New-Onset-Right-Hypertropia.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

New-Onset-Right-Hypertropia.Pdf New-Onset Right Hypertropia: A Sequela of Inflammatory Orbital Pseudotumor I. Case Hx: A 45 year old African American male presents as a walk-in with a new vertical deviation of his right eye. He reports slow onset over the past six months, gradually worsening. He notes constant vertical diplopia. He denies eye pain. His comprehensive eye exam six months earlier was unremarkable. No vertical deviation was noted. A mild prescription was released for distance and near. Medical conditions include carpal tunnel, osteoarthritis, and poorly controlled Type 2 diabetes mellitus with a fluctuating HbA1c. He has a history of Bell’s Palsy affecting the right side of his face, but the condition has been resolved for fifteen years without recurrence. The patient is currently taking metformin and tramadol for joint pain. II. Pertinent findings: The patient was afebrile without nausea or fatigue. No recent illnesses were noted. Clinical examination indicated a vertical hypertropia OD greater than 40 prism diopters. Pupils were normal. EOMs indicated incomplete depression OD in downgaze and slight abduction limitations OD. CVFs were full to finger counting OD, OS. Hertel exophthalmometry was 30 OD, 25 OS. Color vision was normal. On slit lamp exam, 2-3+ periorbital edema OD was noted without tenderness. There was 2+ conjunctival chemosis with trace injection OD. No follicles or papillae were noted. The patient’s left eye was completely uninvolved. No anterior chamber reaction was noted OD,OS, and IOP was 23 mmHg OD, 18 mmHg OS. Upon dilated examination, all posterior health was unremarkable. No nerve edema or abnormalities were noted OD or OS. The patient was sent for an MRI with and without contrast. A multisequential multiplanar MRI of the head was obtained. The radiology report indicated proptosis OD with enlargement of the superior and lateral recti. See figure 1. The left eye was normal. A 1.5 cm retention cyst was noted in the right maxillary sinus. See figure 2. All other sinus and cerebral structures were normal. III. Differential Diagnosis: The differential diagnoses were inflammatory orbital pseudotumor (idiopathic orbital inflammatory syndrome) versus infectious orbital cellulitis. The patient has a history of normal thyroid levels, so thyroid eye disease was not a concern. The patient had a history of chronic sinusitis, a common underlying cause of orbital cellulitis. The co-managing ophthalmologist also consulted an oculoplastics ophthalmologist to consider conducting a biopsy to rule out lymphoma if conservative treatment was ineffective. The biopsy was intended to confirm if the muscle bellies were enlarged, or infiltrated with invasive cell types. IV. Diagnosis and Discussion: Inflammatory orbital pseudotumor generally presents with unilateral periorbital edema, proptosis, redness, double vision, pain, and blurred vision. It can appear as acute, recurrent, or chronic in nature.1 The inflammation is non-infectious and space-occupying, with no systemic association.2 Restricted motility is frequently noted, as EOMs are inflamed and inhibited. Involvement of the EOMs is noted on imaging as enlarged muscle bellies and associated tendons. The subcategory of inflammatory orbital pseudotumor that involves the muscles versus general orbital tissue is called orbital myositis.1 Psuedotumor is the third most prevalent inflammatory orbital condition, following thyroid eye disease and lymphoproliferative disease.3 New-Onset Right Hypertropia: A Sequela of Inflammatory Orbital Pseudotumor Important tests to conduct for diagnosis include a history to rule out malignancy, exophthalmometry, IOP, and a dilated view of the nerve for edema from a space-occupying lesion. A fever noted in office indicates active infection, as with an orbital cellulitis. Blood work to consider includes an ESR, CBC with differential, ANA, BUN, creatinine (before imaging with contrast), and fasting blood sugar prior to beginning the patient on oral steroids. A CBC with differential indicates active infection, while an ESR or ANA will provide information regarding inflammation. If concern for granulomatous conditions is present, a chest x-ray with an ACE test is pertinent. Because this condition is non-infectious, the mainstay of treatment is oral steroids to decrease inflammation. A biopsy of orbital tissue may be conducted to rule out malignancy if the patient is not responsive to steroid treatment.1 V. Treatment, management: The patient was started on 80 mg of oral prednisone daily with 20 mg of omeprazole for prostaglandin protection, as is the standard of care1. He was monitored at one week for progress. Exophthalmometry readings indicated 2mm of improvement in proptosis OD at one week. The abduction and depression deficits began to decrease after two weeks of steroid treatment, as function to the lateral rectus and superior rectus were gradually restored. The frequency of the right hypertropia became more intermittent instead of constant by week two. Diplopia lessened. The patient was followed weekly for follow up and progress evaluation until symptoms resolved entirely. Four weeks of oral prednisone treatment was ultimately required to decrease the orbital inflammation. The length of this treatment was longer than anticipated, but improvement in the condition at weekly intervals indicated treatment was working, albeit gradually. Once the proptosis and periorbital edema had subsided, the patient was placed on a four-week prednisone taper to prevent rebound inflammation. VI. Conclusion: Inflammatory orbital conditions may pose a threat to the health of a patient, or be indicative of serious systemic health concerns. Access to imaging and co-management with ophthalmology ensures the management of the condition are seamless, and treatment is maximized for quick resolution. References: 1. The Wills Eye Manual : Office and Emergency Room Diagnosis and Treatment of Eye Disease. 6th Edition. Philadelphia :Lippincott, 2012. 2. Shenoy C, Sattur S. A woman with orbital myositis. CMAJ : Canadian Medical Association Journal. 2007;176(2):174. 3. Weber AL, Romo LV, Sabates NR. Pseudotumor of the orbit: clinical, pathologic, and radiologic evaluation. Radiol Clin North Am 1999;37:151-68. .
Recommended publications
  • Vision Screening Training
    Vision Screening Training Child Health and Disability Prevention (CHDP) Program State of California CMS/CHDP Department of Health Care Services Revised 7/8/2013 Acknowledgements Vision Screening Training Workgroup – comprising Health Educators, Public Health Nurses, and CHDP Medical Consultants Dr. Selim Koseoglu, Pediatric Ophthalmologist Local CHDP Staff 2 Objectives By the end of the training, participants will be able to: Understand the basic anatomy of the eye and the pathway of vision Understand the importance of vision screening Recognize common vision disorders in children Identify the steps of vision screening Describe and implement the CHDP guidelines for referral and follow-up Properly document on the PM 160 vision screening results, referrals and follow-up 3 IMPORTANCE OF VISION SCREENING 4 Why Screen for Vision? Early diagnosis of: ◦ Refractive Errors (Nearsightedness, Farsightedness) ◦ Amblyopia (“lazy eye”) ◦ Strabismus (“crossed eyes”) Early intervention is the key to successful treatment 5 Why Screen for Vision? Vision problems often go undetected because: Young children may not realize they cannot see properly Many eye problems do not cause pain, therefore a child may not complain of discomfort Many eye problems may not be obvious, especially among young children The screening procedure may have been improperly performed 6 Screening vs. Diagnosis Screening Diagnosis 1. Identifies children at 1. Identifies the child’s risk for certain eye eye condition conditions or in need 2. Allows the eye of a professional
    [Show full text]
  • Updates on Myopia
    Updates on Myopia A Clinical Perspective Marcus Ang Tien Y. Wong Editors Updates on Myopia Marcus Ang • Tien Y. Wong Editors Updates on Myopia A Clinical Perspective Editors Marcus Ang Tien Y. Wong Singapore National Eye Center Singapore National Eye Center Duke-NUS Medical School Duke-NUS Medical School National University of Singapore National University of Singapore Singapore Singapore This book is an open access publication. ISBN 978-981-13-8490-5 ISBN 978-981-13-8491-2 (eBook) https://doi.org/10.1007/978-981-13-8491-2 © The Editor(s) (if applicable) and The Author(s) 2020, corrected publication 2020 Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifc statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Care of the Patient with Accommodative and Vergence Dysfunction
    OPTOMETRIC CLINICAL PRACTICE GUIDELINE Care of the Patient with Accommodative and Vergence Dysfunction OPTOMETRY: THE PRIMARY EYE CARE PROFESSION Doctors of optometry are independent primary health care providers who examine, diagnose, treat, and manage diseases and disorders of the visual system, the eye, and associated structures as well as diagnose related systemic conditions. Optometrists provide more than two-thirds of the primary eye care services in the United States. They are more widely distributed geographically than other eye care providers and are readily accessible for the delivery of eye and vision care services. There are approximately 36,000 full-time-equivalent doctors of optometry currently in practice in the United States. Optometrists practice in more than 6,500 communities across the United States, serving as the sole primary eye care providers in more than 3,500 communities. The mission of the profession of optometry is to fulfill the vision and eye care needs of the public through clinical care, research, and education, all of which enhance the quality of life. OPTOMETRIC CLINICAL PRACTICE GUIDELINE CARE OF THE PATIENT WITH ACCOMMODATIVE AND VERGENCE DYSFUNCTION Reference Guide for Clinicians Prepared by the American Optometric Association Consensus Panel on Care of the Patient with Accommodative and Vergence Dysfunction: Jeffrey S. Cooper, M.S., O.D., Principal Author Carole R. Burns, O.D. Susan A. Cotter, O.D. Kent M. Daum, O.D., Ph.D. John R. Griffin, M.S., O.D. Mitchell M. Scheiman, O.D. Revised by: Jeffrey S. Cooper, M.S., O.D. December 2010 Reviewed by the AOA Clinical Guidelines Coordinating Committee: David A.
    [Show full text]
  • Strabismus: a Decision Making Approach
    Strabismus A Decision Making Approach Gunter K. von Noorden, M.D. Eugene M. Helveston, M.D. Strabismus: A Decision Making Approach Gunter K. von Noorden, M.D. Emeritus Professor of Ophthalmology and Pediatrics Baylor College of Medicine Houston, Texas Eugene M. Helveston, M.D. Emeritus Professor of Ophthalmology Indiana University School of Medicine Indianapolis, Indiana Published originally in English under the title: Strabismus: A Decision Making Approach. By Gunter K. von Noorden and Eugene M. Helveston Published in 1994 by Mosby-Year Book, Inc., St. Louis, MO Copyright held by Gunter K. von Noorden and Eugene M. Helveston All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the authors. Copyright © 2010 Table of Contents Foreword Preface 1.01 Equipment for Examination of the Patient with Strabismus 1.02 History 1.03 Inspection of Patient 1.04 Sequence of Motility Examination 1.05 Does This Baby See? 1.06 Visual Acuity – Methods of Examination 1.07 Visual Acuity Testing in Infants 1.08 Primary versus Secondary Deviation 1.09 Evaluation of Monocular Movements – Ductions 1.10 Evaluation of Binocular Movements – Versions 1.11 Unilaterally Reduced Vision Associated with Orthotropia 1.12 Unilateral Decrease of Visual Acuity Associated with Heterotropia 1.13 Decentered Corneal Light Reflex 1.14 Strabismus – Generic Classification 1.15 Is Latent Strabismus
    [Show full text]
  • Alternating Hyperphoria* by R
    Br J Ophthalmol: first published as 10.1136/bjo.38.10.591 on 1 October 1954. Downloaded from Brit. J. Ophthal. (1954) 38, 591. ALTERNATING HYPERPHORIA* BY R. A. CRONE From the Ophthalmological Clinic, University of Amsterdam (Director: Prof. A. Hagedoorn) THE original aim of this investigation was the classification of cases of hyper- tropia and hyperphoria. Much more frequently than we had expected, we found alternating hyperphoria, and almost all the cases of hypertropia which were not clearly of a paretic nature proved to be complicated by this pheno- menon. When a large number of cases of hypertropia and hyperphoria had been examined, it became evident that a definite syndrome was present in the majority, alternating hyperphoria being the dominating feature. The material was provided by the patients of the Amsterdam Motility Clinic. Alternating hyperphoria proved to be so frequent that more than one hundred cases were noted in 18 months. Methods of Examination Most of the patients were examined several times. Special attention was paid copyright. to hereditary factors, to the time when squinting was first observed, and to nystagmus. The horizontal angle of squint and the degree of hypertropia were measured by the method ofreflex images and a tangent-screen. Quantitative data concerning the vertical angle of squint seldom came within the scope of this study. The following directions of gaze were examined: (1) Primary direction of gaze, also with head tilted to the right and to the left. (2) Looking to the right and to the left. http://bjo.bmj.com/ (3) Looking upwards and downwards.
    [Show full text]
  • Eye Movements and Vestibular Function in Critical Care, Emergency, and Ambulatory Neurology (Level 2)
    5th Congress of the European Academy of Neurology Oslo, Norway, June 29 - July 2, 2019 Teaching Course 15 Eye movements and vestibular function in critical care, emergency, and ambulatory neurology (Level 2) Eye Movements in muscles, nerves, neuromuscular junction, and functional neurological disorders Alessandra Rufa Siena, Italy Email: [email protected] 1 Eye movements and vestibular function in critical care, emergency, and ambulatory neurology Eye Movements in nerves, muscles, neuromuscular junction, and functional neurological disorders Alessandra Rufa, Siena, Italy Conflict of Interest In relation to this presentation and manuscript: ❑ the Author has no conflict of interest in relation to this manuscript. 2 Globe Rotates around the Three Axes FICK’S AXES • X AXIS: NASAL-TEMPORAL • Y AXIS: POSTERIOR-ANTERIOR • Z AXIS: SUPERIOR-INFERIOR • These axes intersect at the centre of rotation where also passes an immaginary coronal plane: the listing plane • Globe rotates right and left (adduction/abduction) on vertical axis Z • Globe rotates up and down (elevation /deprssion) on orizontal axis X • Globe makes torsional movements (intorsion/extorsion) on the antero- posterior axis Z Agonist Any particular EOM producing specific ocular movement (right LR abduction) Synergists Muscles of the same eye that move the eye in the same direction (Right SR and IO for elevation) Antagonists A pair of muscles in the same eye that move the eye in opposite direction (Right LR and MR) Yoke Muscles Pair of muscles one in each eye, that produce conjugate ocular movements (right LR and left MR in destroversion). 3 Sherrington law of the reciprocal innervation whenever an agonist receives an imput to contract, an equivalent inhibitory impulse is sent to the antagornist muscle Hering law of equal innervation or motor correspondence.
    [Show full text]
  • List of Common Eye Conditions in Children
    List of Common Eye Conditions in Children Amblyopia: Amblyopia, also known as lazy eye, is reduced vision in an eye that results from misalignment of the eyes (strabismus), a need for glasses (refractive error), or disruption of light passing through the eye (e.g. pediatric cataract). If recognized early (preschool years), amblyopia generally responds well to treatment. If recognized later (after 9-10 years of age), amblyopia is much more difficult to treat and the child may have permanent vision loss. Signs and symptoms to watch for include misaligned eyes, squinting one eye, bumping into objects or other signs of poor depth perception, head tilting, and double vision. Amblyopia therapy can include glasses, patching, eye drops, and sometimes surgery. Astigmatism: Astigmatism is a condition in which objects at both distance and near appear blurred. This results from uneven curvature of the cornea and/or lens which prevents light rays entering the eye from focusing to a single point on the retina, thereby causing blur. Astigmatism often occurs with myopia (nearsightedness) or hyperopia (farsightedness). Cataract: Any opacity or clouding of the normally clear lens of the eye. Cortical Visual Impairment: Cortical visual impairment (CVI) is vision loss due to any abnormality of the visual center in the brain. The eyes are normal, but the visual interpretation center in the brain does not function properly and prevents normal vision. Developmental Abnormalities: During development of the fetus, abnormalities in the visual system can occur. Some developmental abnormalities include coloboma, microphthalmia (small eye), and optic nerve hypoplasia. These abnormalities often result in vision loss.
    [Show full text]
  • Visual Symptoms and Findings in MS: Clues and Management
    6/5/2014 Common visual symptoms and findings in MS: Clues and Identification Teresa C Frohman, PA-C, MSCS Neuro-ophthalmology Research Manager, UT Southwestern Medical Center at Dallas Professor Biomedical Engineering, University of Texas Dallas COMMON COMPLAINTS 1 6/5/2014 Blurry Vision Corrected with Refraction? YES NO Refractive Keep Looking Error IN MS : ON, Diplopia, Nystagmus Most Common Visual Issues Encountered in MS patients • Optic Neuritis • Diplopia • Nystagmus result from damage to the optic nerve or from an incoordination in the eye muscles or damage to a part of the oculomotor pathway or apparatus 2 6/5/2014 Optic Neuritis Workup ‘frosted glass’ Part of visual field missing Pain +/- Color desaturation Work up for Yes diplopia or nystagmus Seeing double images YES NO Or ‘jiggling’ No Neuro-ophth exam Humphrey’s OCT MRI Fundoscopy CRANIAL NERVE ANATOMY There are 12 pairs of cranial nerves CN I Smell CN II Vision CN III, IV, VI Oculomotor CN V Trigeminal Sensorimotor muscles of the Jaw CN VII Sensorimotor of the face CN VIII Hearing//vestibular CN IX, X, XII Mouth, esophagus, oropharynx CN XI Cervical Spine and shoulder 6 3 6/5/2014 NEURO-OPHTHALMOLOGY EXAM Visual Acuity Color Vision Afferent pupillary reaction- objective test of CNII function Alternating flashlight test – afferent arc of pupillary light reflex pathway Fundus exam Visual Fields –confrontation at bedside CRANIAL NERVE II: OPTIC once the retinal ganglion cell axons leave the back of the eye they become myelinated behind the lamina cribosa ---and
    [Show full text]
  • COMMON EYE COMPLAINTS July 15, 2004 Vatinee Bunya
    4/24/2018 They have a lazy eye… Be Specific!! Esotropia vs. Pseudoesotropia Eyes crossing (esotropia) Eyes drifting (exotropia) Head turn Droopy eyelid Vision concerns 1 4/24/2018 www.aapos.org/terms/conditions/49 Vertical strabismus Ocular torticollis Nystagmus Finding their null point Strabismus Fusion or less strain Ptosis Chin up to see below lids Refractive Error Squinting equivalent Amblyopia Amblyopia Three main reasons for amblyopia Refractive Greater than 2 lines difference in visual ○ high myopia/hyperopia or acuity or obvious preference for fixation in anisometropia non-verbal Strabismic Induced tropia test ○ Esotropia or exotropia or hypertropia ○ Take 12 pd base down over both eyes Deprevational ○ Symmetric response= no preference ○ Cataract, corneal opacity, vitreous ○ Asymmetric response= amblyopia hemorrhage, ptosis, hemangioma 2 4/24/2018 Their eyelid is swollen… Amblyopia Treatment Force brain to use weaker eye Fix underlying etiology (give glasses, fix strab remove cataract,etc) Patch Atropine Occluding CL Fog glasses No-No arm braces Super glue Management Stye/Chalazion Stye vs. Chalazion Warm compresses Lid hygiene Erythromycin vs. Maxitrol/Tobradex Surgical excision Cellulitis Can they open their eyelids on their own? Preseptal vs. Can you get the eyelids open? Postseptal Cellulitiss 3 4/24/2018 Treatment Orbital cellulitis Results from Antiobiotics Local resistance patterns Spread of contiguous sinus disease (most common) ○ 75-85% of cases are chronic sinusitis (acute 0.5-3%) Check blood cultures first ○ Most commonly ethmoid aircells To drain or not to drain? Traumatic violation of the orbit (implantation of Worrisome optic neuropathy foreign bodies) signs Trans-septal spread of preseptal cellulitis Abscess within orbit Metastatic hematogenous spread to orbit ○ not subperiosteal ○ Valveless orbital veins Treatment failures Dental abscess to orbit Orbital cellulitis My child’s eye is red… Common organisms Staphylcoccus Aureus Streptococcus species Anaerobic If <4 years old consider H.
    [Show full text]
  • A- and V-Patterns and Oblique Muscle Overaction A- and V-Patterns
    18 A- and V-Patterns and Oblique Muscle Overaction A- and V-Patterns Clinical Features Etiology Management with Horizontal Rectus Muscle Offsets Inferior Oblique Overaction Etiology Clinical Features Differential Diagnosis Management Superior Oblique Overaction Etiology Clinical Features Differential Diagnosis Management Superior Oblique Weakening Procedures Complications A- and V-patterns of strabismus are changes in the horizontal deviation as the patient looks up and down. They are usually associated with oblique dysfunction, either overaction or paresis. Primary oblique muscle overaction is when an oblique muscle is too strong for its antagonist and there is no known cause. Secondary oblique overaction is caused by a paresis of the antagonist muscle. A superior oblique paresis results in inferior oblique overaction, and inferior oblique paresis results in superior oblique overaction. This chapter covers the management of A- and V- patterns and primary oblique muscle overaction. A- and V-Patterns CLINICAL FEATURES A-patterns are defined as increasing divergence in down gaze (>10 prism diopters [PD]), whereas Vpatterns are increased divergence (>15 prism diopters) in up gaze. The type of A- or V-pattern helps identify the cause. Superior oblique paresis produces a V-pattern, arrow subtype, with convergence in down gaze. The arrow pattern subtype indicates a lack of abduction in down gaze, the field of action of the superior oblique muscles. Inferior oblique overaction, on the other hand, has a V-pattern, Y subtype, with increased abduction in up gaze. The Y-pattern occurs because the field of action of the inferior oblique muscles is up gaze and they are abductors. Lambda subtype is typically associated with superior oblique overaction, with increased abduction in down gaze, because the field of action is in down gaze.
    [Show full text]
  • Central Fourth Nerve Palsies Mitchell S.V
    RESIDENT &FELLOW SECTION Pearls and Oy-sters: Section Editor Central fourth nerve palsies Mitchell S.V. Elkind, MD, MS Daniel R. Gold, DO CLINICAL PEARLS Lesions of the fourth (trochlear) Clinical features suggestive of bilateral fourth nerve Robert K. Shin, MD cranial nerve cause vertical or oblique diplopia by impair- palsies include right hypertropia in left gaze, left hyper- Steven Galetta, MD ing the ability of the superior oblique muscle to intort tropia in right gaze, and alternating hypertropia with and depress the eye. This binocular diplopia worsens in head tilt to either side (i.e., right hypertropia with right downgaze and lateral gaze away from the affected eye. tilt and left hypertropia with left head tilt).8 Correspondence & reprint Because intorsion is necessary to maintain fusion in ocu- requests to Dr. Gold: [email protected] lar counter-roll, this diplopia also worsens with head tilt CASE REPORTS Case 1. A20-year-oldmanpresented 1,2 toward the affected eye. to the emergency department complaining of 6 days of Diagnosis of a superior oblique palsy can be made binocular vertical diplopia and a left eyelid droop. He using the Parks-Bielschowsky 3-step test: 1) determine had noted fatigue, bilateral eye pain, and flu-like symp- which eye is hypertropic, 2) determine if the hypertro- toms 2 to 4 weeks prior to presentation. pia worsens in left or right gaze, and 3) determine if the Left-sided ptosis and miosis were present on exam- hypertropia worsens in right or left head tilt. In a supe- ination, along with a left adduction deficit.
    [Show full text]
  • Types of Vision Deficits
    Types of Vision Deficits Double Vision When the muscles are not working due to weakness or injury, many deficits can result in either or both eyes. These include: o Misalignment o Decreased movement and coordination o Decreased speed of movements When someone is experiencing these deficits, they typically complain of double vision (diplopia). The following images show the six muscles that control each eye: Strabismus A type of eye movement dysfunction that interferes with vision since it prevents both eyes to appropriately align with each other. Usually caused by result of trauma or increased pressure in the brain. Misalignment of the eye can cause: o The eye turns in, out, or up. o The direction of the eye turn depends on which nerve in the brain has been affected. There are two different ways to describe the eye turn. o “-tropia” indicates paralysis of the eye muscle (the eye cannot move) o “-phoria” indicates weakness of the eye muscle (the eye muscle is too weak to move) Eye is turned out (Exotropia) Eye is turned in (Esotropia) Eye is turned up (hypertropia) Signs and Symptoms of Strabismus: Misalignment of the eyes Complaints of double vision (seeing two images) Complaints of blurry vision 1 Types of Vision Deficits Complaints of floating images Closing/covering of one eye Impact of Strabismus on Daily Function: Poor coordination Poor depth perception Difficulty walking on changing surfaces (ie. stairs, concrete to grass) Convergence Issues related to an eye’s ability to convergence and divergence is also known as an accommodative dysfunction which is very common after brain injury or stroke.
    [Show full text]