The Tetravalent Manganese Oxides

Total Page:16

File Type:pdf, Size:1020Kb

The Tetravalent Manganese Oxides American Mineralogist, Volume 64, pages I199-1218, 1979 The tetravalent manganeseoxides: identification, hydration, and structural relationships by infrared spectroscopy RussBrr M. Porrnn'AND GpoRcn R. RossueN Division of Geologicaland Planetary Sciencef Califurnia Institute of Technology Pasadena,Califurnia 9I 125 Abstract A compilation of the infrared powder absorptionspectra of most naturally occurring tet- ravalent and trivalent manganeseoxides is presentedwhich is intended to serveas a basisfor the spectroscopicidentiflcation of theseminerals in both orderedand disorderedvarieties, in- cluding those too disorderedfor X-ray diffraction studies.A variety of synthetic manganese oxidesare also included for comparisonto the natural phases.The samplesinclude: aurorite, birnessite,braunite, buserite, chalcophanite,coronadite, cryptomelane,groutite, hausman- nite, hollandite, lithiophorite, maoganite, manganese(Ill) manganate(IV), manganosite, manjiroite, marokite, nsutite, partridgeite, pyrolusite, quenselite,rancieite, ramsdellite,ro- manechite, sodium manganese(Il,flI) manganate(Iv), todorokite, and woodruffite. The spectraindicate that well-orderedwater occurs in ramsdellite,chalcophanite, and most ro- manechites.Disordered water is observedin the spectraof nsutite,hollandites, birnessite, to- dorokite, buserite,and rancieite.The infrared spectraof well-orderedtodorokite, birnessite and rancieite differ which indicatesthat they possessdiflerent structuresand should be re- garded as distinct mineral species.Much variation is observedin the spectraof pyrolusites, nsutites,birnessites, and todorokiteswhich is interpretedas arising from structural disorder. Spectraltrends suggest that todorokite,birnessite and rancieitehave layered structures. Introduction oxide crystal structures and structural relationships. The finely-particulate and disordered nature of X-ray powder diffraction patternsare the only struc- manganeseoxides in many of their concentrationsin tural data available on severalof the oxides impor- the weatheringenvironment has made identification tant in the weatheringenvironment, and thesegener- of their mineralogy by means of X-ray diffraction ally show lines which are few in number, broad, and difficult and sometimesimpossible. Characteristic X- sometimesvariable in position. This has causedun- ray powder diffraction lines are frequently broad, in- certainty in the structural relationships among syn- distinct, or absent altogether and do not serve as a thetic and natural samplesand a consequentcon- satisfactorybasis for identification. The frequent oc- fusion in their classification. currence of silicate phasesadmixed with the low- This work will show that infrared (IR) spectros- temperaturemanganese oxides is an additional com- copy is often a necessaryalternative and generally a plication becausetheir X-ray lines can sometimesbe useful supplement to X-ray diffraction for mineral- confusedwith those of the manganeseoxides. ogical analysisof the manganeseoxides. Because it is Problems of particle size and disorder are a char- sensitiveto amorphous componentsand those with acteristic of pure manganeseoxides and have been short-rangeorder as well as to material with long- responsiblefor our poor understandingof manganese range order, IR spectroscopyyields a more complete and reliable descriptionof materialssuch as the man- I Presentaddress: Owens-Corning Fiberglas Corporation, Gran- ganeseoxides, where crystalline disorder may be ex- ville, Ohio 43023. pected.In addition, it is sensitiveto the structural en- 2 Contribution N o. 3126. vironment of the hydrous components, which is 0np3-{0/'X/7 9/ I I I 2- I 199$02.00 POTTER AND ROSSMAN: TETRAVALENT MANGANESE OXIDES frequently diagnosticof the manganeseoxide mrner- Appendix figures are indicated by an "A" or "B" fol- alogy. lowing the figure number.' The intensities of IR BecauseIR spectroscopyis not a primary struc- spectramay vary by a factor of 2 or 3 due to differ- tural technique like X-ray diffraction, it is necessary encesin sample particle size and dispersion in the to "calibrate" it against well-crystallized materials pellet. For this reason we have presentedthe IR whose mineralogy has been previously determined spectra at concentrationssuch that all spectrahave by X-ray diffraction. Once a mineral's characteristic the samemaximum intensity in the 1400cm-' to 200 IR spectrum has been determined, it can then be cm-' region. Each spectrumin the 4000cm-'to 1400 usedto identify whether that phaseis presentin more cm-' region is presentedat 4 times the concentration disorderedsamples. of its lower energy spectrum. The presentationin- More than 20 predominantly tetravalent manga- tensitieslisted in the figure captionsallow the origi- nese oxide phasesare recognizedas valid mineral nal intensity of the spectrato be calculated.The pre- species.X-ray criteria for the identification of the sentation intensity is 100 times the intensity in the well-crystallizedoxides are well established(Cole et figure divided by the intensity measuredusing the al., 1947;Burns and Burns, 1977a).This paper pre- standardpreparation techniques (Section 2). sentsthe basisfor determinationof their mineralogy Experimentaldetails by IR spectroscopy.The IR spectraof many of the manganeseoxides have been published (Gattow and Purity and mineralogy were determinedby X-ray Glerrser, l96la, b; Glemser et al., 196l; Moenke, powder diffraction using CrKa radiation and a 1962;Yalarelhet a1.,1968;Agiorgitis, 1969; Kolta el Debye-Scherrercamera. The IR spectrum of some al., l91l; van der Marel and Beutelspacher,1976), minerals is so distinctive that after an initial correla- but the quality of the data are generally too poor to tion was made betweenthe X-ray diffraction pattern show clear differencesamong the oxides. Using im- and the IR spectrum, further X-ray work was not proved instrumentation and sample preparation needed.When necessary,qualitative chemicalanaly- techniques,we have found that the differencesin the sis was usedin addition to X-ray diffraction to deter- IR spectra of the tetravalent manganeseoxides are mine mineralogy. sufficiently diagnostic to permit their identification in IR spectra were obtained with a Perkin-Elmer manganeseoxide concentrationsof the natural envi- model 180spectrophotometer on 2.0 mg of powdered ronment evenwhen the oxidesare highly disordered. sampledispersed in TlBr pelletsfor the 4(XX)cm-' to We have usedthese spectra as the basisfor the deter- 1400cm-' region and on 0.5 mg in TlBr and KBr pel- mination of manganesemineralogy in a variety of lets for the 1400cm-' to 200 cm-' region. Pelletsof occurrences including desert varnish, manganese 13 mm diameter were pressedfor I minute at 19,000 dendrites, stream deposits, and concretions (Potter psi under vacuum. Pellets were prepared without and Rossman,1979a,b, c). evacuationto verify that dehydration of the manga- This paper also contains the results of research nese oxide did not occur under these conditions. into somefundamental problems of tetravalentman- SinceKBr is hygroscopic,it was not usedin the 4000 ganeseoxide mineralogy.We have usedour spectro- cm-' to 1400cm-' region,where water and hydroxide scopic results in conjunction with a variety of other absorptionoccurs. TlBr is preferableto KBr because techniquesto investigatestructural variations within it is non-hygroscopic.Also, becauseits refractive in- the manganeseoxides, to addressquestions about the dex better matchesmost manganeseoxides, it gives doubtful structures,to proposestructural models for spectra of better quality. The figures presentedare structureswhich are as yet unknown, and to test the from TlBr pellets. Where the corresponding spec- validity of synthetic materials as analogsof natural trum in KBr differs significantly,it is included in Ap- samples. pendix B. A vacuum dewar with KBr windows was The presentationof theseresults follows the classi- used to obtain IR spectraat liquid nitrogen temper- ficationscheme of Burns and Burns (1975,l977a,b), ature in the 4000 cm-' to 1400cm-' region. Qualita- which is based on the nature of the polymerization of tive chemical analyseswere done with an SEM MnOu units, in which six oxygenssurround a central 3 manganesecation in approximatelyoctahedral coor- To receivea copy of Appendic.esA and B and a table of IR band positions, order Document AM-79-ll7 from the Business dination. For each structure representativespectra Office, Mineralogical Society of America, 2000 Florida Avenue, are included with the text. Spectraof other samples NW, Washington,D. C. 20009.Please remit $1.00in advancefor are containedin Appendix B as indicated in Table l. the microfiche. POTTER AND ROSSMAN: TETRAVALENT MANGANESE OXIDES l20l equipped for energydispersive X-ray analysis.Man- the resolution of bands 3,4, and 5 improves,and the ganeseoxidation statewas determinedby room tem- intensity of band 3 growswith respectto band 4. perature dissolution in excess0.05M Fe2* in 0.5M All the pyrolusite powder diffraction patternscon- HrSO4followed by back titration of excessFe2* with tain linesat 3.40,2.63,2.32,1.78, and l.7lA. These 0.002M KMnOo and spectrophotometricdetermina- cannot be indexed on the tetragonal pyrolusite cell tion of total Mn as MnO;. This procedureis a modi- nor on a superlatticeof it. They can all be attributed fication of that of Moore et al. (195O).Far-infrared to manganiteand accountfor its four strongestlines. spectrain the region 200 cm-' to 35 cm-' were ob- The +3.99 manganeseoxidation state of
Recommended publications
  • Characterization of Sulfide Minerals from Gabbroic and Ultramafic Rocks by Electron Microscopy1 D.J
    Blackman, D.K., Ildefonse, B., John, B.E., Ohara, Y., Miller, D.J., MacLeod, C.J., and the Expedition 304/305 Scientists Proceedings of the Integrated Ocean Drilling Program, Volume 304/305 Data report: characterization of sulfide minerals from gabbroic and ultramafic rocks by electron microscopy1 D.J. Miller,2 T. Eisenbach,2 and Z.P. Luo3 Chapter contents Abstract Abstract . 1 This objective of this research was to investigate the potential of using transmission electron microscopy (TEM) to determine sul- Introduction . 1 fide mineral speciation in gabbroic rocks from Atlantis Massif, the Geologic background . 2 site of Integrated Ocean Drilling Program Expedition 304/305. Method development . 2 The method takes advantage of TEM analysis techniques and Results . 2 proved successful in sulfide mineral identification. TEM can pro- Discussion . 3 vide imaging of the sample morphology, crystal structure through Acknowledgments. 4 the electron diffraction, and chemical compositional information References . 4 through X-ray energy dispersive spectroscopy. Electron probe mi- Figures . 5 croanalysis was also used to determine the chemical composition. Table . 11 Introduction Integrated Ocean Drilling Program (IODP) Expedition 304/305 at Atlantis Massif, 30°N on the Mid-Atlantic Ridge (MAR) (Fig. F1) comprised a coordinated, dual-expedition drilling program aimed at investigating oceanic core complex (OCC) formation and the exposure of ultramafic rocks in young oceanic lithosphere. One of the scientific objectives of this drilling program is to investigate the role of magmatism in the development of OCCs. Whereas precruise submersible and geophysical surveys suggested the po- tential of recovering substantial amounts of serpentinized perido- tite and possibly fresh residual mantle, coring on the central dome of the massif returned a 1.4 km thick section of plutonic mafic rock with only a thin (<150 m) interval of ultramafic or near-ultramafic composition rocks of indeterminate origin.
    [Show full text]
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • Redalyc.Mineralogical Study of the La Hueca Cretaceous Iron-Manganese
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Corona Esquivel, Rodolfo; Ortega Gutiérrez, Fernando; Reyes Salas, Margarita; Lozano Santacruz, Rufino; Miranda Gasca, Miguel Angel Mineralogical study of the La Hueca Cretaceous Iron-Manganese deposit, Michoacán, south-western Mexico Revista Mexicana de Ciencias Geológicas, vol. 17, núm. 2, 2000, pp. 142-151 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57217206 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas, volumen 17, número 2, 143 2000, p. 143- 153 Universidad Nacional Autónoma de México, Instituto de Geología, México, D.F MINERALOGICAL STUDY OF THE LA HUECA CRETACEOUS IRON- MANGANESE DEPOSIT, MICHOACÁN, SOUTHWESTERN MEXICO Rodolfo Corona-Esquivel1, Fernando Ortega-Gutiérrez1, Margarita Reyes-Salas1, Rufino Lozano-Santacruz1, and Miguel Angel Miranda-Gasca2 ABSTRACT In this work we describe for the first time the mineralogy and very briefly the possible origin of a banded Fe-Mn deposit associated with a Cretaceous volcanosedimentary sequence of the southern Guerrero terrane, near the sulfide massive volcanogenic deposit of La Minita. The deposit is confined within a felsic tuff unit; about 10 meters thick where sampled for chemical analysis. Using XRF, EDS and XRD techniques, we found besides todorokite, cryptomelane, quartz, romanechite (psilomelane), birnessite, illite-muscovite, cristobalite, chlorite, barite, halloysite, woodruffite, nacrite or kaolinite, and possibly hollandite-ferrian, as well as an amorphous material and two unknown manganese phases.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • JAN Iia 20U T6T1/V
    IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25. D.C. November 19, 1956 AEC-193/7 Mr. Robert D. Nininger Assistant Director for Exploration Division of Bav Materials U* S. Atomic Energy Commission Washington 25, D. C, Dear Bobs Transmitted herewith are three copies of TEI-622, "The crystal chemistry and mineralogy of vanadium," by Ho-ward T. Evans, Jr. Me are asking Mr. Hosted to approve our plan to publish this report as a chapter of a Geological Survey professional paper on miner­ alogy and geochemistry of the ores of the Colorado Plateau. Aelrnovledg- ment of AEC sponsorship will be made in the introductory chapter* Sincerely yours, r ^ O U—— TV , Z^*i—w«__ ™~ W. H. Bradley Chief Geoldigist .JAN iia 20U T6T1/V Geology and 8$i:aeralQgy This document consists of k-2 pages* Series A» Howard T. Erans, Jr, Trace Elements Investigations Report 622 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or quotation* *This report concerns work done on behalf of the Division of Raw Materials of the U. S« Atomic Energy Commission* - TEI-622 AHD MIHERALQ6T Distribution (Series A) Ro. of copies Atomic Energy Commission, Washington .»**«»..*»..«*»..««..*... 2 Division of Rs¥ Materials, Albuquerque ,...****.*.«.»*.....*.. 1 Division of Raw Materials, Austin »«,..«.»...»*.»...*«..*...«» 1 Diylsion of Raw Materials, Butte *«*,.»».*..,*...».»......*.*. 1 Division of Raw Materials, Casper ............a............... 1 Division of Raw Ifeterials, Denver ,........»...».....«.,.*..... 1 Division of Raw Materials, Ishpeming .................a....... 1 Division of Raw Materials, Pnoenix ...a.....,....*........*... 1 Division of Eaw Materials, Rapid City .......................
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • 16 /75 / 7 ~ -% in +~ In
    7-'<16_ /75_ / 7 ~ R.6l3. Wolframite concentration, Scamander Mining Corporation N.L. A chip sample for the determination of the maximum recoverable amount of wolframite was supplied by the Scamander Mining Corporation and stated to be from their Scamander Tier lease. Special consideration was to be given to the production of a high grade wolframite concentrate and the rejection of the coarsest possible tailing. The chip sample was given the registered number 700174. • The chip sample was initially c rushed to -\ in and found to contain 0.82\ W03' The sample consisted mainly of quartz plus some dolerite with minor amounts of an iron oxide mineral. Large slivers of wolframite up to • 5/16 in were present. SAMPLE PREPARATION The -\ in ore was stage crushed to %" in in a laboratory Chipmunk jaw crusher, mixed, then riffled into four identical parts. One part was further riffled to supply samples for a siie analysis and a further head assay. The second part was wet, then dry screened to provide the following fractions for concentration: Size Range Concentrating Operation -% in +~ in 1 -\ in +10. 2 -10* +22. 3 • -22. +52# 4 -52. +100. 5 -100. +200# 6 • - 200. 7 The remaining two identical parts were retained for possible further work. PROCEDURE The sized fractions of the ore were gravity and magnetically concen­ t trated (Table 1). II Jig Concentration Jig conditions are shown in Table 2. As the jig concentration operat­ ions were not continuous , each fraction was fed through its respective jig ~ three times. Table Concentration Minimum amounts of water and l ow feed rates were used to obtain quartz free concentrates from each fraction.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Moon Minerals a Visual Guide
    Moon Minerals a visual guide A.G. Tindle and M. Anand Preliminaries Section 1 Preface Virtual microscope work at the Open University began in 1993 meteorites, Martian meteorites and most recently over 500 virtual and has culminated in the on-line collection of over 1000 microscopes of Apollo samples. samples available via the virtual microscope website (here). Early days were spent using LEGO robots to automate a rotating microscope stage thanks to the efforts of our colleague Peter Whalley (now deceased). This automation speeded up image capture and allowed us to take the thousands of photographs needed to make sizeable (Earth-based) virtual microscope collections. Virtual microscope methods are ideal for bringing rare and often unique samples to a wide audience so we were not surprised when 10 years ago we were approached by the UK Science and Technology Facilities Council who asked us to prepare a virtual collection of the 12 Moon rocks they loaned out to schools and universities. This would turn out to be one of many collections built using extra-terrestrial material. The major part of our extra-terrestrial work is web-based and we The authors - Mahesh Anand (left) and Andy Tindle (middle) with colleague have build collections of Europlanet meteorites, UK and Irish Peter Whalley (right). Thank you Peter for your pioneering contribution to the Virtual Microscope project. We could not have produced this book without your earlier efforts. 2 Moon Minerals is our latest output. We see it as a companion volume to Moon Rocks. Members of staff
    [Show full text]
  • Technologic Tests of Turkey-Gordes Zeolite Minerals
    Journal of Minerals and Materials Characterization and Engineering, 2017, 5, 252-265 http://www.scirp.org/journal/jmmce ISSN Online: 2327-4085 ISSN Print: 2327-4077 Technologic Tests of Turkey-Gordes Zeolite Minerals Oyku Bilgin Department of Mining Engineering, Sirnak University, Sirnak, Turkey How to cite this paper: Bilgin, O. (2017) Abstract Technologic Tests of Turkey-Gordes Zeo- lite Minerals. Journal of Minerals and Ma- Natural zeolites are found at many points of the world in the form of miner- terials Characterization and Engineering, 5, als. As for Turkey, quite large volumes of zeolites reserves are available in the 252-265. following regions: Ankara (Nallihan, Beypazari, Polatli etc.), Kütahya-Sa- https://doi.org/10.4236/jmmce.2017.55021 phane, Manisa-Gördes, Manisa-Demirci, Izmir-Urla, Balıkesir-Bigadiç and Received: February 23, 2017 Cappadocia. By means of the works carried out only at the field in Balikesir- Accepted: August 11, 2017 Bigadiç region, one of the detected reserves in Turkey, it was understood that Published: August 14, 2017 an easily workable potential around 500 million ton is available. According to Copyright © 2017 by author and the very limited observations made until today, it is stated that the total re- Scientific Research Publishing Inc. serve in our country may be around 500 billion ton. In these regions, the types This work is licensed under the Creative of clinoptilolite, hoylandit, chabazite, analcime and erionite from the zeolite Commons Attribution International minerals exist. Zeolites are widely used in many sectors such as energy, envi- License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ ronment, construction, detergent, chemistry, medicine, mining, agriculture Open Access and livestock.
    [Show full text]
  • Distribution and Chemistry of Fracture-Lining Minerals at Yucca Mountain, Nevada
    LA-12977-MS UC-814 Issued: December 1995 Distribution and Chemistry of Fracture-Lining Minerals at Yucca Mountain, Nevada Barbara A. Carlos Steve f. Chipera David L. Bish Los Alamos NATIONAL LABORATORY Los Alamos, New Mexico 87545 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISTRIBUTION AND CHEMISTRY OF FRACTURE-LINING MINERALS AT YUCCA MOUNTAIN, NEVADA by Barbara A. Carlos, Steve J. Chipera, and David L. Bish ABSTRACT Yucca Mountain, a >1.5-km-thick sequence of tuffs and subordinate lavas in southwest Nevada, is being investigated as a potential high-level nuclear waste repository site. Fracture- lining minerals have been studied because they may provide information on past fluid transport and because they may act as natural barriers to radionuclide migration within the fractures. Cores from seven drill holes have been studied to determine the distribution and chemistry of minerals lining fractures at Yucca Mountain. Fracture-lining minerals in tuffs of the Paintbrush Group, which is above the static water level at Yucca Mountain, are highly variable in distribution, both vertically and laterally across the mountain, with the zeolites mordenite, heulandite, and stellerite widespread in fractures even though the tuff matrix is generally devitrified and nonzeolitic. Where heulandite occurs as both tabular and prismatic crystals in the same fracture, the two morphologies have different compositions, suggesting multiple episodes of zeolite formation within the fractures. Manganese-oxide minerals within the Paintbrush Group are rancieite and lithiophorite. The silica polymorphs (quartz, tridymite, and cristobalite) generally exist in fractures where they exist in the matrix, suggesting that they formed in the fractures at the same time they formed in the matrix.
    [Show full text]
  • Bulletin of the Mineral Research and Exploration
    Bull. Min. Res. Exp. (2018) 156: 137-150 BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION Foreign Edition 2018 156 ISSN: 0026-4563 CONTENTS Holocene activity of the Orhaneli Fault based on palaoseismological data, Bursa, NW Anatolia Bulletin of the Mineral .......................Volkan ÖZAKSOY, Hasan ELMACI, Selim ÖZALP, Meryem KARA and Tamer Y. DUMAN / Research Article 1 The neotectonics of NE Gaziantep: The Bozova and Halfeti strike-slip faults and their relationships with blind thrusts, Turkey ......................................................................................................... Nuray ùAHBAZ and Gürol SEYøTOöLU / Research Article 17 Neotectonic and morphotectonic characteristics of the Elmali basin and near vicinities .............................................................................................................ùule GÜRBOöA and Özgür AKTÜRK / Research Article 43 Syn-sedimentary deformation structures in the Early Miocene lacustrine deposits, the basal limestone unit, Bigadiç basin (BalÕkesir, Turkey) ..................................................... Calibe KOÇ-TAùGIN, øbrahim TÜRKMEN and Cansu DøNøZ-AKARCA / Research Article 69 The effect of submarine thermal springs of Do÷anbey Cape (Seferihisar - øzmir) on foraminifer, ostracod and mollusc assemblages .................................. Engin MERøÇ, øpek F. BARUT, Atike NAZøK, Niyazi AVùAR, M. Baki YOKEù, Mustafa ERYILMAZ, ........................................ Fulya YÜCESOY-ERYILMAZ, Erol KAM, Bora SONUVAR and Feyza DøNÇER / Research Article
    [Show full text]