LOW ENERGY SHIVE SEPARATION EVALUATION OF A NEW METHOD OF FIBRE PROCESSING Karl Murton and John Richardson EnsisPapro,PrivateBag3020,Rotorua,NewZealand ABSTRACT The potential of a new mechanical pulping strategy to enable the separate development of earlywood and latewoodfibreshasbeenevaluatedinapilotplantstudy.Inthisstudy,chipsweretreatedwith a low energy application to produce a primarystage containing a high proportion of shives. Conventional “fractionationtechnologies”werethenusedtoseparatetheshivesfrom theliberatedfibressothatthese two streamscouldbegivenseparaterefiningtreatments. Thekeyobservationsfromthisstudywere;  Fractionatingalowenergyfeedpulpcontaining57%shivesisdifficultasthistypeofpulpdewaters andthickensveryquicklyresultinginblockedpipesandvalves.However,processingthepulpat0.5% consistencyproducesanacceptpulpcontaining5%shivesandrejectswith73%shives.  Pressurescreensaremore“efficient”inremovingshivesfromthesinglestagepulpthanhydrocyclones.  The fibre dimension data obtained from the screening stage provided support for this processing concept whereearlywoodandlatewoodfibresareseparatedastheshives(rejectedbythescreening system).Theshivescontainedfibreswithanaveragelumenperimeterof88m,andtheliberatedfibres (acceptedbythescreens)hadanaveragelumenperimeterof80m.  Thedifferencesinfibrelengthandfibrelumenperimeterobservedafterfractionationweremaintained whentheliberatedfibre(accepts)andshives(rejects)weregivenadditionalrefiningtreatment.The fibresfromtherefinedshivesconsolidatedtothesamesheetdensity,buthadhighertensilestrength thanthefibresfromtherefinedliberatedfibre.Thisindicatesthattheearlywoodfibreintherefined shivesmaybemorefibrillatedorhavegreatersurfacedevelopmentthanthelatewoodfibreinthe refinedliberatedfibrestream. Thesefindingsindicatethatthisnewprocessstrategycanenablemoreeffectivetreatmentoffibretypesbasedon theirdimensions,andincreasetheabilitytodirectagivenfibretypetothemostappropriateenduse. BACKGROUND Inconventionalrefining,therefinerbarsapplythesameconstantamplitudecyclicloadtoboththeearlywood andlatewoodfibres.Consequently,neitherfibretypeislikelytobesubjectedtotheoptimumcompressiveand shear stresses to minimise the energy needed to develop its properties. It is possible that the refining energy demand for a given fibre quality could be reduced if the amplitude and frequency of the compressivestresscouldbevarieddependingonwhetherearlywoodorlatewoodfibreswerebeingtreated.In practice,thisisimpossibletoachieveunlessaneconomicmethodofseparatingtheearlywoodandlatewood fibresduringtheinitialstagesofprocessingcanbefound. ResearchperformedbyMurtonetal.(1)hasindicatedthat,“thelargerdiameterandthinnerwalledearlywood typefibresappeartoremainwithintheshivefractionwhenlowrefinerenergyinputsareappliedtowoodchips”, andthat“theselargerdiameterandthinnerwalledearlywoodfibresrequiremoreenergyforrefiningtoagiven freenessthanthethickerwalledlatewoodfibres”.Theimplicationofthesefindingsisthatthemorecompliant (elastic)largerperimeter,thinwalledfibrecomponentofthewoodabsorbsmoreenergyandthusremainswithin theshivefraction.Hence,thedefibrationcharacteristicsofprimarystagethermomechanical(TMP)pulpwere studied to test this hypothesis, (2). In that study it was shown that latewood type fibres are liberated preferentiallyforlowrefinerenergyinputs(~500kWh/odt),andwasindependentofthewoodtype,Figure1. Basedonthesefindingsanewmechanicalpulpingstrategythatcouldpotentiallyallowearlywoodandlatewood fibrestobetreatedseparately wasproposed,(2)which mayleadtoasubstantialincreaseintheconversion efficiencyoftheconventionalTMPprocess. 64 Refinechips Latewoodtypefibres Toplog 500kWh/odt Barrierscreen 62 Thinnings Fibre 60 Earlywood Latewood 58 Shives Earlywoodtypefibres

56 Lumen perimeter, µm Lumen perimeter, 54 0 250 500 750 1000 Energy input, kWh/odt Figure 1 Effectofrefinerenergyinputonaccept Figure 2 Processstrategy,(2). lumenperimeterforfourdifferentradiata pinewoodtypes,from(12). Thebasicconceptisthatatlowrefinerenergyinputslatewoodtypefibresareliberatedpreferentially.When barrierscreened,thesefibreswillreporttothescreenacceptsandtheearlywoodtypematerialcontainedwithin theshiveswillreporttotherejectsseeFigure2.Bothofthesestreamsmayneedfurthertreatmentpriortothe secondrefiningstage,withtheprocessconditionschosenfortherefining(chemistry,temperatureandintensity) likelytobedeterminedaccordingtothecrosssectionalcomplianceofthefibresused. EXPERIMENTAL Design Theexperimentalworkdiscussedinthisisdividedintotwokeyparts:  Evaluateanewmethodoffibreprocessing,(LESS),i.eistheconceptdetailedaboveachievableusing conventional,semicommercialscaleequipment.Thisinvolvedtheproductionofalowenergyprimary stagepulp(approximately400kWh/odt)followedbyasequenceofscreeningstagestoseparateshives fromtheliberatedfibres.Thesetwostreamswerethenrefinedfurthertoproducepulpsinthefreeness rangeof500to100CSF,(note:noattemptwasmadetooptimisetheserefiningtreatments).“Control” pulps in the freeness range 400 to 100 CSF were also produced by conventional twostage TMP refining.  Evaluatetheshiveremovalefficiencyofhydrocyclones,todeterminewhetherhydrocycloneswouldbe moreeffectiveatfractionatingshivesthanpressurescreens. “Proof of Concept” Evaluation of the Low Energy Shive (LESS) Process

Wood resource Approximately7.5wettonnesofradiatapinelogswereextractedfromKaingaroaforest,NewZealandandwere debarkedandchippedonacommercialchippingline.Thechippropertiesforthiswoodsamplearegiven in Table1. Table 1 Chipproperties Ovendrycontent,% 43.5 Basicdensity,kg/m³. 392 Meanlengthweightedfibrelength**,mm 2.68 Fibrecoarseness**,mg/m 0.197

**Kraftfibreproperties. Production of TMP pulps Tworefiningrunswereperformed:1)asinglestageTMPrefiningruntoproduceapproximately600odkgof pulp(specificenergy~350kWh/odt)foranevaluationofthe“LESS”process,and2)a“control”twostageTMP refining run for comparative purposes. All refining was performed using the Jylha SD52/36 refiner using Jylhavaaraplatepattern205216,anominalconsistencyof35%andthesameprimarystagechippretreatment conditions,Appendix1.Inthisprocess,thechips weresteamedinanatmosphericbinfor5minutesat 80°C priortopressurisedpreheatingat110°Cforthree minutesandrefinedat1barsteampressure.Thepulp was dischargedfromtherefinerthroughanatmosphericcycloneandeither;1)conveyedtothepulperforlatency removal,or2)collectedinapulpstoragebinforasecondrefiningstage. LESS screening conditions AconventionalP1/S1,P2screenconfigurationwasusedtoseparatetheshivesfromtheliberatedfibre,Figure3. A 2.4 mm smooth hole screen basket and a bump rotor were fitted to the P1 and S1 screens, whereas two differentbaskettypeswereevaluatedintheP2position(0.15and0.1mmwedgewire).The0.1mmwedgewire basketandLRrotorcombinationwaschosenforthisscreeningstageasitgavethelowestacceptshivecontent. DetailsofthescreenbasketandrotorcombinationsusedforeachscreeningstagearegiveninTable2.

0.1mm Primaryrefining 2.4mmhole WedgewireLR 400kWh/t Bumprotor Rotor

A B G H J O1-O5

P1P1 P2

C I

K

D E

2.4mmhole S1 Bumprotor F L M P1-P3 Q1-Q5

N Figure 3 Fibreprocessingforshiveseparation. Screening this pulp at 1.5 % consistency (as initially proposed) caused several operational difficulties. In particular,rejectthickeningandthesubsequentdewateringofrejectpulpresultedinnumerousblockageswithin thepipelines.Toalleviatethisproblem,thefeedconsistencywasloweredto0.5%. Thepulpscreeningwasperformedasfollows: 1) Approximately300odkgofprimarystagepulphadlatencyremovedandwasfedintothestockchest anddilutedtoaconsistencyof0.5%,sampleA. 2) Initially the P1 screen was operated in recycle mode to enable the minimum reject rate to be determined. The screen was then operated with rejects and accepts being split and sent to separate tanks,samplesB&C.300litresofsampleBwasalsocollectedtoprovidethefeedpulpforthe“Shive removalusinghydrocyclones”experimentalworkdetailedbelow. 3) The P1 rejects were diluted to 0.5 % consistency and the S1 screening stage performed producing samplesD,E&F. 4) Several different screen baskets were evaluated for the P2 screen position with the 0.1 mm wedgewire/LRrotorcombinationchosenasthebestoption.TheaimoftheP2screenwastominimise theshivecontentandmaximisethelongfibrecontentintheacceptstream.Therejectsandacceptswere splittoseparatetankstoproducesamplesG,H&I. 5) TheoverallacceptsweredewateredtoproducesampleJ(afterdewatering)andrefinedinasinglestage, usingfivedifferentenergyinputlevelsintherangeof800to1800kWh/odttoproducesamplesO1– O5(processconditionsinTable11,Appendix1). 6) TheoverallrejectswerethendewateredproducingsampleM(afterdewatering)andrefinedinonestage (P1P3)ortwostagesproducingsamplesQ1–Q5.(processconditionsinTable11). Table 2 Basicscreenparameters

Screenposition P1 S1 P2 Basket 2.4SMhole 2.4SMhole 0.15CWW Rotor Bump Bump LR Aperturevelocity,m/s 1.0 1.0 1.0 Rotorspeed,rpm 1425 1425 1188 Rejectrate Minimum Minimum Feedconsistency,% 0.5 0.5 0.5 Shive removal efficiency definitions Twomethodsofthedeterminingtheshiveremovalefficiencyareused.Theyareshivefractionationefficiency, (Qindex)andtheshiveremovalefficiency,( Reff )

Shiveaccept Qshive =1 − Shivereject

Shivereject Reff = * Rm Shive feed

WhereRmisthemassrejectrate,(%). Testing Allpulpsampleswereevaluatedfor,Freeness,consistency,Pulmacshivecontent(0.10mmslotscreen) and Bauer McNett fibre fractionation. The refined accept and reject pulps were also analysed for fibre length distributionandstandardhandsheetproperties.Thepulpandfibretestproceduresused,aregiveninAppendix2. Samples,JandMwerefractionatedusingthePulmacshiveanalyserandthefreefibre(accept)andshivecross sectionaldimensionsweremeasured.Inaddition,thefibredimensionsofselectedrefinedaccept(O1O5)and refinedreject(P1,Q1Q5)samplesweremeasured. Experimental work carried out to investigate the shive removal efficiency of single hydrocyclone units Aseriesoftrialswereperformedtoinvestigatetheshiveremovalefficiencyofhydrocyclonesforafeedstock containing a high shive content (~ 20%). This was performed using three different hydrocyclone units in a forwardconfiguration:  CellicoTripac90smoothcone  CellicoTripac90stepcone  CellicoC700 ThepulpsampleusedforthehydrocyclonestudywasobtainedbyscreeningaprimarystageTMPpulpproduced usinganenergyinputof350kWh/odt.Thispulpwasthenscreenedusinga2.4mmsmoothholescreenbasketto removeanyverylargeshiveparticlesthatcouldblocktheinletoroutletportsofthehydrocyclones.Thissample hadaconsistencyofapproximately0.2%andaPulmacshivecontentofapproximately20%. Thehydrocyclonesweretestedbypumpingstockthroughasinglehydrocycloneunitinrecyclemodeasshown in Figure 4. The feed and reject flows were measured using magnetic flowmeters with the accept flow determinedbydifference.Oncetheprocessconditionshadstabilisedatthetargetoperatingconditions(Table3), feed,acceptsandrejectssampleswerecollected. Singlecleanerunit

Rejectflowmeter

Feedflowmeter

Intermediatecleanerpump Figure 4 Hydrocycloneexperimentalrig. Table 3 Targethydrocycloneoperatingparameters

Hydrocyclone Rejectrate,R v Feedflow Rejectflow Pressure FeedDrop % l/min l/min kPa kPa C700 15 650 97.5 235 100 C700 35 650 227.5 235 100 TR90SM/13 15 343 51.4 300 150 TR90SM/13 35 343 119.9 300 150 TR90ST/13 15 350 52.5 300 150 TR90ST/13 35 350 122.5 300 150 Testing Allpulpsampleswereevaluatedfor,Freeness,consistency,Pulmacshivecontent(0.10mmslotscreen) and BauerMcNettfibrefractionation. RESULTS AND DISCUSSION Thelowenergy,350kWh/odt,756CSFprimarystagefeedpulphadaPulmacshivecontentof57%.Although thispulpwasscreenedat0.5%consistencytopreventthepulpdewateringandblockingpipelines,the mass balanceerrorsaroundeachscreeningstagewerelarge.Itisassumedthatthe“shivy”natureofthepulpmadeit difficult to obtain a representative pulp sample for the consistency measurements. An example of this was demonstrated by sampling the feed to theP2 screen (operated in recycle mode) at five different times. The consistencyrangedfrom0.17to0.40%forthefivesamplesandtheshivecontentvariedintherangeof26to36 %.ThepulpsamplevariabilityaroundtheP1screenwouldbeexpectedtobeevengreaterasthefeedpulphada considerablyhighershivecontentof57%. Comparison of the shive removal efficiency of single hydrocyclone and screen units TheTripac90hydrocyclonefractionationefficiencieswerelow(Qindicesbetween0and0.18)indicatingthat theshivelevelsintheacceptsandrejectsstreamsweresimilarfortheconfigurationsandrejectratesstudied, Table4.Incontrast,theC700hydrocyclonehadsubstantiallygreatershivefractionationefficiency,(Qindexof 0.74).However,thisfractionationefficiencywasstilllowerthanthatachievedusingasinglepressurescreen fittedwitha0.1mmwedgewirebasket,(Qindexof0.86).TherejectsthickenedsubstantiallyforboththeC700 hydrocyclones(factorof3)andthe0.1mmwedgewirescreen(factorof5.4).

Table 4 Hydrocycloneandscreenshiveremovalefficiency Rejectrate,% Reject Fractionation Shiveremoval thickening efficiency efficiency,% Volumetric,R v Mass,R m Qshive Reff Hydrocyclone TR90SM/13* 12.7 35.3 2.78 0.054 35.0 TR90SM/13* 7.3 22.4 2.43 0.184 25.4 TR90ST/13** 32.6 57.4 1.76 0.109 63.5 TR90ST/13** 14.7 21.1 1.44 0.143 25.0 C700* 18.2 46.5 2.54 0.743 73.9 C700* 12.1 36.4 2.99 0.738 61.9 Screen 0.1mmww/20** 10.1 46.3 5.40 0.86 nd. *Trialsperformedat0.13%consistency,**Trialsperformedat0.23%consistency,nd.Notdetermineddueto massbalanceerrors. Fractionation using multistage screening Thelowenergyprimarystagepulpcontaining57%shiveswasfractionatedusingmultistagepressurescreening toproduceacceptandrejectpulpswithaverageshivecontentsof5%and73%,respectively,Figure5.The screeningsystemwaseffectiveinseparatingtheshivesfromtheliberatedfibrewithapproximately90%ofthe shivesinthefeedpulpbeingdivertedtotherejects.

Primaryrefining Screening(Multistage) Secondaryrefining Tertiaryrefining

370 kWh/odt 1050 - 1785 kWh/odt*

56.7 5.4 17.8 4.0 - 1.0

Rm=70.2% 72.6 1050 - 2050 kWh/odt 2245 - 3515 kWh/odt Qindex =0.93 Reff =90% 71.5 10.0 - 3.0 1.9 - 0.4

*Assumesthatthetotalprimarystageenergyapplicationwasconsumedliberatingfibres Figure 5 Pulmacshivecontents(averagevaluesfromthetworuns)fortheoverallscreeningandrefining stages.

BoththeacceptsandtherejectsweredewateredusingadrumthickenerandThunepresscombination.Thefines rich accept pulp shive content increased significantly across the dewatering stage (5.4 to 17.8 %) as a considerableamountoffineswerelost.Forthispulp,theoverallyieldforthedewateringoperationwasonly67 %.Incontrast,therejectpulphadanoverallyieldof96%andwaslessaffectedbythedewateringoperationdue toitsrelativelylowfinescontent. Fibre length Theshivespresentinthefeed,acceptandrejectpulpsobtainedfromthemultistagescreeningsystemmeantthat the fibre length distributions for these pulps could not be measured directly using conventional fibre length analysers.TheBauerMcNettmassfractiondataisshowninTable5.However,thisdatamustbetreatedwith cautionasmostofthematerialretainedonthe+10and+14screenswouldhavebeenshivesratherthanliberated fibre. Theinitial feed and overall rejects producedinthisstudy hadaverageshivecontentsof57and 73%, respectively. Table 5 BauerMcNettandshivedatafortheoverallfeed,acceptandrejectpulps,beforeandafterdewatering Priortodewatering Afterdewatering Feed Accept Reject Accept Reject PulpID. A H L J M Consistency,% 44.2 0.140 1.01 35.9 36.1 BauerMcNettfines,200% 12.0 33.3 10.9 10.6 2.7 BauerMcNettlongfibre,R30% 75.7 40.1 80.8 59.7 88.6 Pulmacshivecontent,% 56.7 7.3 75.7 19.5 70.5 Toenabletheliberatedfibrelengthtobecomparedwiththatpresentinthechips,aseriesofpulpswerescreened usingthePulmacshiveanalyserwiththefibresthatpassedthroughthe0.10mmscreenplatebeingcollectedand evaluatedusingtheFiberLab TM fibrelengthanalyser.Inthiscomparison,fibreswithlengthshorterthan0.5mm wereexcludedfromtheanalysistominimisetheinfluenceoffinesonthemeanvaluesanddistributions.This wasbecauseTeryleneclothwasusedtocollectthefibresfromthePulmacanalyserandthuswouldhaveresulted in fines loss from these pulps. Also, in the case of the accept pulp, it has already been established that a substantialproportionofthefineswerelostduringthedewateringoperation. Theliberatedfibreintheoverallscreenacceptshadasimilarmeanfibrelengthandfibredistributiontothefeed pulp,Figure6.Forbothpulpstreamsapproximately60%ofthefibreswerelessthan2.0mminlength. As expected,theliberatedfibrerejectedbythescreeningsystemhadalowerproportionofshortfibrewithonly 50%ofthefibreslessthan2.0mminlength.However,themeanfibrelengthoftheoverallrejects(2.2mm)was stillsubstantiallyshorterthanthatofthekraftpulp(2.8mm)indicatingthatthereisstillaconsiderableamount offibrebreakageevenwhenaverylowenergyapplicationisusedintheprimaryrefiningstage.

100

80

60

40 Kraft

Cumulative,% Feed 20 Accept Reject

0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Fibrelength,mm Figure 6 Lengthweightedfibrelengthdistributionsoftheoverallfeed,acceptandrejectpulpandthekraftpulp producedfromthechips.

Fibre cross-sectional dimensions prior to refining Theshivesintherejectshadalumenperimeterof87.5m,whichwassubstantiallyhigherthan79.5mlumen perimeteroftheliberatedfibreinthescreenaccepts.Evenwhentheshivesremaininginthescreenacceptsand the liberated fibre remaining in the screen rejects are taken into account, there was still a large difference betweenthelumenperimetersoftherejectandacceptstreams(87.5versus80.2m),Table6. Table 6 Lumenperimeterofshivesandfreefibresintheoverallfeed,acceptandrejectpulpsforthefirstscreeningbatch PulpID. Shivecontent,% Lumenperimeter,m Shive Freefibre Massbasedaverage

Accepts J 7.3 89.2 79.5 80.2 Rejects M 75.7 87.7 86.7 87.5 The liberated fibres were fractionated by the screening system with the accept pulp containing fibres with smallerlumenperimeterandthinnerfibrewallsthanthoseintherejects,Figure7andTable7.Withinaradiata pinetree,latewoodtracheidshaveagreaterwallthicknessandasmallerperimeterthanearlywoodtracheids. However,itisalsoknownthatfibrewallthicknessandfibreperimeterincreaseasthetracheidlengthincreases frompithtobark(3).Consequently,thethinnerwallthicknessandsmallerlumenperimeteroftheacceptsis most likely related to the screens fractionating the liberated fibres on the basis of length, rather than an earlywoodlatewoodseparation.

6.50 90.0

6.00 85.0

5.50

80.0 5.00 Wallthickness,m Lumenperimeter,m

4.50 75.0 Feed Accepts Rejects Feed Accepts Rejects Figure 7 Liberatedfibreaveragewallthicknessandlumenperimeterfortheoverallfeed,acceptandreject pulps. Table 7 Liberatedfibredimensionsfortheoverallfeed,acceptandrejectpulps Feed Accepts Rejects PulpID A J M Meanlengthweightedfibrelength,mm 2.00 1.95 2.2 3 Wallarea,m² 530 496 590 Wallthickness,m 5.71 5.46 5.97 Lumenarea,m² 365 366 412 Lumenperimeter,m 81.0 79.5 86.7 Collapse(width/thickness) 1.62 1.59 1.65 Collapseresistanceindex(CRI) 4.55 4.16 4.11 Relativemodulusofinertia(RMOI) 5.10 4.46 6.28 Refining of dewatered accept and reject fibre streams Bothpulpfractionswererefinedatseveraldifferentenergyinputlevelsinasecondaryrefiningstage.Asub sampleoftherejectswasrefinedfurtherinatertiaryrefiningstage,Figure5. Refiner energy input Determining the total refiner energy input applied to each pulp fraction is complicated by the fact that the primarystagerefinerenergyinputsplitaroundthescreensisunknown.Forthisstudyitisassumedthatallthe primarystageenergyinputwentintofibreseparationandthustheprimarystageenergyinputwasaddedtothe energyappliedtotheacceptpulpinthesecondaryrefiningstage(correctedacceptenergydata).Thisapproach wasconsideredreasonablegiventhat:  Theenergyrequiredtorefinetherejectstoagivenfreenessinthesecondaryandtertiaryrefiningstages wassimilartothatrequiredbythechipsinthetwostagecontrolpulp,Figure8;  Therejectswerepredominantlyshives,whichlikethechipsusedinthecontrolpulp,consistedoffibres constrainedwithinawoodmatrix. However,itispossiblethatsomeenergywasabsorbedbytheshivesandthattheirenergydemandisslightly higher than that of chips. Given that the screen mass reject rate was 70.2%, the assumption means that the primarystage energy input of 350 kWh/odt equates to 1180 kWh/odt being applied to the accepts. The uncorrectedandcorrectedfreeness–energyinputdataareplottedinFigure8.Aftertheacceptpulpdatahad been corrected to include the primarystageenergy input,thispulprequiredslightly moreenergytoa given freenessthantherejectpulp(shives).

Uncorrected accept energy data Corrected accept energy data 800 Control 800 Control Rejects2° 600 600 Rejects2° Rejects3° Rejects3° Acceptsraw 400 400 Acceptscor

200 200 Freeness,CSFmL Freeness,CSFmL

0 0 0 1000 2000 3000 4000 0 1000 2000 3000 4000 Energyinput,kWh/odt Energyinput,kWh/odt Figure 8 Freenessasafunctionofenergyinputforthetwostagecontrolpulp,acceptsandrejects(shives).The uncorrectedacceptenergydataonlyincludestheenergyappliedinthesecondaryrefiningstage.The correctedacceptenergydataassumesthatalltheprimarystageenergyapplicationof350kWh/odtwas appliedtotheaccepts.Theprimarystageenergyinputisnotincludedintherejectdata,onlythe secondary(2°)andtertiary(3°)energyinputs.

Thefreenessenergyinputdataisfurthercomplicatedbythefineslossduringthedewateringstage,particularly fortheacceptpulp which hadarelativelyhighfinesloss.Todeterminetheimpactofthe finesloss on the freenessoftherefinedpulps, whitewater fromtherespectivedewateringoperation wasaddedbackto three acceptandthreerejectpulpsinthecorrectproportiontocompensateforthefinesloss.

700 Rejects 600 Rej+fines 500 Accepts Acc+fines 400

300

Freeness,CSFmL 200

100

0 500 1000 1500 2000 2500 3000 3500 Energyinput,kWh/odt Figure 9 Freenessasafunctionofenergyinputforthetwostagecontrolpulp,acceptsandrejects(shives)with andwithoutthefinesfromtherespectivedewateringoperationsbeingaddedbacktotherefinedpulps. Theacceptenergydataassumesthatalltheprimarystageenergyapplicationof350kWh/odtwas appliedtotheaccepts.Theprimarystageenergyinputisnotincludedintherejectdata.

Asexpected,theadditionofwhitewaterresultedinamuchgreaterdecreaseintheacceptpulpfreenessat a givenenergyinputcomparedtothatobservedfortherejectpulp,Figure9.Whencomparedat130CSFafter whitewateraddition,theenergydemandoftheacceptpulpwas2620kWh/odtcomparedto3200kWh/odtfor therejectpulp(adifference of580kWh/odt).Thisdifferenceinenergydemandindicatesthatifthe refined acceptsandrefinedrejectswererecombinedbasedonthescreenmassrejectrate,theenergyconsumption to producea130CSFpulpwouldbe3025kWh/odt,whichissimilartothatofthecontrolpulp. Influence of refining on fibre dimensions ThefibredimensionsoftheliberatedfibresareshowninTable8.Itshouldbenotedthattheenergyinputdata quotedinTable8andFigures9to13werecalculatedbasedontheassumptionthatalltheprimarystageenergy wasappliedtotheacceptpulp.Itshouldalsobenotedthatthefreenessvalueshavenotbeencorrectedto compensateforthefineslostduringdewatering.

Table 8 Liberatedfibredimensionsoftherefinedacceptsandrefinedrejects Sample Shive Fibre Wall Wall Lumen CRI RMOI Collapse Energy Freeness content length area thickness perimeter W/T input lwl % mm m² m m kWh/odt CSF

Control A,Feed* 56.7 530 5.71 81.0 4.55 5.10 1.62 353 756 185 4.24 1.68 504 5.27 84.4 3.67 4.90 1.85 1313 607 187 1.10 1.74 512 5.33 83.7 3.96 5.47 2.04 2242 326 Accepts J* 16.0 496 5.46 79.5 4.16 4.46 1.59 1186 727 O1 4.00 1.42 542 5.82 80.8 4.91 5.29 1.80 1877 564 O2 2.76 1.5 500 5.45 82.1 3.83 4.53 1.76 2188 452 O3 1.56 1.44 466 5.34 77.9 4.89 3.99 1.84 2488 324 O4 1.04 1.35 464 4.97 81.9 3.67 4.74 2.06 2619 214 Rejects M* 72.4 590 5.97 86.7 4.11 6.28 1.65 0 758 P1 9.66 519 5.26 87.6 3.16 5.45 1.83 1054 667 P2 3.98 480 5.12 84.3 3.38 4.81 1.93 1175 614 Q1 5.16 1.77 524 5.23 87.7 3.68 5.75 1.83 1574 539 Q2 1.9 1.7 511 5.14 89.4 3.22 5.41 2.13 2243 289 Q3 0.92 1.63 492 4.79 91.5 2.82 6.31 2.23 2684 152 Q4 0.7 1.59 491 4.85 92.9 2.72 5.84 2.16 3263 119 Q5 0.36 1.54 463 4.92 87.7 3.12 5.21 2.04 3514 68

*Thesefibresamplescontainaconsiderablequantityofshives.Giventhis,thedimensionsofthefibrescontainedwithintheshives(see Table6)mustalsobeconsideredalongsidethoseoftheliberatedfibresreportedinthistable. Thedifferenceinfibrelengthbetweentheacceptsandrejectsobservedafterthescreeningoperation(Table7) wasmaintainedduringsecondaryandtertiaryrefiningofthesepulps.Therefinedrejectshaveaconsiderably greaterfibrelengththantherefinedacceptswhencomparedateitheracommonenergyorfreeness,Figure10. Inthecaseoftheacceptpulp,thefibrelengthincreasedfrom1.4to1.5mmduringtheinitialstagesofsecondary refiningbeforedecreasing,possiblyatafasterratethanobservedfortherejects.Althoughtheinitialincrease maybesimplyexperimentalerror,itismorelikelythatitcanbeattributedtolongfibresbeingreleasedfromthe shives(whichmadeup18%ofthedewateredscreenacceptpulp). Thelumenperimeteroftheliberatedfibreintherefinedrejectsisapproximately6mgreaterthanthatofthe liberatedfibreintherefinedaccepts,Figure11.Thisisconsistentwiththedifferenceinlumenperimeter observedforthescreenrejectsandscreenacceptspriortorefining,Table6.Thecontrol,rejectsandacceptsall showanincreaseinlumenperimeterwithincreasingenergyapplicationwhichisconsistentwithlargeperimeter fibresbeingretainedintheshivesaftertheinitialprimaryrefiningstageandthenbeingreleasedinthe subsequentsecondaryandtertiaryrefiningoperations.Theacceptpulpappearedtoshowthesmallestincreasein lumenperimeterforagivenenergyapplication.Althoughthisisconsistentwiththelowershivecontentofthe acceptpulp,thereissomescatterintheacceptlumenperimeterdatafortheenergyapplicationsabove2000 kWh/odt. Correctedacceptenergydata Correctedacceptenergydata 2 2

1.8 1.8

1.6 1.6

1.4 Control 1.4 Rejects

Fibrelength,mm 1.2 1.2 Accepts FibreLength,mm 1 1 0 1000 2000 3000 4000 0 200 400 600 800 Energyinput,kWh/odt Freeness,CSFmL Figure 10 Lengthweightedfibrelengthofthecontrol,refinedacceptandrefinedrejectpulpsasafunctionof energyinputandfreeness.

Correctedacceptenergydata Correctedacceptenergydata 95 6.0

90 5.5

85 5.0

Control 80 4.5 Rejects Wallthickness,m

Lumenperimeter,m Accepts 75 4.0 0 1000 2000 3000 4000 0 1000 2000 3000 4000 Energyinput,kWh/odt Energyinput,kWh/odt Figure 11 Lumenperimeterandwallthicknessofrefinedacceptsandrejectspulps.

Thewallthicknessoftheliberatedfibreinthecontrolandrejectpulpsdecreasedwithincreasingrefiningenergy, Figure11.Thisdecreaseisexpectedandcanbeattributedtoacombinationoflargeperimeter,thinnerwalled fibresbeingreleasedfromtheshivesandmaterialbeingremovedfromtheouterwallsoftheliberatedfibres duringrefining.Incontrast,theacceptspulpshowsanincreaseinwallthicknessduringtheinitialstagesof secondaryrefining(from1200to1800kWh/odt)followedbyarapiddecreaseinwallthicknessasadditional energywasapplied.Thisinitialincreaseinwallthicknessislikelytoberelatedtothereleaseoflongfibresfrom theshives(whichmadeup18%ofthedewateredaccepts).Whentheacceptpulpwasrefined,relativelylong fibreswouldhavebeenreleasedfromtheshiveswhichhavegreaterlumenperimeterandpossiblygreaterwall thicknessthantheliberatedfibresalreadyintheaccepts.Aftertheinitialincrease,thewallthicknessofthe acceptfibresdecreasedrapidlycomparedtotherejects.Therearetwopossibleexplanationsforthisrapid decrease:  Itispossiblethatthelonger(andhencethickerwalled)fibresreleasedfromtheshivesarepreferentially brokenwhenadditionalrefiningenergyisappliedintherefiningsystem.Thisexplanationissupported bythepossiblerapiddecreaseinfibrelengthobservedinFigure10.  Alternatively,itmaybethatsmallerperimeteracceptfibresarelesslikelytocollapseandrebound whenimpactedbyarefinerbarthanthelargerperimeterrejectfibres,Figure12.Consequently,the acceptfibresmaynothavebeenabletoabsorbtheenergyappliedbytherefinerbarandmorematerial mayhavebeenremovedfromthefibrewallthanfortherejectfibre. The collapse resistance index (CRI) and relative modulus of inertia (RMOI) data were calculated for the liberatedfibresinthecontrol,rejectandacceptpulpsbasedontheircrosssectionaldimensions(seeAppendix 2).Althoughthereissomescatterassociatedwiththeacceptpulpdata,thesecalculatedvaluessuggestthatthe accept fibres are less compliant in crosssection (higher CRI values), but more flexible in the longitudinal direction(lowerRMOIvalues)thanthecontrolandrejectfibres,Figure12.Thefibrecollapse(asexpressedasa ratio of the fibre width/fibre thickness) increased with increased energy input for the liberated fibre in both rejectsandaccepts,Table8.Whencomparedatagivenenergyinputorfreeness,therejectfibreshaveagreater collapsepotentialthantheacceptfibres.

Correctedacceptenergydata Correctedacceptenergydata 6.0 6.5 Control 6.0 5.0 Rejects 5.5 Accepts 4.0 5.0 CRI

3.0 RMOI 4.5 4.0 2.0 3.5 1.0 3.0 0 1000 2000 3000 4000 0 1000 2000 3000 4000 Energyinput,kWh/odt Energyinput,kWh/odt Figure 12 Collapseresistanceindex(CRI)andrelativemodulusofinertia(RMOI)ofthecontrol,acceptand rejectliberatedfibreasafunctionofenergyinput. Fibre fraction properties - Campbell sheets Campbellsheetswereproducedtodeterminethepropertiesofthelongfibreandmiddlefractionsoftherefined screen accept and refined reject (shive) samples. The degree of consolidation (collapse behaviour) of the calenderedhandsheetsproducedfromthesesampleswasofparticularinterest.Theenergyinput,freenessand fibrepropertydataoftheacceptandrejectpulpsthatprovidedtheBauerMcNettR1430andR50100fractions fortheCampbellsheetanalysisaregiveninTable9.Graphsofsheetdensityandtensilestrengthasafunctionof energyinputfortheCampbellsheetsproducedwith25%finesadditionsaregiveninFigure13.Thesegraphs showthesametrendsasthoseobtainedfortheCampbellsheetsproducedwith15%and35%finesaddition. Generally,therefinedacceptandrefinedrejectpulpfractions(R1430&R50100)hadsimilarsheetdensities whencomparedatacommonenergyinput,Figure13.Theseresultsareunexpectedasthecollapseresistance indexandcollapsepotentialdatasuggestthattheacceptfibresarelesscollapsiblethantherejectfibres,Figure 12.Consequently,theacceptfibreswouldhavebeenexpectedtohavealowersheetdensityatagiven fines contentandenergyinput.ThefactthattheCampbellsheetsdonotshowasubstantialdifferenceinsheetdensity forthetwofibretypesmaybeduetothegreatercrosssectionalcollapseoftherejectfibresbeingmaskedby theirgreaterlongitudinalstiffness(higherRMOI,Figure12).Alternatively,itmaybethatwith1877kWh/odtof energybeingappliedtotheacceptfibres,otherfactorssuchasfibrewalldamageordelaminationhaveagreater effectonsheetconsolidationthanthefibreperimeterandwallthickness. Table 9 PropertydataforrefinedacceptsandrejectspulpsthatprovidedthefibrefractionsfortheCampbellsheet analysis

Accepts Rejects PulpID O1 P1 Q1 Q3 Energy,kWh/odt 1877 1054 1574 2684 Freeness,CSFmL 564 667 539 152

Fibre property data Lumenperimeter,m 80.8 87.6 87.7 91.5 Wallthickness,m 5.82 5.26 5.23 4.79 CRI 4.91 3.16 3.68 2.82 RMOI 5.29 5.45 5.75 6.31 Collapse,(width/thickness) 1.80 1.83 1.83 2.23 800 Acc50/100 18 Acc50/100 Rej50/100 16 700 Rej50/100 Acc14/30 14 Acc14/30 Rej14/30 600 12 Rej14/30

Sheetdensity,kg/m³ 10 500 Tensileindex,Nm/g 1000 1500 2000 2500 3000 8 Energyinput,kWh/odt 1000 1500 2000 2500 3000 Energyinput,kWh/odt Figure 13 SheetdensityandtensileindexasafunctionofenergyinputforcalenderedCampbellsheets producedwith25%finesaddition. ThecalenderedrejecthandsheetsproducedusingtheR1430andR50100fractionshadgreatertensilestrength thanthecorrespondingaccepthandsheetswhencomparedatagivenenergyinput.Thefactthattherejectfibres producedCampbellsheets withhighertensilestrengtheventhoughtheyhadasimilarsheetdensityto those producedwiththeacceptfibres,indicatesthattherejectfibremayhavebeenmorefibrillatedorhad greater surfacedevelopment.

Handsheet properties The sheet density and tensile strength of handsheets produced from the control, refined rejects and refined acceptsarepresentedinFigure14andFigure15,respectively.Thehandsheetsfortheacceptandrejectpulps wereproducedafterwhitewaterfromtherespectivedewateringoperationshadbeenaddedbacktothesepulps inthecorrectproportionstocompensateforthefinesloss. Theacceptspulpshadasimilarsheetdensitytothecontrolandrejectpulpwhencomparedatagivenenergy input, Figure 14. However, the accepts also had a substantially lower fibre length and higher fines content, Figure10.Consequently,whenthesepulpsarecomparedatagivenfreeness,theacceptshaveanoticeablylower sheetdensitythanboththecontrolpulpandtherejects.Thisresultislikelyacombinationof:1)the poorer packing ability of the material recombined from the accepts dewatering stage; and 2) the greater collapse resistanceoftheacceptfibrescomparedtothosethanrejectfibres,Table9. Asimilartrendwasobservedfortensileindexofthecontrolpulp,refinedrejectsandrefinedaccepts,Figure15. However,inthiscasetheacceptpulphadlowertensilestrengththanthecontrolandrejectpulpswhencompared atbothagivenenergyinputandagivenfreeness.Itappearsthattheshorterfibredacceptpulpshaveparticularly poorbondingandconfirmstheCampbellsheetdatawheretheacceptlongandmiddlefibrefractionsalsohad lowerbonding strengththantherejects.However,thesetensiledifferencesaregreaterforthestandardsheets comparedtotheCampbellsheets,indicatingthattheacceptfinesmayalsobeofpoorbondingquality(middle lamellafromprimarystage).

400 400 Control Rej+fines 300 300 Acc+fines

200 200 Sheetdensity,kg/m³ Sheetdensity,kg/m³ 100 100 800 1800 2800 3800 0 200 400 600 800 Energyinput,kWh/odt Freeness,CSFmL Figure 14 Sheetdensityasafunctionofenergyinputandfreenessforthecontrol,refinedrejectsandrefined acceptsforstandardhandsheets. 50 50 Control

40 40 Rej+fines Acc+fines 30 30

20 20 10 10 Tensileindex,Nm/g Tensileindex,Nm/g 0 0 800 1800 2800 3800 0 200 400 600 800 Energyinput,kWh/odt Freeness,CSFmL Figure 15 Tensileindexasafunctionofenergyinputandfreenessforthecontrol,refinedrejectsandrefined acceptsforstandardhandsheets. CONCLUSIONS Thelowenergyprimarystagefeedpulpcontaining57%shiveswasfractionatedwithamultistagescreening systemtoproduceacceptspulpscontaining5%shivesandrejectswith73%shives.However,processingpulp streamswithhighshivecontents(>50%)isdifficultasthistypeofpulpdewatersandthickensveryquickly resultinginblockedvalvesandpipelines.Toovercomethisproblem,ascreenfeedconsistencyofapproximately 0.5%wasused.Toachievetheshiveseparationdetailedabove,theoverallscreeningsystemmassrejectrate was70%,theshivefractionationefficiency(Qindex)was0.93,andtheshiveremovalefficiencywas90%. Thekeyobservationswere:  Pressurescreensaremore“efficient”atremovingshivesthanhydrocyclonesfromthesinglestagelow energyTMPpulp.  The fibre dimension data obtained from the screening stage provided support for this processing concept whereearlywoodandlatewoodfibresareseparatedastheshives(rejectedbythescreening system) whichcontained fibres withanaveragelumenperimeterof88m,andtheliberatedfibres (acceptedbythescreens)whichhadanaveragelumenperimeterof80m.  Thedifferencesinfibrelengthandfibrelumenperimeterobservedafterfractionationweremaintained whentheliberatedfibre(accepts)andshives(rejects)weregivenadditionalrefiningtreatment. However,thefibresfromtherefinedshivesconsolidatedtothesamesheetdensity,buthadhigher tensilestrengththanthefibresfromtherefinedliberatedfibre.Thisindicatesthattheearlywoodfibrein therefinedshivesmaybemorefibrillatedorhavegreatersurfacedevelopmentthanthelatewoodfibre intherefinedliberatedfibrestream.  Thecrosssectionaldimensionsoftheacceptandrejectfibresindicatesthattheacceptfibresareless compliantincrosssection,butmoreflexibleinthelongitudinaldirectionthantherejectfibres. However,incontrastthesheetdensitydataobtainedfromCampbellsheetsproducedusingacceptand rejectfibresdidnotprovidesupportingevidencefortheacceptfibreshavingalowercollapsepotential thantherejectfibre. Thesefindingsindicatethatthisnewprocessstrategycanenablemoreeffectivetreatmentoffibretypesbasedon theirdimensions,andincreasetheabilitytodirectagivenfibretypetothemostappropriateenduse.However, furtherworkisrequiredtodevelopspecificprocessingstrategiesfortreatingtheseparatefibrestreams. REFERENCES

(1) Murton, K.D., Corson, S.R. and Duffy, G.G. “TMP refining of radiata pine earlywood and latewood fibres”, In proceedings of the International Mechanical Pulping Conference, 361372, Helsinki, June 2001 (2) Murton, K.D. and Richardson, J.D. “The defibration characteristics of primarystage TMP– A characterisationofshivesandfreefibres”, Proceedings of Appita annual Conference ,Melbourne2006 (3) Cown,D.J.,“Variationintracheiddimensioninthestemofa26yearoldradiatapinetree”,AppitaJ. 28(4)p237,January1975. (4) Kibblewhite, R.P. and Bailey, D.G., “Measurement of fibre crosssection dimensions using image processing”,AppitaJ.41(4)p297,July1988. (5) Wakelin, R.F., Jackman, J.K. and Bawden, A.D., “Changes in Mechanical Pulp Fibre Crosssectional DimensionDistributionsCausedbyScreens,HydrocyclonesandRejectRefining”, Proceeding of the 53 rd Appita Annual Conference, p211220, Rotorua1999. APPENDIX 1 – Refiner process conditions

Table 10 ControlpulpTMPprocessconditions.

Presteamingtemperature 80°C Presteamingtime 5min Preheatingpressure 0.5bar Preheatingtemperature 110°C Preheatingresidencetime 3.0min Primaryrefining Secondaryrefining Inletpressure 1.0bar 1.0bar Outletpressure 1.2bar 1.5bar Consistency 3538% 3538% Feedrate 10odkg/min 10odkg/min Motorload 750kW 550–1100kW Specificenergy ~1,250kWh/odt. 900–1800kWh/odt. Freeness ~600CSF ~400–100CSF Table 11 Rejectrefiningprocessconditions

Inletpressure 1.0bar Outletpressure 1.5bar Consistency 3538% Feedrate 10kg.od/min Motorload ~500–1100kW Specificenergy ~800–1,800kWh/odt. Freeness 150to500CSF APPENDIX 2 - TMP Pulp Testing Methods Latency was removed from the pulps in accordance with AS/NZ 1301.215S 1997. Freeness and fibre classification were based on AS/NZS 1301.206s1988 and Tappi standard T233os75, respectively. Shive contentwasdeterminedonaPulmacshiveanalyserfittedwitha0.10mmscreenplate. Accept fibre dimensions Driedandrewettedacceptfibresamplesweredehydratedthroughanacetoneseriespriortoimpregnationwith Spurr'sresinaccordingtothemethodofKibblewhite(4).Resincapsulesweremicrotomedintosectionsof2to3 minthicknessusingglassknivesandaLeicaUltracut.Thesesectionswerestainedusinga50:50solutionof Azur2andmethyleneblue,andweremountedinEUKITT. Foreachsample,atotalof200fibresweremeasuredfortheircrosssectionaldimensionsofwidth,thickness, centreline perimeter, and wall area, from one sectionofeachofthe fourreplicatecapsules.Thus,the mean estimatesofeachfibredimensionwerebasedonthemeasurementof200fibres.Fromthesemeasurements,the population distributions for fibre width, fibre thickness, fibre wall area, fibre wall thickness and, widthto thicknessratiowerealsodetermined. Width,W

Thickness,T

Wallthickness,W t

Figure 16 Fibrecrosssectiondimensions. Thefibrewallareaandperimeterwereusedtocalculatecollapseresistanceindex,CRIandrelativemomentof inertia,RMOIasdefinedbyWakelin et al. (5):

  3   4 4 π       1  p Aw p Aw CRI =1000 * RMOI =  +  −  −    p 2  2 * 33113  2π 2 p   2π 2 p   1 +    π  .Aw  Where: p=fibrecentrelineperimeter Aw=fibrewallarea Shive dimensions Thecrosssectionaldimensionsofshivesweremeasuredusingthefollowingprocedure.Theshivesampleswere obtainedbyfractionatingthepulpsampleinaPulmacshiveanalyser fitted witha0.1mm screenplate. The shivesobtainedweredehydratedusinganethanolseries,embeddedinaresinblock(LRwhiteresin),sanded smoothandstainedwithacridineorange.ImagesoftheshivecrosssectionswerecapturedonaLeicaTCSNT confocalmicroscope.Optimas6.5imageprocessingsoftwarewasusedtodeterminetheshivearea,wallarea, lumenareaandlumenperimeter,foraminimumof100shivesfromeachpulpsample.Themeanvaluesofthese parameterswerealsodeterminedforeachshive. Campbell sheet analysis Todetermineiffibrequalityoftheacceptsdifferedfromthatoftherejects,Campbellsheetswereproducedwith thefibrefractionsfromselectedrefinedrejectandrefinedacceptpulpsusingthesquaresheetmachineoperated withoutfinesrecirculation. ABauerMcNettwasusedtofractionatetheselectedsamplesusingthe10/14/30/50/100meshscreens.The+10 fraction was discarded, the +14 and +30 fractions were combined and the +50 and +100 fractions were combined.SeveralBauerMcNettscreeningrunswereneededforeachpulpsampletoobtainsufficientfibrefor sheetmaking.“Standard”TMPfineswereobtainedbyscreeningacombinationofconventionallowfreeness TMPpulps.Screeningwasperformedusinga100mDSMbowscreen.Threefibre/finesratiosof85/15,75/25 and65/35byweightwereevaluatedforeachpulpsample.Bothcalenderedanduncalenderedhandsheetswere produced.