Development of a Virtual 3D Model of Denisova Cave in the Altai Mountains*

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Virtual 3D Model of Denisova Cave in the Altai Mountains* ARCHAEOLOGY, ETHNOLOGY & ANTHROPOLOGY OF EURASIA Archaeology Ethnology & Anthropology of Eurasia 42/3 (2014) 14–20 E-mail: [email protected] 14 PALEOENVIRONMENT. THE STONE AGE A.V. Leonov1, M.N. Anikushkin2, A.E. Bobkov1, I.V. Rys2, M.B. Kozlikin3, M.V. Shunkov3, A.P. Derevianko3, and Y.M. Baturin1 1S.I. Vavilov Institute for the History of Science and Technology, Russian Academy of Sciences, Staropansky 1/5, Moscow, 109012, Russia E-mail: [email protected]; [email protected]; [email protected] 2Trimetari Consulting LLC, Kronverkskaya 5, Off. 250, St. Petersburg, 197101, Russia E-mail: [email protected]; [email protected] 3Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Pr. Akademika Lavrentieva 17, Novosibirsk, 630090, Russia E-mail: [email protected]; [email protected]; [email protected] DEVELOPMENT OF A VIRTUAL 3D MODEL OF DENISOVA CAVE IN THE ALTAI MOUNTAINS* The study addresses the implementation of the project “A Virtual Model of Denisova Cave in the Altai Mountains” generating a 3D model of the cave and pinpointing certain key ¿ nds. The project includes the elaboration of software for interactive visualization in the virtual space of the cave. Apart from information about this unique site, the model is aimed at solving certain research problems. This is the ¿ rst Russian attempt to create a virtual 3D model of a cave site. Keywords: Virtual archaeology, laser scanning, 3D model, visualization, Denisova Cave, Paleolithic. Introduction the cave’s Central Chamber, two galleries, and from the entrance zone amount to tens of thousands. The most Denisova Cave, in northwestern Gorny Altai, is one important discoveries are associated with the Paleolithic of the key stratified archaeological sites of northern strata. One of the most important ¿ ndings of the Denisova Eurasia, highly relevant to understanding the evolution project is the discovery of human fossils associated with of Paleolithic culture and its environment. Soft sediments the Initial Upper Paleolithic horizon and representing a of the cave fall into 20 lithological strata that contain previously unknown hominin species. Given the critical archaeological materials of various epochs – from the importance of Denisova Cave, one of the key tasks was Middle Paleolithic to the Late Middle Ages. Finds from to generate its virtual 3D model. The term ‘virtual archaeology’ was ¿ rst introduced in 1990 by P. Reilly, a pioneer of application of 3D *Supported by the grant of the Ministry of Education and Science of the Russian Federation (Resolution No. 220) received modeling and visualization in archaeology (Reilly, 1990). by the Altai State University (Project No. 2013-220-04-129, The main objectives of this research ¿ eld include 3D “The Early Human Occupation of Siberia: Formation and documentation of archaeological objects, their virtual Dynamics of Cultures in North Asia”). reconstruction, visual analysis of data, veri¿ cation of Copyright © 2014, Siberian Branch of Russian Academy of Sciences, Institute of Archaeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.aeae.2015.04.003 A.V. Leonov et al. / Archaeology, Ethnology and Anthropology of Eurasia 42/3 (2014) 14–20 15 hypotheses, provision of access to obtained information, seven scan stations were made; full point cloud contains and development of virtual museums. Virtual archaeology about 50 millions of points. Then, a textured polygonal is a subdiscipline that has been developing over two 3D model based on results of laser scanning and decades. Large-scale international conferences are photography was made. The model consists of 88,254 regularly held* and results of the projects are published polygons including 86,000 representing the cave and in leading periodicals**. It is estimated that there are 2254, artificial objects (decks, rails, and stairs). The thousands of existing 3D models of archaeological objects resolution of a texture varies for the different parts of the (Bawaya, 2010; Borodkin, Zherebyatyev, 2012). model from 30 to 100 thousand pixels per 1 sq. m of the Three-dimensional modeling of Paleolithic cave model surface. Thus, a detailed 3D model of the cave that sites based on laser scanning is a speci¿ c direction of preserves its geometry and appearance with high accuracy investigations. One of the first projects of this type and resolution was made (Fig. 1). was carried out in 1994. Laser scanning was used for The created 3D model was referenced in archaeological development of a textured 3D model of the underwater coordinate system (ACS). This system is used by Cosquer Cave in France (Thibault, 2001). Later on, archaeologists for spatial referencing (registration of 3D models were made for Arago Cave in France, Grotta location) of finds. The Y axis of the ACS is turned dei Cervi in Italy, as well as for caves such as Parpalló 62 grades clockwise from the North direction; it roughly (Lerma et al., 2010), Altamira (Donelan, 2002), and coincides with the entrance line and the longitudinal axis Peña de Candamo (González-Aguilera et al., 2009) of the Central Chamber. The X axis is perpendicular in Spain, and for Wonderwerk Cave in South Africa to Y in the plane tangent to the Earth at the origin of (Rüther et al., 2009). An examination of the projects coordinates. The Z axis is vertical, supplementing the focused on modeling Paleolithic cave sites has shown coordinate system. The origin of coordinates of ASC is that most of them were aimed at 3D recording of rock art. located in some virtual point in space near the cave’s drip Visualization of archaeological ¿ nds in the virtual space line. ACS is ¿ xed in the cave by ¿ ve permanent marks in of 3D models has received less research attention. This the cave’s walls. These marks were scanned during the task was ful¿ lled in the project entitled, “A Virtual Model laser scanning. During post-processing, the model of the of Denisova Cave in the Altai Mountains”***. This work cave was converted in ASC. The accuracy of referencing is the ¿ rst attempt at virtual 3D modeling of a Paleolithic was about 5 cm (Fig. 2). Thus, a means to compare the cave site made in Russia. 3D model and existing archaeological schemes was provided, and it became possible to transfer directly the existing archaeological database in a virtual space of the Virtual 3D model of Denisova Cave 3D model (Fig. 3). In addition, several stone implements attributable In August 2012, the present authors performed laser to various periods of human occupation of the cave scanning and detailed photography of the cave. Thirty- were scanned, photographed, and 3D modeled (Fig. 4). The created models of the artifacts consist of about 50 thousands polygons. During texturing, normal maps *EUROGRAPHICS Workshop on Graphics and Cultural based on more detailed models (500 thousands polygons) Heritage; International Symposium on Virtual Reality, were used. Thus, high visual realism and resolution of Archaeology and Cultural Heritage (VAST); International virtual models with a relatively small number of models Conference on Virtual Systems and Multimedia (VSMM); and textures were achieved. This is particularly important 3D Virtual Reconstruction and Visualization of Complex for interactive visualization in stereo mode. Architectures (3D-ARCH); Electronic Imaging and the Visual In order to visualize the created 3D model of the Arts (EVA); International Conference on Archaeology and Geoinformatics (AGIS); International Conference on Virtual cave, an interactive 3D presentation (software based Archaeology (State Hermitage Museum). on OpenSceneGraph) was elaborated. The presentation **Journal of Cultural Heritage; Virtual Reality; IEEE supports both mono- and stereoscopic visualization. It Computer Graphics and Applications; The Photogrammetric provides visualization of a point cloud, 3D model of the Record; Sensors; ISPRS Archives; IEEE Multimedia; Journal on cave, 3D models of ¿ nds, 3D models of wooden decks, Computing and Cultural Heritage; Science and Technology for rails and stairs, as well as visualization of the spatial Cultural Heritage; Applied Geomatics; Remote Sensing. distribution of finds in various archaeological strata ***The project was carried out by the Center for Virtual (Fig. 5). It also supports visualization of additional data History of Science and Technology of the S.I. Vavilov such as cardinal directions, axes and grid of ASC, and Institute for the History of Science and Technology of RAS in collaboration with the Institute of Archaeology and Ethnography location of permanent marks of ASC. The 3D model of of SB RAS and the Trimetari Consulting within the framework the cave can be virtually cut at any horizontal layer; this of the RAS Program “Development of the Permanent Exhibition option makes it possible to analyze visually the geometry of Achievements of RAS” 2012. of the cave and spatial distribution of ¿ nds (Fig. 6). 16 A.V. Leonov et al. / Archaeology, Ethnology and Anthropology of Eurasia 42/3 (2014) 14–20 ɚ b c Fig. 1. Textured polygonal 3D model of Denisova Cave. a, b – entrance zone; c – Central Chamber. A.V. Leonov et al. / Archaeology, Ethnology and Anthropology of Eurasia 42/3 (2014) 14–20 17 Fig. 2. 3D model of the cave cut at 0 m level; coordinate grid is shown. Fig. 3. Visualization of the location of archaeological ¿ nds in the virtual space of the 3D model. 18 A.V. Leonov et al. / Archaeology, Ethnology and Anthropology of Eurasia 42/3 (2014) 14–20 ɚ b Fig. 4. Textured polygonal 3D model of lithic artifacts. Fig. 5. “Cloud of ¿ nds” in the eastern gallery. a – sidescraper (stratum 12); b – Levallois point (stratum 11). Fig. 6. 3D model of the cave cut at +1 m level. A.V. Leonov et al. / Archaeology, Ethnology and Anthropology of Eurasia 42/3 (2014) 14–20 19 Fig. 7. User interface of the application. “Cave” window.
Recommended publications
  • The Origin and Spread of Modern Humans 1. Modern
    THE ORIGIN AND SPREAD OF MODERN HUMANS • Modern Humans • The Advent of Behavioral Modernity • Advances in Technology • Glacial Retreat • Cave Art • The Settling of Australia • Settling the Americas • The Peopling of the Pacific 1. MODERN HUMANS Anatomically modern humans (AMHs) evolved from an archaic Homo sapiens African ancestor • Eventually AMHs spread to other areas, including western Europe, where they replaced, or Interbred with, Neandertals Out of Africa II • Accumulating to support African origin for AMHs • White and Asfaw: finds near village of Herto are generally anatomically modern • Leakey: Omo Kibish remains from 195,000 B.P. appear to be earliest AMH fossils yet found • Sites in South Africa of early African AMHs 1 • Anatomically modern specimens, including skull found at Skhūl, date to 100,000 B.P. • Early AMHs in Western Europe often referred to as Cro Magnons, after earliest fossil find of an anatomically modern human in France • AMHs may have inhabited Middle East before the Neandertals GENETIC EVIDENCE FOR OUT OF AFRICA II • Researchers from Berkeley generated a computerized model of Homo evolution • Based upon the average rate of mutation in known samples of mtDNA • Only the mother contributes mtDNA • Everyone alive today has mtDNA that descends from a woman (dubbed Eve) who lived in sub-Saharan Africa around 200,000 years ago GENETIC EVIDENCE FOR OUT OF AFRICA II • In 1997, mtDNA extracted showed that the Neandertals differed significantly from modern humans • 27 differences between modern humans and Neandertal •
    [Show full text]
  • A Genetic Analysis of the Gibraltar Neanderthals
    A genetic analysis of the Gibraltar Neanderthals Lukas Bokelmanna,1, Mateja Hajdinjaka, Stéphane Peyrégnea, Selina Braceb, Elena Essela, Cesare de Filippoa, Isabelle Glockea, Steffi Grotea, Fabrizio Mafessonia, Sarah Nagela, Janet Kelsoa, Kay Prüfera, Benjamin Vernota, Ian Barnesb, Svante Pääboa,1,2, Matthias Meyera,2, and Chris Stringerb,1,2 aDepartment of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; and bCentre for Human Evolution Research, Department of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom Contributed by Svante Pääbo, June 14, 2019 (sent for review March 22, 2019; reviewed by Roberto Macchiarelli and Eva-Maria Geigl) The Forbes’ Quarry and Devil’s Tower partial crania from Gibraltar geographic range from western Europe to western Asia (for an are among the first Neanderthal remains ever found. Here, we overview of all specimens, see SI Appendix, Table S1). Thus, show that small amounts of ancient DNA are preserved in the there is currently no evidence for the existence of substantial petrous bones of the 2 individuals despite unfavorable climatic genetic substructure in the Neanderthal population after ∼90 ka conditions. However, the endogenous Neanderthal DNA is present ago (4), the time at which the “Altai-like” Neanderthals in the among an overwhelming excess of recent human DNA. Using im- Altai had presumably been replaced by more “Vindija 33.19- proved DNA library construction methods that enrich for DNA like” Neanderthals (17). fragments carrying deaminated cytosine residues, we were able The Neanderthal fossils of Gibraltar are among the most to sequence 70 and 0.4 megabase pairs (Mbp) nuclear DNA of the prominent finds in the history of paleoanthropology.
    [Show full text]
  • The Altai and Southwestern France: New Research on the Complex Question of Late Pleistocene Demographic Histories
    The Altai and Southwestern France: new research on the complex question of Late Pleistocene demographic histories 21 to 28 October 2017 - Les Eyzies-de-Tayac-Sireuil - Preliminary final version Project Director: Hugues Plisson Workshop organisation committee: Brad Gravina, Maxim B. Kozlikin, Andrei I. Krivoshapkin, Bruno Maureille, with the collaboration Jean-Jacques Cleyet-Merle, Jean-Michel Geneste and Hugues Plisson Discussion moderators: Anne Delagnes, Francesco d’Errico, Jacques Jaubert, Jean-Philippe Rigaud, Vikor .P. Chabaï, Andrei I. Krivoshapkin, Evgenii P. Rybin, Mikhail V. Shunkov. Saturday 21 and Sunday 22 October : Arrival From 9h00 onwards -- visit to Rouffignac Cave and the Heritage of Altai Rock Art exhibition (with Frédéric Plassard), afternoon – visit of the Château de Commarque and nearby decorated (engravings) cave. Sunday 22 October: welcome drink and buffet at the Musée National de Préhistoire (MNP) with welcome address from Jean Jacques Cleyet-Merle (18:30) Monday 23 Octobre 8:30 – 12:30 : Musée National de Préhistoire followed by the Maison Bordes – introduction and long presentations on the Altai (30’) plus discussions. Musée National de Préhistoire 1) Opening address from Anne-Gaëlle Baudouin-Clerc, Préfète de la Dordogne 2) Jacques Jaubert - "East to West (“Ex Oriente lux“) in Europe or West to East in Central and Northern Asia? A geographic perspective on the Middle and Early Upper Palaeolithic to Late Palaeolithic: items to discuss" 3) Mikhaïl V. Shunkov - "Denisovans in the Altai: natives or incomers" Maison Bordes 4) Andreï I. Krivoshapkin - "Common traits of the Middle Palaeolithic in Southern Siberia and western Central Asia: a matter of migration or evolutionary convergence?" 5) Evgueny P.
    [Show full text]
  • Curriculum Vitae Erik Trinkaus
    9/2014 Curriculum Vitae Erik Trinkaus Education and Degrees 1970-1975 University of Pennsylvania Ph.D 1975 Dissertation: A Functional Analysis of the Neandertal Foot M.A. 1973 Thesis: A Review of the Reconstructions and Evolutionary Significance of the Fontéchevade Fossils 1966-1970 University of Wisconsin B.A. 1970 ACADEMIC APPOINTMENTS Primary Academic Appointments Current 2002- Mary Tileston Hemenway Professor of Arts & Sciences, Department of Anthropolo- gy, Washington University Previous 1997-2002 Professor: Department of Anthropology, Washington University 1996-1997 Regents’ Professor of Anthropology, University of New Mexico 1983-1996 Assistant Professor to Professor: Dept. of Anthropology, University of New Mexico 1975-1983 Assistant to Associate Professor: Department of Anthropology, Harvard University MEMBERSHIPS Honorary 2001- Academy of Science of Saint Louis 1996- National Academy of Sciences USA Professional 1992- Paleoanthropological Society 1990- Anthropological Society of Nippon 1985- Société d’Anthropologie de Paris 1973- American Association of Physical Anthropologists AWARDS 2013 Faculty Mentor Award, Graduate School, Washington University 2011 Arthur Holly Compton Award for Faculty Achievement, Washington University 2005 Faculty Mentor Award, Graduate School, Washington University PUBLICATIONS: Books Trinkaus, E., Shipman, P. (1993) The Neandertals: Changing the Image of Mankind. New York: Alfred A. Knopf Pub. pp. 454. PUBLICATIONS: Monographs Trinkaus, E., Buzhilova, A.P., Mednikova, M.B., Dobrovolskaya, M.V. (2014) The People of Sunghir: Burials, Bodies and Behavior in the Earlier Upper Paleolithic. New York: Ox- ford University Press. pp. 339. Trinkaus, E., Constantin, S., Zilhão, J. (Eds.) (2013) Life and Death at the Peştera cu Oase. A Setting for Modern Human Emergence in Europe. New York: Oxford University Press.
    [Show full text]
  • A B S T Ra C T S O F T H E O Ra L and Poster Presentations
    Abstracts of the oral and poster presentations (in alphabetic order) see Addenda, p. 271 11th ICAZ International Conference. Paris, 23-28 August 2010 81 82 11th ICAZ International Conference. Paris, 23-28 August 2010 ABRAMS Grégory1, BONJEAN ABUHELALEH Bellal1, AL NAHAR Maysoon2, Dominique1, Di Modica Kévin1 & PATOU- BERRUTI Gabriele Luigi Francesco, MATHIS Marylène2 CANCELLIERI Emanuele1 & THUN 1, Centre de recherches de la grotte Scladina, 339D Rue Fond des Vaux, 5300 Andenne, HOHENSTEIN Ursula1 Belgique, [email protected]; [email protected] ; [email protected] 2, Institut de Paléontologie Humaine, Département Préhistoire du Muséum National d’Histoire 1, Department of Biology and Evolution, University of Ferrara, Corso Ercole I d’Este 32, Ferrara Naturelle, 1 Rue René Panhard, 75013 Paris, France, [email protected] (FE: 44100), Italy, [email protected] 2, Department of Archaeology, University of Jordan. Amman 11942 Jordan, maysnahar@gmail. com Les os brûlés de l’ensemble sédimentaire 1A de Scladina (Andenne, Belgique) : apports naturels ou restes de foyer Study of Bone artefacts and use techniques from the Neo- néandertalien ? lithic Jordanian site; Tell Abu Suwwan (PPNB-PN) L’ensemble sédimentaire 1A de la grotte Scladina, daté par 14C entre In this paper we would like to present the experimental study car- 40 et 37.000 B.P., recèle les traces d’une occupation par les Néan- ried out in order to reproduce the bone artifacts coming from the dertaliens qui contient environ 3.500 artefacts lithiques ainsi que Neolithic site Tell Abu Suwwan-Jordan. This experimental project plusieurs milliers de restes fauniques, attribués majoritairement au aims to complete the archaeozoological analysis of the bone arti- Cheval pour les herbivores.
    [Show full text]
  • Assessing Relationships Between Human Adaptive Responses and Ecology Via Eco-Cultural Niche Modeling William E
    Assessing relationships between human adaptive responses and ecology via eco-cultural niche modeling William E. Banks To cite this version: William E. Banks. Assessing relationships between human adaptive responses and ecology via eco- cultural niche modeling. Archaeology and Prehistory. Universite Bordeaux 1, 2013. hal-01840898 HAL Id: hal-01840898 https://hal.archives-ouvertes.fr/hal-01840898 Submitted on 11 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse d'Habilitation à Diriger des Recherches Université de Bordeaux 1 William E. BANKS UMR 5199 PACEA – De la Préhistoire à l'Actuel : Culture, Environnement et Anthropologie Assessing Relationships between Human Adaptive Responses and Ecology via Eco-Cultural Niche Modeling Soutenue le 14 novembre 2013 devant un jury composé de: Michel CRUCIFIX, Chargé de Cours à l'Université catholique de Louvain, Belgique Francesco D'ERRICO, Directeur de Recherche au CRNS, Talence Jacques JAUBERT, Professeur à l'Université de Bordeaux 1, Talence Rémy PETIT, Directeur de Recherche à l'INRA, Cestas Pierre SEPULCHRE, Chargé de Recherche au CNRS, Gif-sur-Yvette Jean-Denis VIGNE, Directeur de Recherche au CNRS, Paris Table of Contents Summary of Past Research Introduction ..................................................................................................................
    [Show full text]
  • What's in a Neanderthal
    WHAT’S IN A NEANDERTHAL: A COMPARATIVE ANALYSIS Taylorlyn Stephan Oberlin College Dept. of Anthropology Advised by Prof. Amy Margaris TABLE OF CONTENTS I. Abstract – pg. 3 II. Introduction – pg. 3-4 III. Historical Background – pg. 4-5 a. Fig. 1 – pg. 5 IV. Methods – pg. 5-8 a. Figs. 2 and 3 – pg. 6 V. Genomic Definitions – pg. 8-9 VI. Site Introduction – pg. 9-10 a. Fig 4 – pg. 10 VII. El Sidron – pg. 10-14 a. Table – pg. 10-12 b. Figs. 5-7 – pg. 12 c. Figs. 8 and 9 – pg. 13 VIII. Mezmaiskaya – pg. 14-18 a. Table – pg. 14-16 b. Figs. 10 and 11 – pg. 16 IX. Shanidar – pg. 18-22 a. Table – pg. 19-20 b. Figs. 12 and 13 – pg.21 X. Vindija – pg. 22-28 a. Table – pg. 23-25 b. Fig. 14 – pg. 25 c. Figs. 15-18 – pg. 26 XI. The Neanderthal Genome Project – pg. 28-32 a. Table – pg. 29 b. Fig. 19 – pg. 29 c. Figs. 20 and 21 – pg. 30 XII. Discussion – pg. 32- 36 XIII. Conclusion – pg. 36-38 XIV. Bibliography – pg. 38-42 2 ABSTRACT In this analysis, I seek to understand how three separate lines of evidence – skeletal morphology, archaeology, and genomics – are used separately and in tandem to produce taxonomic classifications in Neanderthal and paleoanthropological research more generally. To do so, I have selected four sites as case studies: El Sidrón Cave, Mezmaiskaya Cave, Shanidar Cave, and Vindija Cave. El Sidrón, Mezmaiskaya, and Vindija all have detailed archaeological records and have yielded Neanderthal DNA.
    [Show full text]
  • “Politics” and “Religion” in the Upper Paleolithic: a Voegelinian Analysis of Some Selected Problems
    “Politics” and “Religion” in the Upper Paleolithic: A Voegelinian Analysis of Some Selected Problems DRAFT ONLY Barry Cooper University of Calgary Paper prepared for APSA Annual Meeting Seattle WA September, 201 2 Outline 1. Introduction 2. Philosophy of consciousness 3. “Politics” 4. “Religion 5. Conclusions 3 “Politics” and “Religion” in the Upper Paleolithic 1. Introduction The Voegelinian analysis referred to in the title refers primarily to two elements of the political science of Eric Voegelin. The first is his philosophy of consciousness, systematically developed first in Anamnesis.1 The second is his concept of compactness and differentiation of experience and symbolization. It will be necessary to touch upon a few other Voegelinian concepts, notably his understanding of “equivalence,” but for reasons of space only a summary presentation is possible. A second preliminary remark: the terms “Religion” and “Politics” are in quotation marks because their usage in the context of the Upper Paleolithic is anachronistic, though not entirely misleading. The meaning of these terms is commonsensical, not technical, and is meant to indicate what Clifford Geertz once called “oblique family-resemblance connections” among phenomena.2 Third, as a matter of chronology the Upper Paleolithic conventionally refers to the period between 50,000 and 10,000 years ago (50KYBP- 1 Voegelin refined his analysis of consciousness in the last two volumes of Order and History. These changes are ignored on this occasion. 2 Geertz, Life Among the Anthros, ed. Fred Inglis (Princeton: Princeton University Press, 2010), 224. 4 10KYBP). It corresponds in Eurasian periodization approximately to the Later Stone Age in Africa.
    [Show full text]
  • Human Origin Sites and the World Heritage Convention in Eurasia
    World Heritage papers41 HEADWORLD HERITAGES 4 Human Origin Sites and the World Heritage Convention in Eurasia VOLUME I In support of UNESCO’s 70th Anniversary Celebrations United Nations [ Cultural Organization Human Origin Sites and the World Heritage Convention in Eurasia Nuria Sanz, Editor General Coordinator of HEADS Programme on Human Evolution HEADS 4 VOLUME I Published in 2015 by the United Nations Educational, Scientific and Cultural Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France and the UNESCO Office in Mexico, Presidente Masaryk 526, Polanco, Miguel Hidalgo, 11550 Ciudad de Mexico, D.F., Mexico. © UNESCO 2015 ISBN 978-92-3-100107-9 This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo/). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/open-access/terms-use-ccbysa-en). The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Cover Photos: Top: Hohle Fels excavation. © Harry Vetter bottom (from left to right): Petroglyphs from Sikachi-Alyan rock art site.
    [Show full text]
  • 100,000–11,000 Years Ago 75°
    Copyrighted Material GREENLAND ICE SHEET 100,000–11,000 years ago 75° the spread of modern humans Berelekh 13,400–10,600 B ( E around the world during A ALASKA la R I ) SCANDINAVIAN n I e Bluefish Cave d N Arctic Circle G g 16,000 d ICE SHEET b G the ice age N i 25,000–10,000 r r i I d I b g e A R d Ice ) E n -fr SIBERIA a Dry Creek e l e B c All modern humans are descended from populations of ( o 35,000 Dyuktai Cvae 13,500 rri do 18,000 r Homo sapiens that lived in Africa c. 200,000 years ago. op LAURENTIDE en s ICE SHEET 1 Malaya Sya Around 60,000 years ago a small group of humans left 4 CORDILLERAN ,0 Cresswell 34,000 0 Africa and over the next 50,000 years its descendants 0 ICE SHEET – Crags 1 2 14,000 colonized all the world’s other continents except Antarctica, ,0 Wally’s Beach 0 Paviland Cave Mal’ta 0 EUROPE Mezhirich Mladecˇ in the process replacing all other human species. These 13,000–11,000 y 29,000 Denisova Cave 24,000 . 15,000 a 33,000 45,000 . Kostenki 41,000 migrations were aided by low sea levels during glaciations, Willendorf 40,000 Lascaux 41,700–39,500 which created land bridges linking islands and continents: Kennewick Cro Magnon 17,000 9,300 45° humans were able to reach most parts of the world on foot. Spirit 30,000 Cave Meadowcroft Altamira It was in this period of initial colonization of the globe that 10,600 Rockshelter 14,000 16,000 Lagar Velho Hintabayashi Tianyuan JAPAN modern racial characteristics evolved.
    [Show full text]
  • Life and Death at the Pe Ş Tera Cu Oase
    Life and Death at the Pe ş tera cu Oase 00_Trinkaus_Prelims.indd i 8/31/2012 10:06:29 PM HUMAN EVOLUTION SERIES Series Editors Russell L. Ciochon, The University of Iowa Bernard A. Wood, George Washington University Editorial Advisory Board Leslie C. Aiello, Wenner-Gren Foundation Susan Ant ó n, New York University Anna K. Behrensmeyer, Smithsonian Institution Alison Brooks, George Washington University Steven Churchill, Duke University Fred Grine, State University of New York, Stony Brook Katerina Harvati, Univertit ä t T ü bingen Jean-Jacques Hublin, Max Planck Institute Thomas Plummer, Queens College, City University of New York Yoel Rak, Tel-Aviv University Kaye Reed, Arizona State University Christopher Ruff, John Hopkins School of Medicine Erik Trinkaus, Washington University in St. Louis Carol Ward, University of Missouri African Biogeography, Climate Change, and Human Evolution Edited by Timothy G. Bromage and Friedemann Schrenk Meat-Eating and Human Evolution Edited by Craig B. Stanford and Henry T. Bunn The Skull of Australopithecus afarensis William H. Kimbel, Yoel Rak, and Donald C. Johanson Early Modern Human Evolution in Central Europe: The People of Doln í V ĕ stonice and Pavlov Edited by Erik Trinkaus and Ji ří Svoboda Evolution of the Hominin Diet: The Known, the Unknown, and the Unknowable Edited by Peter S. Ungar Genes, Language, & Culture History in the Southwest Pacifi c Edited by Jonathan S. Friedlaender The Lithic Assemblages of Qafzeh Cave Erella Hovers Life and Death at the Pe ş tera cu Oase: A Setting for Modern Human Emergence in Europe Edited by Erik Trinkaus, Silviu Constantin, and Jo ã o Zilh ã o 00_Trinkaus_Prelims.indd ii 8/31/2012 10:06:30 PM Life and Death at the Pe ş tera cu Oase A Setting for Modern Human Emergence in Europe Edited by Erik Trinkaus , Silviu Constantin, Jo ã o Zilh ã o 1 00_Trinkaus_Prelims.indd iii 8/31/2012 10:06:30 PM 3 Oxford University Press is a department of the University of Oxford.
    [Show full text]
  • What's New in Central Asia?
    B. Viola"', S. Paabo' I Department ofHuman Evo/ution Planck Institute f or Evo/ufionmy Anthropology, Leipzig, Germany 2D eparfment of Evolutionmy Genetics, Max Planck institute for Evo/utiol1aJY Anthropology, Leipzig, Germany WHAT'S NEW IN CENTRAL ASIA? After Dubois' disco vel)' of the Trinil fossils, the "Out of Asia" theol)' was the dominant hypothesis on human evolution for almost 50 years. Some proponents, such as Roy Chapman Andrews (the real li fe model for Indiana Jones!) and Henry Fairfield Osborne placed the ori gin of modern humans in Central Asia, whi ch led them to start the first modern and interdisciplinalyexpedition, "The Central Asiatic Expedition", lasting over a decade. They did not find any human remains, but were the first to discover dinosaur nests and the very rich pa laeontological sites of Xinjiang and the Gobi (GaLlenkamp, 2002). After this, interest in this region strongly declined, largely because new discoveries in Africa and the Near East captured th e in terest of the palaeoanthropological community. However, scholars in the Soviet Union continued intensive research in Central Asia (e.g. Movius, 1953; Ranov and Davis, 1979; Davis and Ranov, 1999). However, it is only through the efforts of Anatoly Derevianko and his collaborators that Central Asia (in a geographically broad sense), and especiall y the Altai region, is now beginning to get its deserved place in the spotli ght of human evolution. This has been achieved not only though the excavations and other scientific work of Anatoly Derevianko. More than anybody else he has also furthered the scientific communication between Central Asian scholars and the rest of the world, by setting an example of openness in organizing conferences and inviting colleagues to see the material first hand.
    [Show full text]