Ore Deposits of the Western United States in Relation to Mass Distribution in the Crust and Mantle

Total Page:16

File Type:pdf, Size:1020Kb

Ore Deposits of the Western United States in Relation to Mass Distribution in the Crust and Mantle Ore deposits of the western United States in relation to mass distribution in the crust and mantle JAN KUTINA Laboratory of Global Tectonics and Metallogeny, c/o Department of Chemistry, American University, Washington, D.C. 20016 T. G. HILDENBRAND Branch of Geophysics, U.S. Geological Survey, Federal Center, Denver, Colorado 80225 ABSTRACT comes broadest in the western United States boundary and extends down to the base of the (Guild, 1978). lithosphere. Advances in geophysical investiga- Colored, digital residual Bouguer gravity The reason for the concentration of metals in tions of the upper mantle, especially by seismic maps of the conterminous United States at this region lies in its complex geologic evolution, and gravity methods, have brought the above different cutoff wavelengths reveal significant characterized by Burchfiel (1979) as "an exam- topic to the forefront of metallogenic studies. compositional heterogeneities in the litho- ple of plate boundary and intraplate activity that sphère, providing a new tool for the studies of extends over more than 2.5 billion years of earth COMPOSITIONAL HETEROGENEITY controls of mineralization. Examples are history and is still active." In general, the metal- IN DEEPER PARTS OF THE presented showing correlations between logenic processes took place in the western LITHOSPHERE OF THE WESTERN main endogenic ore deposits of the western United States at different times, starting in the UNITED STATES—REVEALED BY United States and gravity anomalies in the Precambrian and reaching maximum intensity FILTERING OF GRAVITY FIELDS residual Bouguer gravity maps at 250-, 625-, during the Mesozoic and Cenozoic. The metal- and 1,000-km wavelength cutoffs. Some of logenic evolution of the area has been compre- Bouguer gravity anomaly maps provide in- the clusters of ore deposits are in or adjacent hensively treated, in the light of plate tectonics, formation about mass distribution beneath the to regions of gravity lows (for example, the by Guild (1978) and Proffett (1979). Earth's surface. The terms "residual gravity" and majority of deposits of the Colorado mineral A number of scientists have described the role "regional gravity" are generally used to make a belt). Most of i:he high-amplitude gravity of deep-seated fracture zones (or zones of tec- distinction between gravity anomalies arising lows reflect low-density igneous masses em- tonic weakness) in the localization of major ore from local, near-surface masses and those arising placed along zones of tectonic weakness deposits, ore districts, or mineral belts of the from larger and usually deeper features, respec- which guided the ascent of magmatic fluids western United States (Billingsley and Locke, tively. The process of wavelength filtering, to and caused major geochemical changes in the 1935; Mayo, 1958; Wisser, 1959; Badgley, remove the masking effects of broad (that is, lithosphere. Some clusters of ore deposits (for 1962; Jerome and Cook, 1967; Landwehr, long-wavelength) regional anomalies, enhances example, the group of Tertiary deposits of the 1967; Kutina, 1969, 1980, 1983a, 1983b; the appearance of small (that is, short-wave- Salt Lake City urea, Utah, including Bing- Wertz, 1974,1976; and others). One of the most length) residual anomaly trends that give a first ham, Tintic, Park City, and others) are along prominent examples is the Colorado mineral order indication of structure and compositional the flanks of major zones of gravity highs. In belt, controlled by a broad, northeast-trending heterogeneities. For example, Hildenbrand and the Salt Lake City area, the major concentra- belt of fracturing of Precambrian ancestry others (1982) have used, in their colored, digital tions of metals occur near the eastern edge of (Tweto and Sims, 1963) which was reactivated Bouguer gravity anomaly maps of the contermi- a broad gravity high that correlates with in later geologic history. According to Warner nous United States, two wavelength cutoffs of crustal thinning. These relations (and others) (1978, as well as Discussion and reply by 250 and 1,000 km to produce regional and re- between the location of major ore deposits Dutch, 1979, and Warner, 1979), this belt rep- sidual maps. and mass distribution in the crust and upper resents a middle Precambrian wrench fault sys- The 250-km wavelength cutoff residual map mantle may serve as general guidelines in tem that extends northeast beyond the Rocky shown in Figure 1 contains gravity anomalies of mineral exploration on a regional scale. Mountain Front. wavelengths of 250 km or less. Essentially, the Some of the geophysical, geological, and geo- masking effects of broad regional gravity lows BACKGROUND chemical data, however, indicate that the genesis over the Rocky Mountains, Basin and Range of some major clusters of endogenic ore deposits province, and Idaho batholith have been re- The region of the western United States, ex- was guided by structural boundaries and com- moved. The resulting residual gravity map tending from the Rocky Mountain Front west of positional changes occurring at still greater shows with clarity the expressions of sources re- Denver, Colorado, to the Pacific coast, is one of depths, beneath the Mohorovicic discontinuity siding primarily in the Earth's crust (Kane and the world's richest areas of metallic ore deposits. (see, for example, Kutina, 1983b, and Shcheg- Godson, 1985). It is part of the Cordillera, which extends along lov, 1983). Therefore, our attention is focused Kane and Godson (1985) investigated limits the western continental margin of the American on the upper mantle, in particular that part of source depths of residual anomalies and con- plates from Alaska to southern Chile and be- which occurs immediately beneath the Moho cluded that anomalies in the 250-km wave- Geological Society cif America Bulletin, v. 99, p. 30-41, 6 figs., ] table, July 1987. 30 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/99/1/30/3952304/i0016-7606-99-1-30.pdf by guest on 28 September 2021 Figure 1. The main ore deposits of endogenic origin, western United States (black dots with numbers, explained in Table 1), are superimposed on Hildenbrand and others' (1982) colored, digital residual Bouguer gravity map, which has a wavelength cutoff of 250 km. Explanation is given in the text. The distribution of ore deposits is based on Kutina's (1969) compilation, revised and extended to include all of the large- and the medium- sized deposits of Guild (1981a), as long as their endogenic nature was obvious. Some placer deposits of endogenic minerals, transported from a close source (in the sense of distances in this map), have been included and are distinguished in Table 1. The number of iron deposits is incomplete. Guild's deposits of medium size are within the category shown by small dots. The large-sized deposits of Guild are shown by medium and large dots, distinguished on the basis of a global comparison by Laffitte and Rouveyrol (1964). The sizes of Rochester in Nevada (no. 33), Mount Emmons (no. 21) and Powderhorn (no. 25) in Colorado, and Mt. Tolman (no. 7) in Washington have been upgraded to the medium size category, following Vikre (1981) for Rochester and following Laznicka (1983) for the other deposits. The Mount Emmons deposit, Colorado (no. 21), may belong to the same size category as does Climax (no. 7) (A. V. Heyl, 1986, personal commun.). Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/99/1/30/3952304/i0016-7606-99-1-30.pdf by guest on 28 September 2021 MGALS we < »0 • us • «St • «ID • »9 • »1 • »9 - in - ID! - It • 00 ' -SI' -10« ' -MO • ISO • K0 • »0 • -•mo- 4SI • -MO H -«0 - 4J(0 • Figure 2. Residual Bouguer gravity anomaly map of the western United States at a wavelength cutoff of 1,000 km (Hildenbrand and others, 1982), revealing major compositional heterogeneities in the crust and the upper mantle. Most of the large zones of negative anomalies (having lowest values in dark blue) reflect masses of less dense, more acidic rocks, which developed along ;cones of tectonic weakness penetrating the more dense and more basic rock complexes. The latter appear as the positively anomalous background (having the highest values in dark orange red) hosting the negative anomalies. Some, mostly smaller, areas of negative anomalies reflect suites of porous sediments in some sedimentary basins, especially in Wyoming. The names of the main batholithic masses and of some sedimentary basins are given in Figure 3. The main ore deposits of endogenic origin (black dots with numbers, explained in Table 1) are superimposed on the 1,000-km residual map. Some clusters of deposits occur in the region of negative anomalies (shown in blue), especially in Colorado and Idaho. Some occur near the borders of negative (blue) and positive (orange-red) anomalies, especially in Utah. A more detailed explanation is given in the text. For the size of the ore deposits, see explanations in caption of Figure 1. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/99/1/30/3952304/i0016-7606-99-1-30.pdf by guest on 28 September 2021 ORE DEPOSITS OF WESTERN UNITED STATES: MASS DISTRIBUTION IN CRUST 33 length residual map represent sources principally erogeneity, with strong participation of granitic In Wyoming, some of the gravity lows reflect residing in the crust and give a clearer indication rocks: the Sierra Nevada batholith in California sedimentary basins (shown by numbers in Fig. of source geometry than does the unfiltered and adjoining parts of Nevada, the batholithic 3): anomaly 2A, Powder River basin; 4, Wind Bouguer gravity map. They pointed out, how- masses in southern California, the Idaho batho- River basin; 11, Great Divide basin and Washa- ever, that the residual anomalies are distorted in lith, the Boulder batholith in Montana, and the kie basin. Gravity low 10 reflects the Yellow- shape and exaggerated in amplitude.
Recommended publications
  • Speleothem Paleoclimatology for the Caribbean, Central America, and North America
    quaternary Review Speleothem Paleoclimatology for the Caribbean, Central America, and North America Jessica L. Oster 1,* , Sophie F. Warken 2,3 , Natasha Sekhon 4, Monica M. Arienzo 5 and Matthew Lachniet 6 1 Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA 2 Department of Geosciences, University of Heidelberg, 69120 Heidelberg, Germany; [email protected] 3 Institute of Environmental Physics, University of Heidelberg, 69120 Heidelberg, Germany 4 Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX 78712, USA; [email protected] 5 Desert Research Institute, Reno, NV 89512, USA; [email protected] 6 Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA; [email protected] * Correspondence: [email protected] Received: 27 December 2018; Accepted: 21 January 2019; Published: 28 January 2019 Abstract: Speleothem oxygen isotope records from the Caribbean, Central, and North America reveal climatic controls that include orbital variation, deglacial forcing related to ocean circulation and ice sheet retreat, and the influence of local and remote sea surface temperature variations. Here, we review these records and the global climate teleconnections they suggest following the recent publication of the Speleothem Isotopes Synthesis and Analysis (SISAL) database. We find that low-latitude records generally reflect changes in precipitation, whereas higher latitude records are sensitive to temperature and moisture source variability. Tropical records suggest precipitation variability is forced by orbital precession and North Atlantic Ocean circulation driven changes in atmospheric convection on long timescales, and tropical sea surface temperature variations on short timescales. On millennial timescales, precipitation seasonality in southwestern North America is related to North Atlantic climate variability.
    [Show full text]
  • Threats to Western United States Riparian Ecosystems: a Bibliography
    Threats to Western United States Riparian Ecosystems: A Bibliography Boris Poff, Karen A. Koestner, Daniel G. Neary, and David Merritt United States Department of Agriculture / Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-269 December 2012 Poff, Boris; Koestner, Karen A.; Neary, Daniel G.; Merritt, David. 2012. Threats to western United States riparian ecosystems: A bibliography. Gen. Tech. Rep. RMRS-GTR-269. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 78 p. Abstract __________________________________________________ This bibliography is a compendium of state-of-knowledge publications about the threats affecting western U.S. riparian ecosystems and is a companion to the website: http://www.rmrs.nau.edu/ awa/ripthreatbib/. The website contains abstracts and access to many of the publications via PDFs, or it directs the readers to websites where PDFs of the publication can be viewed or obtained. The bibliography is ordered alphabetically and the type of threats discussed in each publication is highlighted. These threats include agriculture, climate change, dam construction, disease, drought, invasive species, fire, floods, flow regulation, forest harvesting, grazing, groundwater depletion, insects, mining, recreation, roads, water diversions, urbanization, and water quality. Keywords: ecosystem, riparian, soil, water, watersheds, hydrology, threats, vegetation, wildlife, drought, floods, grazing, invasive plants Authors _____________________________ David Merritt, Riparian Ecologist, U.S. Department of Agri- culture, Rocky Mountain Research Station, Forest Service, Boris Poff, District Hydrologist, Bureau of Land Management, Stream Systems Technology Center, Fort Collins, Colorado. Las Vegas, Nevada. Karen A. Koestner, Hydrologic Research Technician, U.S. Acknowledgments ____________________ Department of Agriculture, Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, Flagstaff, This effort was funded by a grant from the U.S.
    [Show full text]
  • Contemporary Uplift of the Sierra Nevada, Western United States, from GPS and Insar Measurements
    Contemporary uplift of the Sierra Nevada, western United States, from GPS and InSAR measurements William C. Hammond1*, Geoffrey Blewitt1, Zhenhong Li2, Hans-Peter Plag1, and Corné Kreemer1 1Nevada Geodetic Laboratory, Nevada Bureau of Mines and Geology, and Nevada Seismological Laboratory, University of Nevada, Reno, Nevada 89557, USA 2Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET+), School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK ABSTRACT particular, the EarthScope Plate Boundary Observatory has provided hun- Modern space geodesy has recently enabled the direct observation dreds of new stations in California and Nevada, including about a dozen of slow geological processes that move and shape Earth’s surface, includ- on the west slope of the Sierra Nevada. We processed all available GPS ing plate tectonics and crustal strain accumulation that leads to earth- data to obtain station height time series, and fi t them with a six-parameter quakes. More elusive has been the direct observation of active moun- empirical model including an epoch position, a velocity, and an amplitude tain growth, because geodetic measurements have larger uncertainties and phase of annual and semiannual harmonic constituents (to model sea- in the vertical direction, while mountain growth is typically very slow. sonal effects). To enhance the signal-to-noise ratio, we used GPS vertical For the Sierra Nevada of California and Nevada, western United States, velocities based on over 3 yr of data with 1σ rate uncertainties ≤1.0 mm/yr, the history of elevation is complex, exhibiting features of both ancient and required that the empirical model adequately fi t the data (Fig.
    [Show full text]
  • Why Is Snow Important in the Southwestern United States
    Module 1 Educator’s Guide Investigation 4 Why is snow Geography Standards important in the Standard 7: Physical Systems The physical processes that shape southwestern the patterns of Earth’s surface • Describe how physical processes affect different regions of the United United States? States and the world. Investigation Overview Standard 15: Environment In Investigation 4, students role-play U.S. senators from seven western and Society states seeking to find solutions to important water problems in the How physical systems affect Southwest: recurrent drought, which reduces vital snowpack resources, human systems in the face of rapid population growth and therefore increasing demand • Analyze examples of changes in the on those resources. Information from satellite images, in tandem with physical environment that have ground-based perspectives, assist students in playing their roles as reduced the capacity of the environ- senators. Because the investigation uses a case study in the United ment to support human activity. • Apply the concept of “limits to growth” States, all statistics will be in English units. This conscious exception to to suggest ways to adapt to or the standard use of metric units reflects the real-world practice of Ameri- overcome the limits imposed on can water resource managers. human systems by physical systems. Time required: Five to nine 45-minute sessions (as follows): Standard 18: The Uses of Introduction and Parts 1 and 2: One or two 45-minute sessions Part 3: One 45-minute session Geography Parts 4 and 5: One or two 45-minute sessions How to apply geography to inter- Parts 6 and 7: One or two 45-minute sessions pret the present and plan for the Part 8 and Debriefing: One or two 45-minute sessions future • Develop policies that are designed to guide the use and management of Materials/Resources Earth’s resources and that reflect Briefing (one per student) multiple points of view.
    [Show full text]
  • Autumn Precipitation Trends in the Northeast United States
    Middle States Geographer, 2000, 33:74-81 AUTUMN PRECIPITATION TRENDS IN THE NORTHEAST UNITED STATES Keith G. Henderson Department of Geography Villanova University Villanova, PA 19085 ABSTRA CT: The northeastern United States experienced significant increases in precipitation from /900- / 999 Precipitation changes have been most prominent in the autumn. In western New York and Pennsylvania. and in coastal New England, seasonal precipitation totals have risen 25-45% over the IOO-year period. Concurrent decreases in temperature indicate that early season precipitation increases may be associated with earlier upper­ level troughing, while large-scale November changes may be linked to an enhanced subtropical high pressure system. Autumn precipitation steadily increased over the century and has impacted regional hydrology. At least three major rivers have shown increased autumn flow. This impact is potentially important given that autumn is usually a time ofrising river levels before high winter and spring runoffperiods. INTRODUCTION aI., 1996). Karl and Knight (1998) suggest that over half of the measured precipitation increase across the country has been caused by increases in the largest Recent research on global climate change 10% of storms. While precipitation events of all has highlighted precipitation trends as a leading levels have become more frequent, only the signal in change detection. In North America intensities of the largest events have increased (Karl precipitation has increased significantly in many and Knight, 1998). Kunkel et al. (1999) also found regions over the past century. Groisman and significant increases in extreme precipitation events Easterling (1994) found that total precipitation rose over many portions of the United States.
    [Show full text]
  • A Record-Breaking Trans-Atlantic African Dust Plume Associated with Atmospheric Circulation Extremes in June 2020 Bing Pu and Qinjian Jin
    Article A Record-Breaking Trans-Atlantic African Dust Plume Associated with Atmospheric Circulation Extremes in June 2020 Bing Pu and Qinjian Jin ABSTRACT: High concentrations of dust can affect climate and human health, yet our understanding of extreme dust events is still limited. A record-breaking trans-Atlantic African dust plume occurred during 14–28 June 2020, greatly degrading air quality over large areas of −3 the Caribbean Basin and the United States. Daily PM2.5 concentrations exceeded 50 µg m in several Gulf States, while the air quality index reached unhealthy levels for sensitive groups in more than 11 states. The magnitude and duration of aerosol optical depth over the tropical North Atlantic Ocean were the greatest ever observed during summer over the past 18 years based on satellite retrievals. This extreme trans-Atlantic dust event is associated with both enhanced dust emissions over western North Africa and atmospheric circulation extremes that favor long-range dust transport. An exceptionally strong African easterly jet and associated wave activities export African dust across the Atlantic toward the Caribbean in the middle to lower troposphere, while a westward extension of the North Atlantic subtropical high and a greatly intensified Caribbean low-level jet further transport the descended, shallower dust plume from the Caribbean Basin into the United States. Over western North Africa, increased dust emissions are associated with strongly enhanced surface winds over dust source regions and reduced vegetation coverage in the western Sahel. While there are large uncertainties associated with assessing future trends in African dust emissions, model-projected atmospheric circulation changes in a warmer future generally favor increased long-range transport of African dust to the Caribbean Basin and the United States.
    [Show full text]
  • Desertification of the American Southwest: an Analysis of Population, Climate, and Water Management
    IQP 2007-2008 Desertification of the American Southwest Desertification of the American Southwest: An analysis of Population, Climate, and Water Management. The Interactive Qualifying Project Report Submitted to the faculty Of the Worcester Polytechnic Institute In partial fulfillment of the requirement for the Interactive Qualifying Project By Kyle Forward, Ryan Blair and Nick Souviney Date: April 3, 2008 Advised by Professor Theodore C. Crusberg Worcester Polytechnic Institute 1 IQP 2007-2008 Desertification of the American Southwest Acknowledgements We would like to thank Professor T.C. Crusberg for his helpful guidance and support in writing this report. His knowledge of the area and first hand experience provided great insight into the region’s current problematic conditions. Worcester Polytechnic Institute 2 IQP 2007-2008 Desertification of the American Southwest Table of Contents ACKNOWLEDGEMENTS ......................................................................................................................... 2 TABLE OF FIGURES .................................................................................................................................. 4 TABLE OF TABLES .................................................................................................................................... 5 ABSTRACT ................................................................................................................................................... 6 POPULATION ...........................................................................................................................................
    [Show full text]
  • Climate Projections for the Midwest: Availability, Interpretation and Synthesis
    Climate Projections for the Midwest: Availability, Interpretation and Synthesis WHITE PAPER PREPARED FOR THE U.S. GLOBAL CHANGE RESEARCH PROGRAM NATIONAL CLIMATE ASSESSMENT MIDWEST TECHNICAL INPUT REPORT Julie A. Winkler1, Raymond W. Arritt2, Sara C. Pryor3 1 Department of Geography, Michigan State University 2 Department of Agronomy, Iowa State University 3 Department of Geological Sciences, Indiana University Recommended Citation: Winkler, J.A., R.W. Arritt, S.C. Pryor. 2012: Climate Projections for the Midwest: Availability, Interpretation and Synthesis. In: U.S. National Climate Assessment Midwest Technical Input Report. J. Winkler, J. Andresen, J. Hatfield, D. Bidwell, and D. Brown, coordinators. Available from the Great Lakes Integrated Sciences and Assessment (GLISA) Center, http://glisa.msu.edu/docs/NCA/MTIT_Future.pdf. At the request of the U.S. Global Change Research Program, the Great Lakes Integrated Sciences and Assessments Center (GLISA) and the National Laboratory for Agriculture and the Environment formed a Midwest regional team to provide technical input to the National Climate Assessment (NCA). In March 2012, the team submitted their report to the NCA Development and Advisory Committee. This white paper is one chapter from the report, focusing on potential impacts, vulnerabilities, and adaptation options to climate variability and change for the future climate sector. U.S. National Climate Assessment: Midwest Technical Input Report: Future Climate Sector White Paper Contents Summary ....................................................................................................................................................................................................................
    [Show full text]
  • The Geology of Western North America (Abridged Version)
    THE GEOLOGY OF WESTERN NORTH AMERICA (ABRIDGED VERSION) By JoAnne Nelson, British Columbia Ministry of Energy and Mines, Victoria, BC, Canada [email protected] The geological history of western North America has siliciclastic strata that are now beautifully exposed in the been, and continues to be, shaped by its position on the Canadian Rocky Mountains. The Mt. Brussilof magnesite eastern rim of the Pacific Ocean. The modern Pacific deposit is hosted by Middle Cambrian carbonate within Ocean’s basin is the successor of the original ocean which this continental shelf sequence. Equivalent platformal split Laurentia - our continent’s cratonic core - away from strata are best exposed in the southwestern United States, the rest of the Precambrian supercontinent Rodinia, an the Grand Canyon being a world-renowned example. The ocean that widened until in late Paleozoic time, it became opening of Panthalassa was not a single event in western Panthalassa, the World Ocean. Unlike the eastern side of North America: convincing Cambrian as well as late the continent, where continental collision was followed Proterozoic rift-related sequences occur, and alkalic to by re-opening of the Atlantic Ocean - the “Wilson cycle” ocean-floor basalts in the miogeocline range through - western North America has always faced the same Ordovician into Devonian age. The implied protracted active ocean basin. Its tectonic evolution has always been nature of this rift event, in contrast to the short-lived and that of an active margin, affected first by multi-episodic efficient opening of the Atlantic Ocean, continues to rifting, and then by plate-margin subduction and puzzle.
    [Show full text]
  • Tectonic Motions of the Western United States
    Explore Tectonic Motions of the Western United States Student worksheet Are the tectonic plates still moving? How do know? Let’s explore evidence of the plates moving using current GPS data to see how the land beneath your feet is moving, crumpling, sliding, and stretching. In this activity, you will study the map on the Tectonics Motions of the Western United States poster to look for evidence of different types of crustal motion in the Pacific Northwest, Basin and Range, and California, then consider the hazards and societal impact that might result due to these motions. Explore the poster: Tectonic Motions of the Western United States. 1. What do the red vectors on the map represent? 2. What is the scale for the vectors? [Look at the bottom of the map] Using a ruler, measure the vector scale on the map: • 10 mm/yr = _______ mm • Draw the vector scale bar, representing 10 mm/yr here: 3. What are the yellow lines on the map? 4. Choose 2 vectors from the map, measure the length of each. This is the ground’s velocity at that GPS station. • Using the vector scale bar, determine their velocities, and label their velocities & directions of motion on the map below. 5. Label the map with the state names: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming 6. Outline each region on your map: • Pacific Northwest: Washington / Oregon / Northern California • Basin & Range: Nevada / Utah region • California Questions or comments please contact education @ unavco.org. Page 1 Version: April 9, 2019,
    [Show full text]
  • Floristic Analysis of the Southwestern United States
    Great Basin Naturalist Volume 46 Number 1 Article 5 1-31-1986 Floristic analysis of the southwestern United States Steven P. McLaughlin University of Arizona, Tucson Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation McLaughlin, Steven P. (1986) "Floristic analysis of the southwestern United States," Great Basin Naturalist: Vol. 46 : No. 1 , Article 5. Available at: https://scholarsarchive.byu.edu/gbn/vol46/iss1/5 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. FLORISTIC ANALYSIS OF THE SOUTHWESTERN UNITED STATES Steven P. McLaughlin' Abstract. —A study was made of the distributions of native, terrestrial, \aseular plants occurring in 50 local floras from throughout the Basin and Range and Colorado Plateau physiographic provinces of the southwestern United States. The objectives of the study were to objectively define and describe the floristic elements —assemblages of species with roughly coincident geographic distribution —occurring in the southwestern United States and to deter- mine what such assemblages reveal about the floristic history of the region. The total flora (native, terrestrial species only) of the Southwest is estimated at 5,458 species, 77% of which were recorded in 1 or more of the local floras. Nearly 22% of these species are endemic to the study region. A majority of the species were found to be relatively rare. The average range of a species included only 4 floras, and 90% of the species were recorded from 11 or fewer floras; only 81 species (1.5%) were recorded from 50% or more of the floras.
    [Show full text]
  • National Drought Summary for July 20, 2021
    National Drought Summary for July 20, 2021 Summary Active weather prevailed across much of the South, East, and Midwest, as well as parts of the Plains, into the middle of July, followed by a southward shift in widespread shower activity. Meanwhile, a robust monsoon circulation provided limited Southwestern drought relief, particularly in parts of Arizona, New Mexico, and southwestern Colorado. Farther north and west, however, little or no rain fell in California, the Great Basin, and the Northwest, where dozens of wildfires were in various stages of containment. Smoke and other particulate matter from those fires carried downwind at various atmospheric levels, producing hazy skies and reducing air quality—in some cases thousands of miles from the points of origin. Dry weather extended eastward across the nation’s northern tier as far east as Lake Superior, while heavy rain eased or eradicated drought in the remainder of the Great Lakes region, along with the Northeast. In the driest areas of the northern and western United States, drought’s impact on water supplies, as well as rangeland, pastures, and a variety of crops, was further amplified by ongoing heat. Weekly temperatures averaged as much as 10°F above normal from the interior Northwest to the northern High Plains. On July 19, temperatures as high as 110°F were reported in eastern Montana. Another pocket of hot weather was centered over the middle Atlantic States. In contrast, near- or slightly below-normal temperatures dominated the Plains, Midwest, and South. Northeast Heavy rain extending from New York and northern Pennsylvania into parts of New England resulted in further reductions in the coverage of abnormal dryness (D0) and moderate to severe drought (D1 to D2).
    [Show full text]