Aureobasidium Pullulans on Exterior Wood Coatings

Total Page:16

File Type:pdf, Size:1020Kb

Aureobasidium Pullulans on Exterior Wood Coatings Bio-sustainable Control of the Blue Stain Fungi Aureobasidium pullulans on Exterior Wood Coatings PhD Thesis by Jonas Stenbæk Supervisor Associated prof. Bo Jensen Section of Microbiology, Department of Biology, Faculty of Science University of Copenhagen This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen Cover page: eSEM image of Aureobasidium pullulans (image: Peter Falkman and Jonas Stenbæk). This is for my mother Anne September 22nd 1957 - July 27th 2015 Abstract Imminent requirements and demands to the composition of protective wood coatings and the use of commercial biocides lead to an increased and necessary interest by the paint industry to find and develop alternative solutions within substitutions of raw materials and new innovative anti-fungal strategies. Besides comprehensive future regulations in the requirements and laws within the use of fossil-based raw materials, companies also have to take the increasing consumer awareness of environmental responsibility into account necessitating the companies to use more environmentally friendly solutions in the production, composition and service life of the protective coatings. Today’s commercial biocides in the wood coating industry, e.g. IPBC, are proven environmental toxic and exposed to future regulations or indeed complete exclusions so new bio-sustainable alternative solutions are demanded. In this PhD study, a number of alternative and innovative solutions and strategies have been investigated and a number of possible new solutions and reviews are presented. The focus has been on the control of blue stain fungi e.g. Aureobasidium pullulans that lead to discoloration on processed wood and wood protective coatings. In this study, a number of anionic compounds like fatty acid-based emulsifiers have been screened for anti-fungal properties. The best candidate, a Sodium Caproyl Lactylate, has further been tested in wood panel tests and the mode of action on the fungal cell membrane has been investigated. The compound exhibits promising anti-fungal properties, however, more in-depth investigation on the compound and closely similar compounds are recommended before an actual and useable technology are accessible. Other compounds like silica-encapsulated enzymes and nanoclay have also been investigated and interesting preliminary results makes ground for further studies based on promising anti-fungal properties when added to a standard coating without commercial biocides and tested in environmental mould growth chambers. As a non-additive biocidal solution the structure of the topography on the surface on the coating has been studied. In this study, manipulation of the micro structure on the coating surface has been performed and revealed that small scratches-structure (between 4-20 µm) had an inhibitory effect on the attachment on fungal conidia from moulds while bigger structure scratches (>50 µm) did not seem to have a notable effect. Abstract A comprehensive study in the role of an interfacial protein, hydrophobin, in the surface growth of Aureobasidium pullulans resulted in bioinformatic identification of two hydrophobin genes, first ever described in a blue stain fungi. The full genome of Aureobasidium pullulans (De Bary) P268 was sequenced and the bioinformatic information led to molecular gene manipulation in the attempt to clarify the role of hydrophobins in surface growth of Aureobasidium pullulans. Overall, this PhD thesis presents a range of studies in alternative and bio-sustainable solutions and strategies in controlling attacks of blue stain fungi on wood protective coatings. The results provide a state-of-art platform for further research and development of alternative options in the control of moulds in coatings. Resumé Stigende krav til sammensætningen af træbeskyttende coatings og kommercielle biocider forventes at føre til en øget interesse hos coating-industrien for både at udvikle alternative løsninger inden for substitution af råmaterialer og for at finde nye, innovative strategier inden for svampebekæmpelse. Udover de stigende krav og regler inden for brugen af fossilt baserede råvarer, er virksomhederne også nødt til at tage hensyn til forbrugernes øgede bevidsthed om miljøansvarlige forbrugsvaner. Dette nødvendiggør, at virksomhederne fremover i højere grad må anvende mere miljøvenlige løsninger inden for produktion, produktindhold og produktets levetid. Nutidens kommercielt anvendte biocider i coating-industrien, eksempelvis IPBC, er giftige for miljøet og vil forventeligt på et tidspunkt blive udsat for restriktioner eller ultimative forbud. Nye bio-bæredygtige alternative løsninger efterspørges derfor allerede på nuværende tidspunkt af industrien. Dette ph.d.-studie undersøger og præsenterer en række alternative og innovative løsninger samt strategier inden for bæredygtige og miljøvenlige biocider, som er mulige fremtidige løsninger. Fokus har været på bekæmpelse af blåsplint svampe, som eksempelvis Aureobasidium pullulans, der fører til misfarvning af forarbejdet træ og træbeskyttelse, herunder udendørs træmaling. I dette studie er en række anioniske forbindelser, som fedtsyre-baserede emulgatorer, blevet screenet for svampehæmmende egenskaber. Den bedste kandidat - en Sodium Caproyl Lactylat (SCL) - er blevet testet yderligere i træpanels-tests. Derudover er virkemåden af SCL på svampens cellemembran blevet undersøgt, og samlet set udviser SCL lovende svampebekæmpende egenskaber. Dog anbefales en udvidet undersøgelse af SCL, og dens nært beslægtede stoffer, før en endelig og brugbar teknologi kan introduceres. Andre additiver, herunder silica-indkapslede enzymer og nanoclay, er også blevet undersøgt, og foreløbige interessante resultater kan danne grundlag for yderligere studier. Dette er baseret på lovende svampehæmmende egenskaber, når additiverne blandes i en standard coating uden indhold af kommercielle biocider og efterfølgende testes i skimmelvækst-kamre. Coating-topografien i mikro-skala er blevet undersøgt med henblik på at belyse eventuelle muligheder for svampehæmmende effekter uden brug af additiver. I dette studie er Resumé mikrostruktur på coating-overfladen blevet manipuleret, så den har fået en præcis ridser- struktur. Det viste sig, at en fin typografi (mellem 4-20 µm) havde en hæmmende virkning på vedhæftningen af konidier fra skimmelsvampe, mens større struktur-ridser (> 50 µm) ikke syntes at have en mærkbar hæmmende virkning. En omfattende undersøgelse af et overfladeaktivt protein, kaldet hydrofobin, havde fokus på proteinets rolle ved overfladevækst hos blåsplint-svampen Aureobasidium pullulans. Undersøgelsen resulterede i bioinformatisk identifikation af to hydrofobin-gener i Aureobasidium pullulans. Det er de første hydrofobiner, som er beskrevet i en blåsplintssvamp. Aureobasidium pullulans (De Bary) P268 er blevet sekventeret, og det fulde genom er nu tilgængeligt. Bioinformatiske oplysninger førte til molekylærbiologisk genmanipulation i forsøget på at klarlægge hydrofobinernes rolle ved overfladevækst hos Aureobasidium pullulans. Samlet set præsenterer denne ph.d.-afhandling både en række studier i alternative og bio- bæredygtige løsninger samt strategier for kontrol af svampeangreb fra blåsplints svampe på træbeskyttende coatings. Resultaterne giver en state-of-art platform for yderligere forskning og udvikling af alternative og innovative biocider. Table of Contents Table of contents 1 Preface and Acknowledgements 3 List of Manuscripts 5 Conference Proceedings 6 PhD Course Portfolio 9 Teaching and Assistant Supervision 10 Change of Scientific Environment 11 Abbreviations 12 Chapter 1: Background and Aims 15 1.1 Superior Bio Based Coating System for Exterior Wood Applications 1.2 The overall aim: Control of A. pullulans in bio-sustainable coating systems for ex. wood 1.2.1 Time line 1.2.2 Structure of this PhD thesis 1.3 References Chapter 1 Chapter 2: Introduction 21 2.1 Blue Stain and protective coatings 2.2 IPBC 2.3 Aureobasidium pullulans 2.3.1 Morphology and life cyclus. 2.3.2 Pullulan 2.4 Methods and materials 2.4.1 Strains 2.4.2 Full-genome sequences 2.4.3 Growth tests 2.4.4 Wood panel tests in Environmental Chamber 2.4.5 Protoplasts 2.5 Chapter 2 references Chapter 3: Fatty acid-based emulsifiers: possible biological agents 43 3.1 Introduction 3.2 Candidates 3.2.1 Lactylates 3.3 Mode of action 3.3.1 Supported lipid bilayers (SLB) 3.3.2 Quartz Crystal Microbalance with Dissipation (QCM-D) 3.4 Preliminary results 3.5 Conclusions and perspectives for further research 3.6 References Chapter 3 1 Table of Contents Chapter 4: Enzymes, Nano clay and other additives 55 4.1 Introduction 4.2 Enzymes 4.2.1 Pullulanase 4.2.2 Glucanex 4.2.3 Aerogel – encapsulation of enzymes. 4.3 Nanoclay 4.4 Materials and Methods 4.4.1 Enzymes 4.4.2 Nanoclay 4.5 Preliminary results and discussions 4.5.1 Enzymes 4.5.1 Nanoclay 4.6 Conclusions and perspectives for further research 4.7 References Chapter 4 Chapter 5: Topography; Surface Structure on Coatings 71 5.1 Introduction 5.2 Materials and Methods 5.3 Conclusions and perspectives for further research Chapter 6: Hydrophobins; a Unique Protein in Fungal Surface Living 73 6.1 Introduction 6.1.1 Nature of the Hydrophobins 6.1.2 Classification and protein structure 6.1.3 Properties 6.1.4 Aims of the work related to hydrophobins 6.2 Results and discussion 6.2.1 Analysis of the Aureobasidium pullulans strain P268 hydrophobins 6.2.2 Disruption of the hydrophobin encoding genes, hfbA and hfbB 6.2.2.1 Evaluation of potential double gene
Recommended publications
  • Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking
    fermentation Article Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking Chun Tang Feng, Xue Du and Josephine Wee * Department of Food Science, The Pennsylvania State University, Rodney A. Erickson Food Science Building, State College, PA 16803, USA; [email protected] (C.T.F.); [email protected] (X.D.) * Correspondence: [email protected]; Tel.: +1-814-863-2956 Abstract: Native microorganisms present on grapes can influence final wine quality. Chambourcin is the most abundant hybrid grape grown in Pennsylvania and is more resistant to cold temperatures and fungal diseases compared to Vitis vinifera. Here, non-Saccharomyces yeasts were isolated from spontaneously fermenting Chambourcin must from three regional vineyards. Using cultured-based methods and ITS sequencing, Hanseniaspora and Pichia spp. were the most dominant genus out of 29 fungal species identified. Five strains of Hanseniaspora uvarum, H. opuntiae, Pichia kluyveri, P. kudriavzevii, and Aureobasidium pullulans were characterized for the ability to tolerate sulfite and ethanol. Hanseniaspora opuntiae PSWCC64 and P. kudriavzevii PSWCC102 can tolerate 8–10% ethanol and were able to utilize 60–80% sugars during fermentation. Laboratory scale fermentations of candidate strain into sterile Chambourcin juice allowed for analyzing compounds associated with wine flavor. Nine nonvolatile compounds were conserved in inoculated fermentations. In contrast, Hanseniaspora strains PSWCC64 and PSWCC70 were positively correlated with 2-heptanol and ionone associated to fruity and floral odor and P. kudriazevii PSWCC102 was positively correlated with a Citation: Feng, C.T.; Du, X.; Wee, J. Microbial and Chemical Analysis of group of esters and acetals associated to fruity and herbaceous aroma.
    [Show full text]
  • Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
    J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • APP202274 S67A Amendment Proposal Sept 2018.Pdf
    PROPOSAL FORM AMENDMENT Proposal to amend a new organism approval under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Applicant Damien Fleetwood Key contact [email protected] www.epa.govt.nz 2 Proposal to amend a new organism approval Important This form is used to request amendment(s) to a new organism approval. This is not a formal application. The EPA is not under any statutory obligation to process this request. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This form may be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0168 3 Proposal to amend a new organism approval 1. Which approval(s) do you wish to amend? APP202274 The organism that is the subject of this application is also the subject of: a. an innovative medicine application as defined in section 23A of the Medicines Act 1981. Yes ☒ No b. an innovative agricultural compound application as defined in Part 6 of the Agricultural Compounds and Veterinary Medicines Act 1997. Yes ☒ No 2. Which specific amendment(s) do you propose? Addition of following fungal species to those listed in APP202274: Aureobasidium pullulans, Fusarium verticillioides, Kluyveromyces species, Sarocladium zeae, Serendipita indica, Umbelopsis isabellina, Ustilago maydis Aureobasidium pullulans Domain: Fungi Phylum: Ascomycota Class: Dothideomycetes Order: Dothideales Family: Dothioraceae Genus: Aureobasidium Species: Aureobasidium pullulans (de Bary) G.
    [Show full text]
  • View with Observations on Aureobasidium Pullulans
    OPEN ACCESS Freely available online Fungal Genomics & Biology Research Article Characterization of Aureobasidium pullulans Isolates Selected as Biocontrol Agents Against Fruit Decay Pathogens Janja Zajc1,2*, Anja Černoša 2, Alessandra Di Francesco3, Raffaello Castoria4, Filippo De Curtis4, Giuseppe 4 5 5 6 2 2 Lima , Hanene Badri , Haissam Jijakli , Antonio Ippolito , Cene GostinČar , Polona Zalar , Nina Gunde- Cimerman2, Wojciech J. Janisiewicz7 1Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia; 2Department of Biology, University of Ljubljana, Ljubljana, Slovenia; 3Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy; 4Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy; 5Agro-Bio Tech Laboratory, Integrated and Urban Phytopathology Unit, University of Liège, Gembloux, Belgium; 6Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy United States; 7Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, USA ABSTRACT The "yeast-like" fungus, Aureobasidium pullulans, isolated from fruit and leaves exhibits strong biocontrol activity against postharvest decays on various fruit. Some strains were even developed into commercial products. We obtained 20 of these strains and investigated their characteristics related to biocontrol. Phylogenetic analyses based on internal transcribed spacer (ITS) and the D1/D2 domains of rRNA 28S gene regions confirmed that all the strains are most closely related to A. pullulans species. All strains grew at 0°C, which is very important to control decay at low storage temperature, and none grew at 37°C, which eliminates concern for human safety. Eighteen strains survived 2 hrs exposures to 50°C and two strains even survived for 24 hrs.
    [Show full text]
  • Ulvella Tongshanensis (Ulvellaceae, Chlorophyta), a New Freshwater Species from China, and an Emended Morphological Circumscription of the Genus Ulvella
    Fottea, Olomouc, 15(1): 95–104, 2015 95 Ulvella tongshanensis (Ulvellaceae, Chlorophyta), a new freshwater species from China, and an emended morphological circumscription of the genus Ulvella Huan ZHU1, 2, Frederik LELIAERT3, Zhi–Juan ZHAO1, 2, Shuang XIA4, Zheng–Yu HU5, Guo–Xiang LIU1* 1 Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; *Corresponding author e–mail: [email protected] 2University of Chinese Academy of Sciences, Beijing 100049, P. R. China 3Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281–S8, 9000 Ghent, Belgium 4College of Life Sciences, South–central University for Nationalities, Wuhan, 430074, P. R. China 5State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China Abstract: A new freshwater species of Ulvella, U. tongshanensis H. ZHU et G. LIU, is described from material collected from rocks under small waterfalls in Hubei Province, China. This unusual species differs from other species in the genus by the macroscopic and upright parenchymatous thalli, and by the particular habitat (most Ulvella species occur in marine environments). Phylogenetic analyses of plastid encoded rbcL and tufA, and nuclear 18S rDNA sequences, pointed towards the generic placement of U. tongshanensis and also showed a close relationship with two other freshwater species, Ulvella bullata (Jao) H. ZHU et G. LIU, comb. nov. and Ulvella prasina (Jao) H. ZHU et G. LIU, comb. nov. The latter two were previously placed in the genus Jaoa and are characterized by disc–shaped to vesicular morphology. Our study once again shows that traditionally used morphological characters are poor indicators for phylogenetic relatedness in morphologically simple algae like the Ulvellaceae.
    [Show full text]
  • Virulence Traits and Population Genomics of the Black Yeast Aureobasidium Melanogenum
    Journal of Fungi Article Virulence Traits and Population Genomics of the Black Yeast Aureobasidium melanogenum Anja Cernošaˇ 1,†, Xiaohuan Sun 2,†, Cene Gostinˇcar 1,3,* , Chao Fang 2, Nina Gunde-Cimerman 1,‡ and Zewei Song 2,‡ 1 Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] (A.C.);ˇ [email protected] (N.G.-C.) 2 BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; [email protected] (X.S.); [email protected] (C.F.); [email protected] (Z.S.) 3 Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China * Correspondence: [email protected] or [email protected]; Tel.: +386-1-320-3392 † These authors contributed equally to this work. ‡ These authors contributed equally as senior authors. Abstract: The black yeast-like fungus Aureobasidium melanogenum is an opportunistic human pathogen frequently found indoors. Its traits, potentially linked to pathogenesis, have never been system- atically studied. Here, we examine 49 A. melanogenum strains for growth at 37 ◦C, siderophore production, hemolytic activity, and assimilation of hydrocarbons and human neurotransmitters and report within-species variability. All but one strain grew at 37 ◦C. All strains produced siderophores and showed some hemolytic activity. The largest differences between strains were observed in the assimilation of hydrocarbons and human neurotransmitters. We show for the first time that fungi from the order Dothideales can assimilate aromatic hydrocarbons. To explain the background, we Citation: ˇ Cernoša, A.; Sun, X.; sequenced the genomes of all 49 strains and identified genes putatively involved in siderophore pro- Gostinˇcar, C.; Fang, C.; duction and hemolysis.
    [Show full text]
  • Molecular Phylogeny and Taxonomic Revision of Chaetophoralean Algae (Chlorophyta)
    University of South Bohemia in České Budějovice Faculty of Science Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta) Ph.D. Thesis Mgr. Lenka Caisová Supervisor RNDr. Jiří Neustupa, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague Formal supervisor Prof. RNDr. Jiří Komárek, DrSc. University of South Bohemia, Faculty of Science, Institute of Botany, Academy of Sciences, Třeboň Consultants Prof. Dr. Michael Melkonian Biozentrum Köln, Botanisches Institut, Universität zu Köln, Germany Mgr. Pavel Škaloud, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague České Budějovice, 2011 Caisová, L. 2011: Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta). PhD. Thesis, composite in English. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, 110 pp, shortened version 30 pp. Annotation Since the human inclination to estimate and trace natural diversity, usable species definitions as well as taxonomical systems are required. As a consequence, the first proposed classification schemes assigned the filamentous and parenchymatous taxa to the green algal order Chaetophorales sensu Wille. The introduction of ultrastructural and molecular methods provided novel insight into algal evolution and generated taxonomic revisions based on phylogenetic inference. However, until now, the number of molecular phylogenetic studies focusing on the Chaetophorales s.s. is surprisingly low. To enhance knowledge about phylogenetic
    [Show full text]
  • Diversity and Evolution of Algae: Primary Endosymbiosis
    CHAPTER TWO Diversity and Evolution of Algae: Primary Endosymbiosis Olivier De Clerck1, Kenny A. Bogaert, Frederik Leliaert Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 56 1.1. Early Evolution of Oxygenic Photosynthesis 56 1.2. Origin of Plastids: Primary Endosymbiosis 58 2. Red Algae 61 2.1. Red Algae Defined 61 2.2. Cyanidiophytes 63 2.3. Of Nori and Red Seaweed 64 3. Green Plants (Viridiplantae) 66 3.1. Green Plants Defined 66 3.2. Evolutionary History of Green Plants 67 3.3. Chlorophyta 68 3.4. Streptophyta and the Origin of Land Plants 72 4. Glaucophytes 74 5. Archaeplastida Genome Studies 75 Acknowledgements 76 References 76 Abstract Oxygenic photosynthesis, the chemical process whereby light energy powers the conversion of carbon dioxide into organic compounds and oxygen is released as a waste product, evolved in the anoxygenic ancestors of Cyanobacteria. Although there is still uncertainty about when precisely and how this came about, the gradual oxygenation of the Proterozoic oceans and atmosphere opened the path for aerobic organisms and ultimately eukaryotic cells to evolve. There is a general consensus that photosynthesis was acquired by eukaryotes through endosymbiosis, resulting in the enslavement of a cyanobacterium to become a plastid. Here, we give an update of the current understanding of the primary endosymbiotic event that gave rise to the Archaeplastida. In addition, we provide an overview of the diversity in the Rhodophyta, Glaucophyta and the Viridiplantae (excluding the Embryophyta) and highlight how genomic data are enabling us to understand the relationships and characteristics of algae emerging from this primary endosymbiotic event.
    [Show full text]
  • Environmental Impact Assessment Study Report on Rabindra Sarobar Lake Premises, Kolkata
    ENVIRONMENTAL IMPACT ASSESSMENT STUDY REPORT ON RABINDRA SAROBAR LAKE PREMISES, KOLKATA FINAL REPORT APRIL, 2017 Published by West Bengal Pollution Control Board on 05 June 2018 1 EIA Report of Rabindra Sarovar, Kolkata Acknowledgement The West Bengal Pollution Control Board wishes to thank the Hon’ble NGT (EZ) for constituting a five member committee consisting of eminent scientists and engineers to study and submit a report on the probable impact of the activities in the Rabindra Sarovar stadium during the nights, connected with ISL matches, on “physical environment”, “biodiversity of the lake environment” and on the survivability scope of the migratory birds and required preventive measures. The West Bengal Pollution control Board extends heartiest thanks to the expert committee members, constituted to undertake Rapid EIA study in the Rabindra Sarovar: Dr. A.K. Sanyal, Chairman, WBBB (Chairman of the Expert Committee), Dr. Ujjal Kumar Mukhopadhyay, Chief Scientist, WBPCB, Dr. Anirban Roy, Research Officer, WBBB , Dr. Rajib Gogoi, Scientist-D, BSI, Kolkata, Dr. Rita Saha, Scientist-D, CPCB, Kolkata Regional Office, Dr. Deepanjan Majumdar, Sr. Scientist, NEERI, Dr. S.I. Kazmi, Scientist, ZSI, Kolkata and Mr. Ashoke Kumar Das, Secretary, KIT, Kolkata (Convenor). The background information and Literature survey provided by West Bengal Biodiversity Board and Botanical Survey of India were intently helpful to prepare this “ EIA Report of Rabindra Sarovar, Kolkata ” . This could not have been possible to prepare and publish this without their great help. We are also thankful to the team from the West Bengal Biodiversity Board for visiting Rabindra Sarobarlake and premises and contributed their effort & energy to prepare general biodiversity documentation, one of the essential source for this report, with their expertise.
    [Show full text]
  • 1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium Pullulans: a Literature Review
    nutrients Review Biological Activity of High-Purity β-1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium pullulans: A Literature Review Toshio Suzuki 1,*, Kisato Kusano 2, Nobuhiro Kondo 3, Kouji Nishikawa 4, Takao Kuge 5,* and Naohito Ohno 6 1 Research and Development Laboratories, Fujicco, Co., Ltd., 6-13-4 Minatojima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-8558, Japan 2 Aureo Co., Ltd., 54-1, Kazusa Koito, Kimitsu-shi, Chiba 292-1149, Japan; [email protected] 3 Research and Development Division, Itochu Sugar Co., Ltd., 3, Tamatsuura, Hekinan, Aichi 447-8506, Japan; [email protected] 4 Innovation Center, Osaka Soda Co., Ltd., 9, Otakasu-cho, Amagasaki, Hyogo 660-0842, Japan; [email protected] 5 Life Science Materials Laboratory, ADEKA Corporation., 7-2-34, Higashi-Ogu, Arakawa-ku, Tokyo 116-8553, Japan 6 Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan; [email protected] * Correspondence: [email protected] (T.S.); [email protected] (T.K.); Tel.: +81-78-303-5385 (T.S.); +81-3-4455-2829 (T.K.) Abstract: The black yeast Aureobasidium pullulans produces abundant soluble β-1,3-1,6-glucan—a functional food ingredient with known health benefits. For use as a food material, soluble β-1,3- 1,6-glucan is produced via fermentation using sucrose as the carbon source. Various functionalities of β-1,3-1,6-glucan have been reported, including its immunomodulatory effect, particularly in the intestine. It also exhibits antitumor and antimetastatic effects, alleviates influenza and food allergies, and relieves stress.
    [Show full text]
  • Structural Variation and Evolution of Chloroplast Trnas in Green Algae
    Structural variation and evolution of chloroplast tRNAs in green algae Fangbing Qi, Yajing Zhao, Ningbo Zhao, Kai Wang, Zhonghu Li and Yingjuan Wang State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotech- nology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China ABSTRACT As one of the important groups of the core Chlorophyta (Green algae), Chlorophyceae plays an important role in the evolution of plants. As a carrier of amino acids, tRNA plays an indispensable role in life activities. However, the structural variation of chloroplast tRNA and its evolutionary characteristics in Chlorophyta species have not been well studied. In this study, we analyzed the chloroplast genome tRNAs of 14 species in five categories in the green algae. We found that the number of chloroplasts tRNAs of Chlorophyceae is maintained between 28–32, and the length of the gene sequence ranges from 71 nt to 91 nt. There are 23–27 anticodon types of tRNAs, and some tRNAs have missing anticodons that are compensated for by other types of anticodons of that tRNA. In addition, three tRNAs were found to contain introns in the anti-codon loop of the tRNA, but the analysis scored poorly and it is presumed that these introns are not functional. After multiple sequence alignment, the 9-loop is the most conserved structural unit in the tRNA secondary structure, containing mostly U-U-C-x-A-x-U conserved sequences. The number of transitions in tRNA is higher than the number of transversions. In the replication loss analysis, it was found that green algal chloroplast tRNAs may have undergone substantial gene loss during the course of evolution.
    [Show full text]