FY2017 Results of the Radioactive Material Monitoring in the Water Environment

Total Page:16

File Type:pdf, Size:1020Kb

FY2017 Results of the Radioactive Material Monitoring in the Water Environment FY2017 Results of the Radioactive Material Monitoring in the Water Environment March 2019 Ministry of the Environment Contents Outline .......................................................................................................................................................... 5 1) Radioactive cesium ................................................................................................................... 6 (2) Radionuclides other than radioactive cesium .......................................................................... 6 Part 1: National Radioactive Material Monitoring Water Environments throughout Japan (FY2017) ....... 10 1 Objective and Details ........................................................................................................................... 10 1.1 Objective .................................................................................................................................. 10 1.2 Details ...................................................................................................................................... 10 (1) Monitoring locations ............................................................................................................... 10 1) Public water areas ................................................................................................................ 10 2) Groundwater ......................................................................................................................... 10 (2) Targets ..................................................................................................................................... 11 (3) Frequencies and periods ........................................................................................................ 11 (4) Conducted analyses................................................................................................................ 11 (5) Evaluation of measurement results ........................................................................................ 11 1) Comparison with the past measurement trends .................................................................... 11 2) Measures to be taken when a value deviating from the past measurement trends was detected ....................................................................................................................................... 12 2)-1 Release of preliminary values ........................................................................................... 12 2)-2 Detailed analyses and release of the results .................................................................... 12 (6) Disclosure of measurement results ....................................................................................... 13 2 Survey Methods and Analysis Methods .............................................................................................. 23 2.1 Survey methods ....................................................................................................................... 23 (1) Public water areas .................................................................................................................. 23 (2) Groundwater .......................................................................................................................... 24 2.2 Analysis methods ..................................................................................................................... 24 3 Results ................................................................................................................................................. 26 3.1 Detection of total β radioactivity and γ-ray emitting radionuclides .......................................... 26 (1) Public water areas .................................................................................................................. 26 1) Water ..................................................................................................................................... 26 2) Sediment ............................................................................................................................... 28 (2) Groundwater .......................................................................................................................... 30 3.2 Discussion regarding detected radionuclides .......................................................................... 32 (1) Detection of naturally occurring radionuclides ....................................................................... 32 1) Correlation between activity concentrations of K-40 in water samples and seawater ......... 32 2) Uranium and thorium series radionuclides in sediment samples ......................................... 35 (2) Detection of artificial radionuclides ........................................................................................ 38 1) Cs-134 and Cs-137 in water samples from public water areas ........................................... 38 2) Cs-134 and Cs-137 in sediment samples from public water areas ...................................... 39 i (i) Comparison with past Post-Earthquake Monitoring results within the same prefectures .... 40 (ii) Comparison with past Post-Earthquake Monitoring results for nearby locations ................ 42 (iii) Comparison with the data obtained from the Monitoring of Levels, etc. ............................ 43 3) Cs-134 and Cs-137 in groundwater ...................................................................................... 45 3.3 Survey to check annual variation ............................................................................................. 46 Part 2: Radioactive Material Monitoring in Water Environments in and around Fukushima Prefecture (FY2017) ..................................................................................................................................................... 52 1 Objective and Details ........................................................................................................................... 52 1.1 Objective .................................................................................................................................. 52 1.2 Details ...................................................................................................................................... 52 (1) Locations ................................................................................................................................ 52 (2) Targets .................................................................................................................................... 52 (3) Frequencies and periods ....................................................................................................... 52 (4) Conducted analyses............................................................................................................... 52 (5) Compilation and evaluation of results .................................................................................... 52 2 Survey Methods and Analysis Methods .............................................................................................. 54 2.1 Survey methods ....................................................................................................................... 54 2.2 Analysis methods ..................................................................................................................... 54 3 Outlines of the Results ........................................................................................................................ 55 3.1 Detection of radioactive cesium ............................................................................................... 55 (1) Public water areas (water) ..................................................................................................... 55 (2) Groundwater .......................................................................................................................... 55 (3) Public water areas (sediment) ............................................................................................... 55 1) Overall trends ........................................................................................................................ 55 2) Status by location .................................................................................................................. 56 3.2 Detection of radionuclides other than radioactive cesium ....................................................... 58 (1) Sr-89 and Sr-90 ...................................................................................................................... 58 (2) Other artificial radionuclides ................................................................................................... 58 4 Results ................................................................................................................................................. 59 4.1 Radioactive cesium .......................................................................................................................... 59 4.1 -1 Water .................................................................................................................................... 59 (1) Public water areas .................................................................................................................. 59 1) Rivers ...................................................................................................................................
Recommended publications
  • Preliminary Survey on the Tetori Group in Southern Ishikawa, Japan 石川
    石川県立自然史資料館研究報告 第3号 Bulletin of the Ishikawa Museum of Natural History, 3: 49-62 (2013) Preliminary survey on the Tetori Group in southern Ishikawa, Japan Yoshihiro KATSURA 石川県南部に分布する手取層群に対する予備調査 桂嘉志浩 Abstract The Lower Cretaceous Itoshiro and overlying Akaiwa subgroups of the Tetori Group are distributed in the Shiramine Area of Hakusan City, Ishikawa Prefecture, Japan. The Kuwajima Formation, the upper division of the lower subgroup, is considered to have been deposited under lacustrine and associated alluvial environments. It has yielded a reasonable number of vertebrate remains that are small, allochthonous, and mostly disarticulated. The Akaiwa Formation, the lower division of the upper subgroup, is suggested to have been formed by fluvial systems with strong currents and rapid deposition. Except for plant fragments, fossils are uncommon. Vertebrates, including dinosaurs, occur in the Kitadani Formation, the upper division of the upper subgroup, in northeastern Fukui Prefecture, and this formation crops out in the Shiramine Area. Therefore, there is a chance that articulated large vertebrate fossils are preserved in the subgroups exposed in the area. However, the indurated nature of the rocks, precipitous topology, thick vegetation cover, and overall poor exposures represent significant challenges to making such a discovery. Further, based on the taphonomy of the observed vertebrates, finding well-preserved large vertebrates in the area will be difficult and require much time and financial support. Organizing a survey group of trained
    [Show full text]
  • Vol2 Case History English(1-206)
    Renewal & Upgrading of Hydropower Plants IEA Hydro Technical Report _______________________________________ Volume 2: Case Histories Report March 2016 IEA Hydropower Agreement: Annex XI AUSTRALIA USA Table of contents㸦Volume 2㸧 ࠙Japanࠚ Jp. 1 : Houri #2 (Miyazaki Prefecture) P 1 㹼 P 5ۑ Jp. 2 : Kikka (Kumamoto Prefecture) P 6 㹼 P 10ۑ Jp. 3 : Hidaka River System (Hokkaido Electric Power Company) P 11 㹼 P 19ۑ Jp. 4 : Kurobe River System (Kansai Electric Power Company) P 20 㹼 P 28ۑ Jp. 5 : Kiso River System (Kansai Electric Power Company) P 29 㹼 P 37ۑ Jp. 6 : Ontake (Kansai Electric Power Company) P 38 㹼 P 46ۑ Jp. 7 : Shin-Kuronagi (Kansai Electric Power Company) P 47 㹼 P 52ۑ Jp. 8 : Okutataragi (Kansai Electric Power Company) P 53 㹼 P 63ۑ Jp. 9 : Okuyoshino / Asahi Dam (Kansai Electric Power Company) P 64 㹼 P 72ۑ Jp.10 : Shin-Takatsuo (Kansai Electric Power Company) P 73 㹼 P 78ۑ Jp.11 : Yamasubaru , Saigo (Kyushu Electric Power Company) P 79 㹼 P 86ۑ Jp.12 : Nishiyoshino #1,#2(Electric Power Development Company) P 87 㹼 P 99ۑ Jp.13 : Shin-Nogawa (Yamagata Prefecture) P100 㹼 P108ۑ Jp.14 : Shiroyama (Kanagawa Prefecture) P109 㹼 P114ۑ Jp.15 : Toyomi (Tohoku Electric Power Company) P115 㹼 P123ۑ Jp.16 : Tsuchimurokawa (Tokyo Electric Power Company) P124㹼 P129ۑ Jp.17 : Nishikinugawa (Tokyo Electric Power Company) P130 㹼 P138ۑ Jp.18 : Minakata (Chubu Electric Power Company) P139 㹼 P145ۑ Jp.19 : Himekawa #2 (Chubu Electric Power Company) P146 㹼 P154ۑ Jp.20 : Oguchi (Hokuriku Electric Power Company) P155 㹼 P164ۑ Jp.21 : Doi (Chugoku Electric Power Company)
    [Show full text]
  • Dataset on the 6-Year Radiocesium Transport in Rivers Near Fukushima
    www.nature.com/scientificdata oPEN Dataset on the 6-year radiocesium Data DescriptoR transport in rivers near Fukushima Daiichi nuclear power plant Keisuke Taniguchi 1,2 ✉ , Yuichi Onda 1, Hugh G. Smith 3, William Blake 4, Kazuya Yoshimura 5, Yosuke Yamashiki6 & Takayuki Kuramoto 2,7 Radiocesium released from the Fukushima Daiichi nuclear power plant (FDNPP) and deposited in the terrestrial environment has been transported to the sea through rivers. To study the long-term efect of riverine transport on the remediation process near the FDNPP, a monitoring project was initiated by the University of Tsukuba. It was commissioned by the Ministry of Education, Culture, Sports, Science, and Technology, and the Nuclear Regulatory Commission in June 2011, and was taken over by the Fukushima Prefectural Centre for Environmental Creation from April 2015. The activity concentration and monthly fux of radiocesium in a suspended form were measured in the project. This provides valuable measurement data to evaluate the impact of the accidentally released radiocesium on residents and the marine environment. It can also be used as verifcation data in the development and testing of numerical models to predict future impacts. Background & Summary A 9.0 magnitude earthquake on March 11, 2011, caused the Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant (FDNPP) to be damaged by a tsunami, causing a large accident that spread radioactive mate- rials into the environment1,2. Tis was the largest release of radioactivity into the environment since the Chernobyl nuclear power plant accident in 1986, and has been rated on the International Nuclear and Radiological Event Scale (INES) as a “Major Accident” by International Atomic Energy Agency (IAEA)3.
    [Show full text]
  • Food Instruction June 18←April 24 2020
    The instructions associated with food by Director-General of the Nuclear Emergency Response Headquarters (Restriction of distribution in Fukushima Prefecture) As of 18 June 2020 Fukushima Prefecture 2011/3/21~: (excluding areas listed on the cells below) 2011/3/21~4/8 Kitakata-shi, Bandai-machi, Inawashiro-machi, Mishima-machi, Aizumisato-machi, Shimogo-machi, Minamiaizu-machi Fukushima-shi, Nihonmatsu-shi, Date-shi, Motomiya-shi, Kunimi-machi, Otama-mura, Koriyama-shi, Sukagawa-shi, Tamura-shi(excluding miyakoji area), Miharu-machi, Ono-machi, Kagamiishi- 2011/3/21~4/16 machi, Ishikawa-machi, Asakawa-machi, Hirata-mura, Furudono-machi, Shirakawa-shi, Yabuki-machi, Izumizaki-mura, Nakajima-mura, Nishigo-mura, Samegawa-mura, Hanawa-machi, Yamatsuri- machi, Iwaki-shi 2011/3/21~4/21 Soma-shi, Shinchi-machi 2011/3/21~5/1 Minamisoma-shi (limited to Kashima-ku excluding Karasuzaki, Ouchi, Kawago and Shionosaki area), Kawamata-machi (excluding Yamakiya area) Tamura-shi (excluding area within 20 km radius from the TEPCO's Fukushima Daiichi Nuclear Power Plant), Minamisoma-shi (excluding area within 20 km radius from the TEPCO's Fukushima 2011/3/21~6/8 Daiichi Nuclear Power Plant and Planned Evacuation Zones), Kawauchi-mura (excluding area within 20 km radius from the TEPCO's Fukushima Daiichi Nuclear Power Plant) Aizuwakamatsu-shi, Kori-machi, Tenei-mura, Hinoemata-mura, Tadami-machi, Kitashiobara-mura, Nishiaizu-machi, Aizubange-machi, Yugawa-mura, Yanaizu-machi, Kanayama-machi, Showa- 2011/3/21~10/7 mura, Tanagura-machi, Tamakawa-mura, Hirono-machi,
    [Show full text]
  • The Transition of Sabo Works for Disaster Mitigation in Japan
    THE TRANSITION OF SABO WORKS FOR DISASTER MITIGATION IN JAPAN Masao Okamoto1* INTRODUCTION Ten years have passed since the beginning of the 21st century. During that time, a huge number of large-scale natural disasters occurred in various parts of the world (Table 1). Table 1. Major natural disasters that occurred in the world from 2001 to 2010 (As of March 3) Disaster Damage Date Region Country Est. Damage (m/y) Type Name Killed (US$ Million) Tropical 03/2004 Eastern Africa Madagascar Galifo 363 250 cyclone 08/2006 Middle Africa Ethiopia Flash flood 498 3 05/2003 Northern Africa Algeria Earthquake 2,266 5,000 01/2010 Caribbean Haiti Earthquake 230,000 Tropical 09/2004 Haiti 2,754 50 cyclone Tropical 10/2005 Central America Guatemala 1,513 988 cyclone United Tropical 08/2005 Northern America Katrina 1,833 125,000 States cyclone 02/2010 Southern America Chile Earthquake 799 08/2007 Peru Earthquake 593 600 05/2008 Eastern Asia China Earthquake 87,476 85,000 10/2004 Japan Earthquake 40 28,000 08/2007 Korea General flood 610 300 Tropical Typhoon 08/2009 Taiwan 630 250 cyclone Morakot South Eastern 09/2009 Indonesia Earthquake 1,177 2,000 Asia 05/2006 Indonesia Earthquake 5,778 3,100 12/2004 Indonesia Tsunami 165,708 4,452 Tropical 05/2008 Myanmar Cyclone Nargis 138,366 4,000 cyclone 02/2006 Philippines Landslide 1,126 2 Tropical 11/2004 Philippines Winnie 1,619 78 cyclone 12/2004 Thailand Tsunami 8,345 1,000 03/2002 South Asia Afghanistan Earthquake 1,000 1 Director General, Japan Sabo Association, 2-7-5, Hirakawac-cho, Chiyoda-ku, Tokyo, Japan (*Corresponding Author; E-mail: [email protected]) -41- Tropical 11/2007 Bangladesh Sidr 4,234 2,300 cyclone 12/2004 India Tsunami 16,389 1,023 01/2001 India Earthquake 20,005 2,623 12/2003 Iran Earthquake 26,796 500 10/2005 Pakistan Earthquake 73,338 5,200 12/2004 Sri Lanka Tsunami 35,399 1,317 04/2009 Southern Europe Italy Earthquake 295 2,500 (Quoted from EM-DAT, Center for Research on the Epidemiology of Disasters and added data of 2010) Last year, Taiwan suffered serious damage due to Typhoon Morakot.
    [Show full text]
  • Relationship Between Estuarine Shellfish Fauna and Physical Environmental Characteristics for Estuary Conservation in Kyushu, Japan
    Current World Environment Vol. 10(3), 715-728 (2015) Relationship Between Estuarine Shellfish Fauna and Physical Environmental Characteristics for Estuary Conservation in Kyushu, Japan REI ITSUKUSHIMA1* and YUKIHIRO SHIMATANI2 1Department of Decision Science for Sustainable Society, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan. 2Department of Urban and Environmental Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan. http://dx.doi.org/10.12944/CWE.10.3.01 (Received: November 29, 2015; Accepted: December 13, 2015) ABSTRACT The establishment of a conservation strategy or restoration goal for river estuaries requires knowledge of potential biota or possible habitat characteristics. In this study, we investigated the relationship between estuarine fauna and macro scale physical indicators on Kyushu Island, Japan to provide basic information for estuarine conservation. As a result of the classification of shellfish fauna by similarity, the Kyushu region was divided into three groups, namely, 1) southern Kyushu with high wave exposure, long fetch, and low tidal variation; 2) the Ariake and Yatsushiro seas with low wave exposure, short fetch, and high tidal variation; and 3) northern Kyushu with an intermediate fetch and tidal variation. In addition, a number of sites, such as Nakatsu Port, Sone tideland, and the Honmyou River, were classified into geographically different groups. This is because the physical characteristics of these sites were similar to classified groups or shellfish fauna were significantly altered by artificial impacts. As a result of discriminant analysis, the discrimination hit rate of species inhabiting the inner bay or tidal flat was high, whereas that for species using a wide variety of bottom sediment environment was low.
    [Show full text]
  • Flood Loss Model Model
    GIROJ FloodGIROJ Loss Flood Loss Model Model General Insurance Rating Organization of Japan 2 Overview of Our Flood Loss Model GIROJ flood loss model includes three sub-models. Floods Modelling Estimate the loss using a flood simulation for calculating Riverine flooding*1 flooded areas and flood levels Less frequent (River Flood Engineering Model) and large- scale disasters Estimate the loss using a storm surge flood simulation for Storm surge*2 calculating flooded areas and flood levels (Storm Surge Flood Engineering Model) Estimate the loss using a statistical method for estimating the Ordinarily Other precipitation probability distribution of the number of affected buildings and occurring disasters related events loss ratio (Statistical Flood Model) *1 Floods that occur when water overflows a river bank or a river bank is breached. *2 Floods that occur when water overflows a bank or a bank is breached due to an approaching typhoon or large low-pressure system and a resulting rise in sea level in coastal region. 3 Overview of River Flood Engineering Model 1. Estimate Flooded Areas and Flood Levels Set rainfall data Flood simulation Calculate flooded areas and flood levels 2. Estimate Losses Calculate the loss ratio for each district per town Estimate losses 4 River Flood Engineering Model: Estimate targets Estimate targets are 109 Class A rivers. 【Hokkaido region】 Teshio River, Shokotsu River, Yubetsu River, Tokoro River, 【Hokuriku region】 Abashiri River, Rumoi River, Arakawa River, Agano River, Ishikari River, Shiribetsu River, Shinano
    [Show full text]
  • Challenges of Restoring and Rehabilitating Sewer Systems Damaged by the Great East Japan Earthquake and Tsunami
    Journal of JSCE, Vol. 5, 279-297, 2017 Special Topic - Restoration and Recovery from the 2011 Great East Japan Earthquake( Invited Paper) CHALLENGES OF RESTORING AND REHABILITATING SEWER SYSTEMS DAMAGED BY THE GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI Hiroyasu SATOH1 1Member of JSCE, Associate Professor, Graduate School of Frontier Sciences, The University of Tokyo (5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan) E-mail: [email protected] This is a review of the restoration and rehabilitation of sewer systems damaged by the Great East Japan Earthquake and Tsunami. The disaster caused serious damage to sewer systems, amounting to approxi- mately 470 billion JPY. The damage was mainly caused by the tsunami, but the damage due to liquefac- tion was also serious. The tectonic activity caused additional discharge loads to municipalities in coastal areas. The nuclear accident at Fukushima Daiichi Nuclear Power Plant also affected sewer systems in such forms as radio-contamination of sewage sludge and reduction of power supplies. In addition, migra- tion of users of sewer systems took place. In the restoration activities, sewage treatment plants (STPs) were restored step-by-step, and guidelines were developed to strengthen STPs against tsunamis. The ef- fectiveness of different countermeasures against earthquakes and liquefaction were examined, and new countermeasures were proposed. Software measures such as the introduction of business continuity plans and information technologies are recognized as effective measures for overcoming disasters. In particular, the sewer systems in Sendai City have been successfully restored and rehabilitated after the disaster, with different hardware and software measures. In contrast, sewer systems in small municipalities seriously damaged by the tsunami are still taking time to rehabilitate.
    [Show full text]
  • Geographical Variations in Morphological Characters of the Fluvial Eight-Barbel Loach, Nagare-Hotoke-Dojo (Cobitidae: Nemacheilinae)
    Biogeography 17. 43–52. Sep. 20, 2015 Geographical variations in morphological characters of the fluvial eight-barbel loach, Nagare-hotoke-dojo (Cobitidae: Nemacheilinae) Taiki Ito*, Kazuhiro Tanaka and Kazumi Hosoya Program in Environmental Management, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan Abstract. The morphological and color variations of Lefua sp. 1 Nagare-hotoke-dojo individuals from 13 river systems were examined. Analysis of variance revealed highly significant variations in Lefua sp. 1 mor- phology and coloration among the 13 populations examined, across all 19 measurements and counts. The 13 populations of Lefua sp. 1 were classified into two major clusters (I and II) by using UPGMA cluster analy- sis. Cluster I comprised fish from the Maruyama, Yura, Muko, Mihara, Yoshino, Hidaka, Kumano, Yoshii, Chikusa, and Ibo river systems. Cluster II comprised fish from the Yoshida, Saita, and Sumoto river systems. Cluster I was further subdivided into sub-clusters: I-i (the Maruyama, Yura, Muko, Mihara, Yoshino, Hidaka, Kumano, and Yoshii river systems) and I-ii (the Chikusa and Ibo river systems). Principal component analysis revealed that populations within cluster II clearly possessed longer caudal peduncles, while populations within cluster I possessed a longer anterior body on average and a deeper body. Populations within sub-cluster I-ii possessed a higher average dorsal fin and a longer average dorsal fin base than those of populations within sub-cluster I-i. A strong correlation was noted between the PC3 score and population latitude (r = 0.621). Observations of body color patterns revealed that individuals from the Yoshino, Mihara, Sumoto, and Hidaka river systems had dark brown mottling on both sides and the dorsal regions of their bodies and many small dark brown spots on the dorsal and caudal fins, while those from the Yura, Muko, and Kumano river systems possessed neither.
    [Show full text]
  • FY2017 Results of the Radioactive Material Monitoring in the Water Environment
    FY2017 Results of the Radioactive Material Monitoring in the Water Environment March 2019 Ministry of the Environment Contents Outline .......................................................................................................................................................... 5 1) Radioactive cesium ................................................................................................................... 6 (2) Radionuclides other than radioactive cesium .......................................................................... 6 Part 1: National Radioactive Material Monitoring Water Environments throughout Japan (FY2017) ....... 10 1 Objective and Details ........................................................................................................................... 10 1.1 Objective .................................................................................................................................. 10 1.2 Details ...................................................................................................................................... 10 (1) Monitoring locations ............................................................................................................... 10 1) Public water areas ................................................................................................................ 10 2) Groundwater ......................................................................................................................... 10 (2) Targets ....................................................................................................................................
    [Show full text]
  • Spatial and Temporal Models of J¯Omon Settlement
    Spatial and Temporal Models of Jomon¯ Settlement Enrico R. Crema A Thesis submitted for the degree of Doctor of Philosophy Institute of Archaeology University College London January 2013 Declaration I, Enrico Ryunosuke Crema, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 ”Ce qui est simple est toujours faux. Ce qui ne l’est pas est inutilisable” (P. Valery) ”All models are wrong, but some are useful” (George E.P. Box) Abstract The Jomon¯ culture is a tradition of complex hunter-gatherers which rose in the Japanese archipelago at the end of the Pleistocene (ca. 13,000 cal BP) and lasted until the 3rd millennium cal BP. Recent studies increasingly suggest how this long cultural persistence was characterised by repeated episodes of change in settle- ment pattern, primarily manifested as cyclical transitions between nucleated and dispersed distributions. Although it has been suggested that these events corre- late with population dynamics, shifts in subsistence strategies, and environmental change, to date there have been very few attempts to provide a quantitative anal- ysis of spatio-temporal change in Jomon settlement and its possible causes. This thesis is an attempt to fill that lacuna by adopting a twin-track approach to the problem. First, two case studies from central Japan have been examined us- ing a novel set of methods, which have been specifically designed to handle the intrinsic chronological uncertainty which characterises most prehistoric data. This facilitated the application of a probabilistic framework for quantitatively assessing the available information, making it possible to identify alternating phases of nu- cleated and dispersed pattern during a chronological interval between 7000 and 3300 cal BP.
    [Show full text]
  • Salmincola Markewitschi (Copepoda: Lernaeopodidae) Parasitic on Whitespotted Char, Salvelinus Leucomaenis, in a Mountain Stream of Honshu Island, Central Japan
    Species Diversity 25: 369–375 Published online 17 November 2020 DOI: 10.12782/specdiv.25.369 Salmincola markewitschi (Copepoda: Lernaeopodidae) Parasitic on Whitespotted Char, Salvelinus leucomaenis, in a Mountain Stream of Honshu Island, Central Japan Kazuya Nagasawa1,2 1 Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan E-mail: [email protected] 2 Present address: Aquaparasitology Laboratory; 365-61 Kusanagi, Shizuoka 424-0886, Japan (Received 13 August 2020; Accepted 14 October 2020) Females of the lernaeopodid copepod Salmincola markewitschi Shedko and Shedko, 2002 were collected from the buc- cal cavity of whitespotted char, Salvelinus leucomaenis (Pallas, 1814), in a mountain stream of Nagano Prefecture, Honshu Island, the largest main island of Japan. The females are described as the first record of S. markewitschi from Honshu Island, because the species has so far been reported from the Russian Far East and the southern Kuril Islands east of Hokkaido Is- land, Japan. The copepod previously reported as Salmincola californiensis (Dana, 1852) from the same host species from the same stream and a nearby hatchery is herein regarded as S. markewitschi. As the species closely resembles Salmincola carpio- nis (Krøyer, 1837), it is desirable to re-identify the copepod specimens reported before as S. carpionis from Japanese salmo- nids, especially Salvelinus spp. Contraction of the formalin-fixed and preserved specimens, especially their second maxillae, of S. markewitschi is discussed. Information on the known hosts and distribution records of S. markewitschi is also compiled. Key Words: Parasitic copepod, freshwater fish parasite, new locality record.
    [Show full text]