Harmful Chemicals in Tobacco Products
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acute Toxicity of Cyanide in Aerobic Respiration: Theoretical and Experimental Support for Murburn Explanation
BioMol Concepts 2020; 11: 32–56 Research Article Open Access Kelath Murali Manoj*, Surjith Ramasamy, Abhinav Parashar, Daniel Andrew Gideon, Vidhu Soman, Vivian David Jacob, Kannan Pakshirajan Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation https://doi.org/10.1515/bmc-2020-0004 received January 14, 2020; accepted February 19, 2020. of diffusible radicals and proton-equilibriums, explaining analogous outcomes in mOxPhos chemistry. Further, we Abstract: The inefficiency of cyanide/HCN (CN) binding demonstrate that superoxide (diffusible reactive oxygen with heme proteins (under physiological regimes) is species, DROS) enables in vitro ATP synthesis from demonstrated with an assessment of thermodynamics, ADP+phosphate, and show that this reaction is inhibited kinetics, and inhibition constants. The acute onset of by CN. Therefore, practically instantaneous CN ion-radical toxicity and CN’s mg/Kg LD50 (μM lethal concentration) interactions with DROS in matrix catalytically disrupt suggests that the classical hemeFe binding-based mOxPhos, explaining the acute lethal effect of CN. inhibition rationale is untenable to account for the toxicity of CN. In vitro mechanistic probing of Keywords: cyanide-poisoning; murburn concept; CN-mediated inhibition of hemeFe reductionist systems aerobic respiration; ATP-synthesis; hemoglobin; was explored as a murburn model for mitochondrial cytochrome oxidase; mitochondria; diffusible reactive oxidative phosphorylation (mOxPhos). The effect of CN oxygen species (DROS). in haloperoxidase catalyzed chlorine moiety transfer to small organics was considered as an analogous probe for phosphate group transfer in mOxPhos. Similarly, Introduction inclusion of CN in peroxidase-catalase mediated one- electron oxidation of small organics was used to explore Since the discovery of the dye Prussian blue (ferric electron transfer outcomes in mOxPhos, leading to water ferrocyanide, Fe7[CN]18) and the volatile prussic acid formation. -
Wildland Firefighter Smoke Exposure
❑ United States Department of Agriculture Wildland Firefighter Smoke Exposure EST SERVIC FOR E Forest National Technology & 1351 1803 October 2013 D E E P R A U RTMENT OF AGRICULT Service Development Program 5100—Fire Management Wildland Firefighter Smoke Exposure By George Broyles Fire Project Leader Information contained in this document has been developed for the guidance of employees of the U.S. Department of Agriculture (USDA) Forest Service, its contractors, and cooperating Federal and State agencies. The USDA Forest Service assumes no responsibility for the interpretation or use of this information by other than its own employees. The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others that may be suitable. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. -
Other Tobacco Products (OTP) Are Products Including Smokeless and “Non-Cigarette” Materials
Other tobacco products (OTP) are products including smokeless and “non-cigarette” materials. For more information on smoking and how to quit using tobacco products, check out our page on tobacco. A tobacco user may actually absorb more nicotine from chewing tobacco or snuff than they do from a cigarette (Mayo Clinic). The health consequences of smokeless tobacco use include oral, throat and pancreatic cancer, tooth loss, gum disease and increased risk of heart disease, heart attack and stroke. (American Cancer Society, “Smokeless Tobacco” 2010) Smokeless tobacco products contain at least 28 cancer-causing agents. The risk of certain types of cancer increases with smokeless tobacco: Esophageal cancer, oral cancer (cancer of the mouth, throat, cheek, gums, lips, tongue). Other Tobacco Products (OTP) Include: Chewing/Spit Tobacco A smokeless tobacco product consumed by placing a portion of the tobacco between the cheek and gum or upper lip teeth and chewing. Must be manually crushed with the teeth to release flavor and nicotine. Spitting is required to get rid of the unwanted juices. Loose Tobacco Loose (pipe) tobacco is made of cured and dried leaves; often a mix of various types of leaves (including spiced leaves), with sweeteners and flavorings added to create an "aromatic" flavor. The tobacco used resembles cigarette tobacco, but is more moist and cut more coarsely. Pipe smoke is usually held in the mouth and then exhaled without inhaling into the lungs. Blunt Wraps Blunt wraps are hollowed out tobacco leaf to be filled by the consumer with tobacco (or other drugs) and comes in different flavors. Flavors are added to create aromas and flavors. -
Wildfire Smoke and Your Health When Smoke Levels Are High, Even Healthy People May Have Symptoms Or Health Problems
PUBLIC HEALTH DIVISION http://Public.Health.Oregon.gov Wildfire Smoke and Your Health When smoke levels are high, even healthy people may have symptoms or health problems. The best thing to do is to limit your exposure to smoke. Depending on your situation, a combination of the strategies below may work best and give you the most protection from wildfire smoke. The more you do to limit your exposure to wildfire smoke, the more you’ll reduce your chances of having health effects. Keep indoor air as clean as possible. Keep windows and doors closed. Use a Listen to your body high- efficiency particulate air (HEPA) and contact your filter to reduce indoor air pollution. healthcare provider Avoid smoking tobacco, using or 911 if you are wood-burning stoves or fireplaces, burning candles, experiencing health incenses or vacuuming. symptoms. If you have to spend time outside when the Drink plenty air quality is hazardous: of water. Do not rely on paper or dust masks for protection. N95 masks properly worn may offer Reduce the some protection. amount of time spent in the smoky area. Reduce the amount of time spent outdoors. Avoid vigorous Stay informed: outdoor activities. The Oregon Smoke blog has information about air quality in your community: oregonsmoke.blogspot.com 1 Frequently asked questions about wildfire smoke and public health Wildfire smoke Q: Why is wildfire smoke bad for my health? A: Wildfire smoke is a mixture of gases and fine particles from burning trees and other plant material. The gases and fine particles can be dangerous if inhaled. -
Hazardous Chemicals in Secondhand Marijuana Smoke
Hazardous Chemicals in Secondhand Marijuana Smoke “The following 33 marijuana smoke constituents included in Table 1 are listed under 33 Chemicals Proposition 65 as causing cancer: acetaldehyde, acetamide, acrylonitrile, 4- aminobiphenyl, arsenic, benz[a]anthracene, benzene, benzo[a]pyrene, That Can benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene, benzofuran, 1,3- butadiene, cadmium, carbazole, catechol, chromium (hexavalent compounds), Cancer chrysene, dibenz[a,h]anthracene, dibenz[a,i]pyrene, dibenzo[a,e]pyrene, “Many of the chemical diethylnitrosamine, dimethylnitrosamine, formaldehyde, indeno[1,2,3,-c,d]pyrene, constituents that have been isoprene, lead, mercury, 5-methylchrysene, naphthalene, nickel, pyridine, and identified in marijuana smoke quinoline.” are carcinogens.” 2009 OEHHA document, Evidence on the Carcinogenicity of Marijuana Smoke Hydrogen Cyanide interferes with the normal use of oxygen by nearly every organ of Hydrogen the body. Exposure to hydrogen cyanide (AC) can be rapidly fatal. It has whole-body (systemic) effects, particularly affecting those organ systems most sensitive to low Cyanide oxygen levels: the central nervous system (brain), the cardiovascular system (heart Is the same chemical used for and blood vessels), and the pulmonary system (lungs). Hydrogen cyanide (AC) is a chemical weapons. chemical warfare agent (military designation, AC). Ammonia gas is a severe respiratory tract irritant. Can cause severe irritation of the Ammonia nose and throat. Can cause life-threatening accumulation of fluid in the lungs Household cleaner used on (pulmonary edema). Symptoms may include coughing, shortness of breath, difficult floors and toilets. There is 3 breathing and tightness in the chest. Symptoms may develop hours after exposure times more in secondhand and are made worse by physical effort. -
Electronic Cigarettes (E-Cigarettes)
Electronic Cigarettes (e-cigarettes) Electronic cigarettes (also called -e cigarettes or electronic nicotine delivery systems) are battery-operated devices designed to deliver nicotine with flavorings and other chemicals to users in vapor instead of smoke. They can be manufactured to resemble traditional tobacco cigarettes, cigars or pipes, or even everyday items like pens or USB memory sticks; newer devices, such as those with fillable tanks, may look different. More than 250 different e-cigarette brands are currently on the market. While e-cigarettes are often promoted as safer alternatives to traditional cigarettes, which deliver nicotine by burning tobacco, little is actually known yet about the health risks of using these devices. How do e-cigarettes work? Electronic cigarettes are Most e-cigarettes consist of three different components, including: battery-operated devices a cartridge, which holds a liquid solution containing varying amounts of designed to deliver nicotine nicotine, flavorings, and other chemicals with flavorings and other a heating device (vaporizer) chemicals to users in vapor a power source (usually a battery) instead of smoke. In many e-cigarettes, puffing activates the battery-powered heating device, Although they do not which vaporizes the liquid in the cartridge. The resulting aerosol or vapor is produce tobacco smoke, then inhaled (called "vaping"). e-cigarettes still contain nicotine and other Are e-cigarettes safer than conventional cigarettes? potentially harmful Unfortunately, this question is difficult to answer because insufficient information chemicals. is available on these new products. Early evidence suggest that Cigarette smoking remains the leading preventable cause of sickness and e-cigarette use may serve as mortality, responsible for over 400,000 deaths in the United States each year. -
RR Program's RCL Spreadsheet Update
RR Program’s RCL Spreadsheet Update March 2017 RR Program RCL Spreadsheet Update DNR-RR-052e The Wisconsin DNR Remediation and Redevelopment Program (RR) has updated the numerical soil standards in the August 2015 DNR-RR- 052b RR spreadsheet of residual contaminant levels (RCLs). The RCLs were determined using the U.S. EPA RSL web- calculator by accepting EPA exposure defaults, with the exception of using Chicago, IL, for the climatic zone. This documentThe U.S. provides EPA updateda summary its Regionalof changes Screening to the direct-contact Level (RSL) RCLs website (DC-RCLs) in June that2015. are To now reflect in the that March 2017 spreadsheet.update, the The Wisconsin last page ofDNR this updated document the has numerical the EPA exposuresoil standards, parameter or residual values usedcontaminant in the RCL levels calculations. (RCLs), in the Remediation and Redevelopment program’s spreadsheet of RCLs. This document The providesU.S. EPA a RSL summary web-calculator of the updates has been incorporated recently updated in the Julyso that 2015 the spreadsheet.most up-to-date There toxicity were values no changes for chemi - cals madewere certainlyto the groundwater used in the RCLs,RCL calculations. but there are However, many changes it is important in the industrial to note that and the non-industrial web-calculator direct is only a subpartcontact of the (DC) full RCLsEPA RSL worksheets. webpage, Tables and that 1 andthe other 2 of thissubparts document that will summarize have important the DC-RCL explanatory changes text, generic tablesfrom and the references previous have spreadsheet yet to be (Januaryupdated. -
Determination of Ammonia in Tobacco Smoke
Application Note 1054 Note Application Determination of Ammonia in Tobacco Smoke Lipika Basumallick and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Key Words Ion Chromatography, Freebasing Nicotine, Dionex IonPac CS19 Column, Cigarette Goal To develop an IC method that can determine ammonia in tobacco smoke and is not subject to interference from small amines Introduction Ammonia (0.01–0.6%) occurs naturally in cured tobacco leaves and is now being used as an additive to enhance flavor and increase the amount of free nicotine in cigarette smoke. This practice is called freebasing of nicotine.1,2 Typically, the freebased amount equates to 0.2–10 mg ammonia per gram of tobacco or 7–200 μg and 320–450 μg ammonia per gram of smoked tobacco in mainstream and sidestream smoke, respectively (Figure 1).3 Sidestream Smoke Mainstream Smoke Ammonia is listed as a respiratory toxicant. This list Figure 1. Main- and sidestream smoke from a cigarette. was published in the Federal Register to announce that beginning June 22, 2012, the Food Drug and Cosmetics Act would require tobacco product manufacturers to On June 23, 2009, the U.S. Congress passed the Tobacco submit a list and quantify the constituents (including Control Act that granted the U.S. Food and Drug smoke constituents) identified by the FDA as harmful or Administration (FDA) authority to regulate the potentially harmful to health in each of their tobacco manufacture, marketing, and distribution of tobacco products.4 Hence, there is a need for a robust and sensitive products to protect public health. In January 2011, the analytical method for quantifying ammonia in tobacco FDA established a list of harmful and potentially harmful products and smoke. -
Frequency of Tobacco Use Among Middle and High School Students — United States, 2014
Morbidity and Mortality Weekly Report Weekly / Vol. 64 / No. 38 October 2, 2015 Frequency of Tobacco Use Among Middle and High School Students — United States, 2014 Linda J. Neff, PhD1; René A. Arrazola, MPH1; Ralph S. Caraballo, PhD1; Catherine G. Corey, MSPH2; Shanna Cox, MSPH1; Brian A. King, PhD1; Conrad J. Choiniere, PhD2; Corinne G. Husten, MD2 The use of tobacco products during adolescence increases evidence-based interventions to prevent and reduce all forms the risk for adverse health effects and lifelong nicotine addic- of tobacco use among youths (2). tion (1,2). In 2014, an estimated 4.6 million middle and high NYTS is a cross-sectional, school-based, pencil-and-paper school students were current users of any tobacco product, of questionnaire administered to U.S. middle school and high whom an estimated 2.2 million were current users of two or school students. Information is collected to monitor the more types of tobacco products (3). Symptoms of nicotine impact of comprehensive tobacco control policies and strate- dependence are increased for multiple tobacco product users gies and to inform FDA’s regulatory actions (6). A three-stage compared with single-product users (4,5). CDC and the Food cluster sampling procedure was used to generate a nation- and Drug Administration (FDA) analyzed data from the 2014 ally representative sample of U.S. students in grades 6–12 National Youth Tobacco Survey (NYTS) to determine how who attend public and private schools. Of the 258 schools frequently (the number of days in the preceding 30 days) U.S. middle school (grades 6–8) and high school (grades 9–12) students used cigarettes, e-cigarettes, cigars, and smokeless INSIDE tobacco products. -
Qualitative Chemical Measures to Indirectly Assess Quality of Natural/Uncured, Organic Bacon Compared to Traditionally Cured Bacon
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 Qualitative chemical measures to indirectly assess quality of natural/uncured, organic bacon compared to traditionally cured bacon. Charlwit Kulchaiyawat Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Animal Sciences Commons Recommended Citation Kulchaiyawat, Charlwit, "Qualitative chemical measures to indirectly assess quality of natural/uncured, organic bacon compared to traditionally cured bacon." (2009). Graduate Theses and Dissertations. 10999. https://lib.dr.iastate.edu/etd/10999 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Qualitative chemical measures to indirectly assess quality of natural/uncured, organic bacon compared to traditionally cured bacon by Charlwit Kulchaiyawat A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Meat Science Program of Study Committee: Joseph Sebranek, Major Professor James Dickson Mark Honeyman Lester Wilson Iowa State University Ames, Iowa 2009 Copyright © Charlwit Kulchaiyawat 2009. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES iii ABSTRACT -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns
atmosphere Review The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns Susan Prichard 1,*, N. Sim Larkin 2, Roger Ottmar 2, Nancy H.F. French 3 , Kirk Baker 4, Tim Brown 5, Craig Clements 6 , Matt Dickinson 7, Andrew Hudak 8 , Adam Kochanski 9, Rod Linn 10, Yongqiang Liu 11, Brian Potter 2, William Mell 2 , Danielle Tanzer 3, Shawn Urbanski 12 and Adam Watts 5 1 University of Washington School of Environmental and Forest Sciences, Box 352100, Seattle, WA 98195-2100, USA 2 US Forest Service Pacific Northwest Research Station, Pacific Wildland Fire Sciences Laboratory, Suite 201, Seattle, WA 98103, USA; [email protected] (N.S.L.); [email protected] (R.O.); [email protected] (B.P.); [email protected] (W.M.) 3 Michigan Technological University, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA; [email protected] (N.H.F.F.); [email protected] (D.T.) 4 US Environmental Protection Agency, 109 T.W. Alexander Drive, Durham, NC 27709, USA; [email protected] 5 Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA; [email protected] (T.B.); [email protected] (A.W.) 6 San José State University Department of Meteorology and Climate Science, One Washington Square, San Jose, CA 95192-0104, USA; [email protected] 7 US Forest Service Northern Research Station, 359 Main Rd., Delaware, OH 43015, USA; [email protected] 8 US Forest Service Rocky Mountain Research Station Moscow Forestry Sciences Laboratory, 1221 S Main St., Moscow, ID 83843, USA; [email protected] 9 Department of Atmospheric Sciences, University of Utah, 135 S 1460 East, Salt Lake City, UT 84112-0110, USA; [email protected] 10 Los Alamos National Laboratory, P.O.