAG Americas – US2733 Shark Bay Prawn Managed Fishery PCR MRAG-MSC-F13-v1.1 March 2020 1 Contents 1 Contents ..................................................................................................................... 3 2 Glossary ..................................................................................................................... 6 3 Executive summary .................................................................................................... 8 4 Report details ........................................................................................................... 10 4.1 Authorship and peer review details ..............................................................
    [Show full text]
  • (Cestoda) in Sticklebacks (Gasterosteidae) of the Nearctic Region, Including Description of a New Species from Brook Stickleback, Culaea Inconstans
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2020, 67: 021 doi: 10.14411/fp.2020.021 http://folia.paru.cas.cz Research Article The Proteocephalus species-aggregate (Cestoda) in sticklebacks (Gasterosteidae) of the Nearctic Region, including description of a new species from brook stickleback, Culaea inconstans Tomáš Scholz1, Anindo Choudhury2 and Patrick A. Nelson3 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; 2 Division of Natural Sciences, St. Norbert College, De Pere, Wisconsin, USA; 3 North/South Consultants Inc., Winnipeg, Canada Abstract: A survey of the species of the Proteocephalus-aggregate from sticklebacks (Actinopterygii: Gasterosteidae) is provided. The occurrence of three species in North America is confirmed: (i)Proteocephalus filicollis(Rudolphi, 1802), which has been reported from the three-spined stickleback, Gasterosteus aculeatus Linnaeus, in the northeastern part of North America (Newfoundland); (ii) Proteocephalus pugetensis Hoff et Hoff, 1929 occurs also in G. aculeatus, but in northwestern North America (British Columbia and Washington); and (iii) Proteocephalus culaeae sp. n., which is described from the brook stickleback, Culaea inconstans (Kirtland), in Manitoba (Canada). Another species, Proteocephalus ambiguus (Dujardin, 1845), a specific parasite of the nine-spined stickleback, Pungitius pungitius (Linnaeus), and type species of the genus, has also been found in North America (Alberta, Canada), but its vouch- ers are in poor condition and cannot be reliable assigned to this species. Both species reported from three-spined stickleback differ from each other by the shape of the scolex (rounded in P. filicollis versus continuously tapered towards the anterior extremity in P. pugeten- sis) and the apical sucker (widely oval to subspherical in frontal view in P.
    [Show full text]
  • Comprehensive Estuarine Fish Inventory Program: Great Bay-Mullica River: Year Three
    Draft Final Report for Title: Comprehensive Estuarine Fish Inventory Program: Great Bay-Mullica River: Year Three Investigator names and institution: Kenneth W. Able and Thomas M. Grothues, Rutgers the State University of New Jersey 2020 Problem Statement and Needs Assessment: Estuaries are important spawning, nursery, and harvest areas for fish and invertebrates of recreational, commercial, and ecological importance in the temperate waters of the northeastern U. S., including New Jersey (Able and Fahay 1998, 2010a). Our knowledge of the life history and ecology of fishes in estuaries has been improving in recent years, in part, because the information on these topics is in increasing demand by ichthyologists, estuarine ecologists, pollution biologists and resource managers at local, state, federal and international levels (Able 2016). The fishes constitute one of the largest portions of the animal biomass and thus they are important to estuarine ecosystems. Sport and commercial fishermen are also becoming increasingly interested in fish life histories and ecology because they are beginning to play a larger advisory role where fish habitats and fish survival are concerned. This interest is extending to forage fishes. Recently, these audiences have been further broadened by an increasingly informed general public, who are interested in (and alarmed by) the conflicting interests of aesthetic and recreational uses versus negative impacts resulting from human population pressures that bring habitat destruction and direct and indirect (non-point) sources of pollution. Some have estimated that up to 75% of economically important east coast fish populations are to some degree “estuarine dependent”. A focus on estuarine fishes is also especially appropriate, largely because it is while they are in estuaries that they encounter several critical life history “bottlenecks” that can greatly affect survival rates and the resulting abundance of certain populations that we wish to harvest or conserve.
    [Show full text]
  • MARINE FISHERIES REGULATION SUMMARY As of June 1, 2020
    MARINE FISHERIES REGULATION SUMMARY as of June 1, 2020 Updated by Jared Silva, Policy Analyst This is not an official copy of the Commonwealth’s marine fishery laws and regulations. The information in this document outlines the general laws and regulations governing recreational and commercial fishing in the waters under the jurisdiction of the Commonwealth of Massachusetts. It is not comprehensive. Although every attempt has been made to keep this document accurate and up to date, this is not an official copy of the Commonwealth’s marine fishery laws and regulations, and should not be consulted as such. The closure maps depicted in this document demonstrate certain specific closures but are not inclusive of all closures that may affect a certain fishing activity. Please review official copies of M.G.L. c. 130 and 322 CMR for full and accurate descriptions of marine fisheries laws and regulations. For comprehensive regulations contact the Secretary of State Division of Publications and Regulations and for the statutory text to M.G.L Ch. 130 visit the Massachusetts Legislature’s website (http://www.malegislature.gov). MASSACHUSETTS DIVISION OF MARINE FISHERIES RULES & REGULATIONS SUMMARY (as of June 1, 2020) Refer to Chapter 130 and 322 CMR for details. TABLE OF CONTENTS PAGE FISHERY 3 RECENT REGULATORY CHANGES 7 RECREATIONAL FISHING 8 HOOK AND LINE (includes Rod & Reel) 10 LOBSTERING commercially with Traps in state waters 14 LOBSTERING commercially with Traps - using Student Lobster Permit 18 LOBSTERING commercially with SCUBA in state waters 20 LOBSTERING recreationally with Traps or SCUBA using the Non-Commercial Lobster Permit 23 POTTING for Sea Bass 25 POTTING for Scup 27 POTTING for Whelks 30 FISH WEIRS 31 SINK GILLNETTING (Fishing on or near bottom) 33 SURFACE GILLNETTING (Fishing on or near surface) 35 MOBILE GEAR: Trawls, Scottish/Danish Seines, and Pair Seines – no regulatory fishery endorsements or inshore net 38 MOBILE GEAR: Trawls, Scottish/Danish Seines, and Pair Seines - with small-mesh regulated fishery endorsements.
    [Show full text]