What's in Your Aquarium?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CARDINAL TETRA, Paracheirodon Axelrodi
CARDINAL TETRA, Paracheirodon axelrodi By Chase Klinesteker SWAM, Sept-Oct 1984 School of Cardinal Tetras DESCRIPTION The Cardinal Tetra is perhaps among the most strikingly beautiful of all freshwater aquarium fishes. The broad, brilliant red on the body goes from the eye to the tail with a neon blue stripe above it almost as long. It prefers soft, clean water on the acid side to show its best color. Maximum size is about 2 inches. The sex difference is mainly in body shape with the female being stockier and more plump in the belly. Healthy, well- fed specimens are necessary to make this determination. This fish comes from the upper Rio Negro of South America where the water is soft and dark from humic acid content. It measures 2-3 DH with a pH of 5 to 6.5. BREEDING For almost 2 years I had tried unsuccessfully to breed the cardinal tetra. Two months ago I was lucky and succeeded in spawning and raising 11 fry which are now about 3/8 inch long. The breeding tank was a 10 gallon tank containing fresh, 12 hour old dechlorinated softner tapwater at about 75 degrees. Clean plastic plants were put in the tank when set up, and excess bubbles were knocked off the plants and glass before a pair of Cardinal Tetras were introduced. As soon as any eggs were noticed, they were siphoned out, rinsed off, and placed in a quart pan of rainwater with 1 drop of methylene blue added to reduce fungus and cut down on light. -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Hardy Tetra Community Aquarium
Elmer’s Aquarium Community Tank Ideas Tank Size: 10 gal or more H ardy Tetra Community Aquarium Why Keep Them? This community is our most popular community tank for beginners with tanks of 10 to 30 gallons. Tetras represent a large group of fish, and many of them make great choices for a beginner’s community tank. Many tetras are active, colorful, hardy and get along well with other tank mates. Housing: This community tank is suitable for tanks of 10 gallon and up. Filtration can include an AquaClear power filter with a supplemental air pump and sponge filter. They like to swim in the middle water layers. Provide some bushy plants (live or plastic) toward the rear of the tank, and leave the front open for swimming. Water Conditions: Temperature 74-80. pH- (6.6-7.2) Use Seachem Neutral Regulator with each partial water change. Live Plants: Live plants are highly recommended for this community, but not required. Live plants will help bring out the best coloration and behavior in these fish as well as maintain optimal tank conditions. Feeding: Feed this community two to three small feedings per day. Feed flakes, small pellets, and some assorted frozen foods such as mysis shrimp for the most nutrition. How Many? Tetras, Danios, Rasboras, Barbs, Moons and Swordtails are schooling fish and should be bought in groups of at least 3 or more. Tank Mates: Choose other fish of similar size and temperament. Our staff can help you find them in our store. Tetras: Black Skirt Tetra, White Skirt Tetra, Serpae Tetra, Glowlight Tetra, Flame Von Rio Tetra, Bleeding Heart Tetra, Pristella Tetra, Black Phantom Tetra, Red Phantom Tetra, Silver Tip Tetra, Red Eye Tetra, Gold Tetra, Diamond Tetra, Emperor Tetra, GloFish Tetra, Bloodfin Tetra, Head & Tail Light Tetra, Rasboras: Harlequin Rasbora, Brilliant Rasbora, Scissortail Rasbora. -
Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E
Circular 54 Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E. Hill and Roy P.E. Yanong2 Introduction Unlike many traditional agriculture industries in Florida which may raise one or only a few different species, tropical Freshwater tropical ornamental fish culture is the largest fish farmers collectively culture hundreds of different component of aquaculture in the State of Florida and ac- species and varieties of fishes from numerous families and counts for approximately 95% of all ornamentals produced several geographic regions. There is much variation within in the US. There are about 200 Florida producers who and among fish groups with regard to acceptable water collectively raise over 800 varieties of freshwater fishes. In quality parameters, feeding and nutrition, and mode of 2003 alone, farm-gate value of Florida-raised tropical fish reproduction. Some farms specialize in one or a few fish was about US$47.2 million. Given the additional economic groups, while other farms produce a wide spectrum of effects of tropical fish trade such as support industries, aquatic livestock. wholesalers, retail pet stores, and aquarium product manufacturing, the importance to Florida is tremendous. Fish can be grouped in a number of different ways. One major division in the industry which has practical signifi- Florida’s tropical ornamental aquaculture industry is cance is that between egg-laying species and live-bearing concentrated in Hillsborough, Polk, and Miami-Dade species. The culture practices for each division are different, counties with additional farms throughout the southern requiring specialized knowledge and equipment to succeed. half of the state. Historic factors, warm climate, the proxim- ity to airports and other infrastructural considerations This publication briefly reviews the more common groups (ready access to aquaculture equipment, supplies, feed, etc.) of freshwater tropical ornamental fishes cultured in Florida are the major reasons for this distribution. -
Low-Temperature Tolerances of Tropical Fish with Potential Transgenic Applications In
Canadian Journal of Zoology Low -temperature tolerances of tropical fish with potential transgenic applications in relation to winter water temperatures in Canada Journal: Canadian Journal of Zoology Manuscript ID cjz-2017-0043.R1 Manuscript Type: Article Date Submitted by the Author: 13-Jul-2017 Complete List of Authors: Leggatt, Rosalind; Department of Fisheries and Oceans, CAER Dhillion, Rashpal;Draft University of British Columbia, Zoology; University of Wisconsin Madison, Wisconsin Institute for Discovery - Epigenetics Mimeault, Caroline; Department of Fisheries and Oceans, Aquaculture, Biotechnology and Aquatic Animal Health Branch Johnson, Neville; Department of Fisheries and Oceans, Aquaculture, Biotechnology and Aquatic Animal Health Branch Richards, Jeffrey; University of British Columbia, Department of Zoology Devlin, Robert; Fisheries and Oceans Canada, ANIMAL IMPACT < Discipline, COLD HARDINESS < Discipline, GENETIC Keyword: ENGINEERING < Discipline, TEMPERATURE < Discipline, FRESHWATER < Habitat, TEMPERATE < Habitat, FISH < Taxon https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 35 Canadian Journal of Zoology 1 1 Low-temperature tolerances of tropical fish with potential transgenic applications in 2 relation to winter water temperatures in Canada 3 R.A. Leggatt, R.S. Dhillon, C. Mimeault, N. Johnson, J.G. Richards, R.H. Devlin 4 5 Corresponding author: R.A. Leggatt: Centre for Aquaculture and the Environment, Centre for 6 Biotechnology and Regulatory Research, Fisheries and Oceans Canada, 4160 Marine 7 Drive, West Vancouver, BC, V7V 1N6, Canada, Email: [email protected], 8 Tel: +1-604-666-7909, Fax: +1-604-666-3474 9 R.S. Dhillon 1: Department of Zoology, University of British Columbia, 4200-6270 University 10 Blvd. Vancouver, BC, V6T 1Z4, Canada, [email protected] 11 C. -
Species Assessments We Identified 80 Freshwater Mollusk Species We
Species Assessments We identified 80 freshwater mollusk species we believe are currently sold in the Great Lakes region and conducted a risk assessment for each using the Notre Dame STAIRmollusk tool, answering as many of the six questions as possible. Using a fecundity of 158 as the divide between low and high risk (see STAIRmollusk tool, question 2), each species was ranked according to the likelihood that it will become invasive. Risk Explanation Low Species either has no climate match to the Great Lakes OR has a fecundity of less than 158, no record of pathogens and no history of invasion elsewhere. High Species has a climate match to the Great Lakes and at least one of the following characteristics: a fecundity over 158, known pathogens, or a history of invasion elsewhere. Potential Species has a climate match to the Great Lakes but fecundity is unknown. ? Data to assess climate match is insufficient and fecundity is unknown. Mollusk Species Risk Assessments for the Great Lakes Using 2020-2029 Climate Conditions (Great Lakes = Hardiness Zone 8 or below) Established in Hardiness Risk Factor(s) in Species Name Risk Great Lakes zone ≤ 7? Evidence?* Ancylus fluviatilis Yes N/A Low Anodonta cygnea Yes No fecundity data Potential Bellamya chinensis (=Cipangopaludina chinensis, C. chinensis maleata, and Yes Yes Pathogens High Viviparus malleatus) Bellamya japonica (=Cipangopaludina Yes Yes Pathogens High japonica) Biomphalaria alexandrina Fecundity, No Low pathogens Biomphalaria glabrata Fecundity, Yes pathogens, High Invasion history Biomphalaria -
Tropical Fish Now That You Have Set up Your Aquarium and Are Starting to Think About Adding Fish, You Have Many Choices to Choose From
Tropical Fish Now that you have set up your aquarium and are starting to think about adding fish, you have many choices to choose from. One specific type of fish is the tropical fish, found in tropical waters all over the world and in areas near the equator. They can live in fresh water such as ponds, lakes, streams and even oceans that are salt water. In home aquariums, tropical fish are usually kept in heated fish tanks or in areas where the ambient room temperature is between 70°F - 82°F. As you make your decisions, be sure to research their compatibility, hardiness and if they are a schooling fish or not. Selecting the right fish will help ensure that you have hours of enjoyment and success. Today, many freshwater fish are captive bred either in fish farms or by hobbyists, making them readily available and easy to find. Popular freshwater tropical fish include Bettas, Guppies, Tetras, Swordtails, Platys, Barbs, Mollies and Corydoras among others. Sometimes people starting out in the aquatic hobby may not always provide their fish with ideal living conditions. Fish recommended for beginners and new aquariums must be durable and able to handle sometimes-poor water quality and stressful living conditions. The list included here are freshwater fish and will provide you with a nice assortment to consider. Cold -Water Fish The most common cold-water fish species is the goldfish but there are many other fish species that do not require a heated tank such as White Cloud Mountain Minnows, Bloodfin Tetras, and Rosy Barbs among others; where their preferred water temperature is between 64 to 72 degrees F. -
Social Dynamics Obscure the Effect of Temperature on Air Breathing in Corydoras Catfish Mar Pineda, Isabel Aragao, David Mckenzie, Shaun Killen
Social dynamics obscure the effect of temperature on air breathing in Corydoras catfish Mar Pineda, Isabel Aragao, David Mckenzie, Shaun Killen To cite this version: Mar Pineda, Isabel Aragao, David Mckenzie, Shaun Killen. Social dynamics obscure the effect of temperature on air breathing in Corydoras catfish. Journal of Experimental Biology, Cambridge University Press, 2020, 223, 10.1242/jeb.222133. hal-03097340 HAL Id: hal-03097340 https://hal.archives-ouvertes.fr/hal-03097340 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. © 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb222133. doi:10.1242/jeb.222133 RESEARCH ARTICLE Social dynamics obscure the effect of temperature on air breathing in Corydoras catfish Mar Pineda1, Isabel Aragao1, David J. McKenzie2 and Shaun S. Killen1,* ABSTRACT Resource acquisition is often cited as a key benefit of group- In some fishes, the ability to breathe air has evolved to overcome living, but the focus has predominantly been on foraging (Killen constraints in hypoxic environments but comes at a cost of increased et al., 2018; McKenzie et al., 2016). However, one resource that is predation. -
ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al. -
Symbionts and Diseases Associated with Invasive Apple Snails
Symbionts and diseases associated with invasive apple snails Cristina Damborenea, Francisco Brusa and Lisandro Negrete CONICET, División Zoología Invertebrados, Museo de La Plata (FCNyM-UNLP), Paseo del Bosque, 1900 La Plata, Argentina. Email: [email protected], fbrusa@ fcnym.unlp.edu.ar, [email protected] Abstract This contribution summarizes knowledge of organisms associated with apple snails, mainly Pomacea spp., either in a facultative or obligate manner, paying special attention to diseases transmitted via these snails to humans. A wide spectrum of epibionts on the shell and operculum of snails are discussed. Among them algae, ciliates, rotifers, nematodes, flatworms, oligochaetes, dipterans, bryozoans and leeches are facultative, benefitting from the provision of substrate, transport, access to food and protection. Among obligate symbionts, five turbellarian species of the genusTemnocephala are known from the branchial cavity, with T. iheringi the most common and abundant. The leech Helobdella ampullariae also spends its entire life cycle inside the branchial cavity; two copepod species and one mite are found in different sites inside the snails. Details of the nature of the relationships of these specific obligate symbionts are poorly known. Also, extensive studies of an intracellular endosymbiosis are summarized. Apple snails are the first or second hosts of several digenean species, including some bird parasites.A number of human diseases are transmitted by apple snails, angiostrongyliasis being the most important because of the potential seriousness of the disease. Additional keywords: Ampullariidae, Angiostrongylus, commensals, diseases, epibionts, parasites, Pomacea, symbiosis 73 Introduction The term “apple snail” refers to a number of species of freshwater snails belonging to the family Ampullariidae (Caenogastropoda) inhabiting tropical and subtropical regions (Hayes et al., 2015). -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
The AQUATIC DESIGN CENTRE
The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi