European Space Technology Harmonisation - Technical Dossier

Total Page:16

File Type:pdf, Size:1020Kb

European Space Technology Harmonisation - Technical Dossier DOCUMENT document title/ titre du document EUROPEAN SPACE TECHNOLOGY HARMONISATION - TECHNICAL DOSSIER N BOARD ADIO AVIGATION ECEIVERS prepared by/préparé par A. García-Rodríguez / TEC-ETN . reference/réference TEC-ETN/2007.65 issue/édition 2 revision/révision 2 date of issue/date d’édition 16 April 2008 status/état Document type/type de document Technical Note Distribution/distribution a TD ESA OB Radio Navigation Receivers V2-2.doc On board Radio Navigation Receivers issue 2 revision 2 - 16 April 2008 TEC-ETN/2007.65 page ii of v APPROVAL Title On board Radio Navigation Receivers issue 2 revision 2 titre issue revision author A. García-Rodríguez / TEC-ETN . date 16 April 2008 auteur date approved by JL. Gerner, TEC-ETN date 16 April 2008 approuvé by R. de Gaudenzi, TEC-ET date . CHANGE LOG reason for change /raison du changement issue/issue revision/revision date/date CHANGE RECORD Issue: 2 Revision: 2 reason for change/raison du changement page(s)/page(s) paragraph(s)/paragraph(s) On board Radio Navigation Receivers issue 2 revision 2 - 16 April 2008 TEC-ETN/2007.65 page iii of v T ABLE O F C ONTENTS 1 INTRODUCTION ..................................................................................................1 1.1 List of Acronyms ...............................................................................................................................2 2 EXECUTIVE SUMMARY......................................................................................6 3 TECHNOLOGY STATUS OVERVIEW.................................................................8 3.1 Technology Overview........................................................................................................................8 3.2 Areas Covered by this Technology Dossier.......................................................................................9 3.3 Rationale for Harmonisation of the Technology..............................................................................10 3.4 Technology State of the Art .............................................................................................................10 3.4.1 Prototypes, experiments and first receivers .............................................................................10 3.4.2 Technology state-of-the art ......................................................................................................12 3.4.2.1 Single Frequency Space Receivers ......................................................................................12 3.4.2.2 Multiple Frequency Space Receivers...................................................................................14 3.4.2.3 Low Cost Space Receivers Based on COTS Parts...............................................................16 3.4.2.4 Core Technologies...............................................................................................................17 3.4.2.4.1 RF FE.............................................................................................................................17 3.4.2.4.2 Base-Band Processing....................................................................................................19 3.4.3 State-of-the-Art Summary........................................................................................................21 3.5 Competitiveness and Benchmarking................................................................................................22 3.6 Technology Trend............................................................................................................................26 3.6.1 General technology trends.......................................................................................................26 3.6.1.1 Multi Constellations / Multi Frequency Receivers. New GNSS signals ............................26 3.6.1.2 Advance Microelectronics. Miniaturisation of Space Qualified GNSS Receivers..............27 3.6.1.3 Software GNSS Receivers ...................................................................................................27 3.6.1.4 New Multipath Mitigation Techniques ................................................................................28 3.6.1.5 Integration with other sensors and systems..........................................................................28 3.6.1.6 Performance improvement. New signal and data processing algorithms ...........................28 3.6.2 Ongoing activities in radio navigation technology in Europe..................................................29 3.6.2.1 GNSS Receivers Modernisation. New GPS and Galileo signals.........................................29 3.6.2.2 Advance Microelectronics. Core Technologies evolutions .................................................30 3.6.2.3 Integrated GNSS Receivers. ................................................................................................30 3.6.2.4 Software GNSS Receivers ...................................................................................................30 3.6.2.5 Multipath Mitigation............................................................................................................31 3.6.3 Ongoing activities in radio navigation technology Outside Europe ........................................31 4 MISSION NEEDS AND MARKET PERSPECTIVES..........................................33 4.1 Application to Missions. GNSS-based Space Applications.............................................................33 4.1.1 Absolute navigation.................................................................................................................34 On board Radio Navigation Receivers issue 2 revision 2 - 16 April 2008 TEC-ETN/2007.65 page iv of v 4.1.1.1 Launchers.............................................................................................................................34 4.1.1.2 Re-entry navigation..............................................................................................................34 4.1.1.3 LEO......................................................................................................................................35 4.1.1.4 GEO .....................................................................................................................................35 4.1.1.5 Precise LEO Navigation.......................................................................................................36 4.1.2 Relative navigation..................................................................................................................36 4.1.2.1 Rendezvous ..........................................................................................................................36 4.1.2.2 Formation Flying..................................................................................................................37 4.1.3 EaRth Observation and Scientific Instruments ........................................................................38 4.1.3.1 Precise Orbit Determination (POD).....................................................................................38 4.1.3.2 Geodetic and Atmospheric Research ...................................................................................38 4.1.4 Support to other sub-systems ...................................................................................................39 4.1.4.1 Attitude guidance.................................................................................................................39 4.1.4.2 Synchronisation....................................................................................................................39 4.1.5 Exploration...............................................................................................................................40 4.1.6 Application to Missions Summary...........................................................................................40 4.1.7 Ongoing Activities in Satellite Navigation Applications.........................................................43 4.1.7.1 Ongoing Activities in Satellite Navigation Applications in Europe ....................................43 4.1.7.1.1 High Altitude Navigation...............................................................................................43 4.1.7.1.2 Precise LEO Navigation.................................................................................................43 4.1.7.1.3 Rendezvous ....................................................................................................................44 4.1.7.1.4 Formation Flying............................................................................................................44 4.1.7.1.5 Precise Orbit Determination...........................................................................................44 4.1.7.1.6 Atmospheric Research. Radio Occultation (RO)...........................................................45 4.1.7.1.7 Advanced Science Applications.....................................................................................45 4.1.7.1.8 GNSS signal simulators .................................................................................................45 4.1.7.1.9 Autonomous Orbit Control with GNSS.........................................................................45 4.1.7.1.10 GNSS Attitude Determination .....................................................................................46 4.1.7.2 Ongoing Activities in Satellite Navigation outside Europe .................................................46
Recommended publications
  • Report of the Commission on the Scientific Case for Human Space Exploration
    1 ROYAL ASTRONOMICAL SOCIETY Burlington House, Piccadilly London W1J 0BQ, UK T: 020 7734 4582/ 3307 F: 020 7494 0166 [email protected] www.ras.org.uk Registered Charity 226545 Report of the Commission on the Scientific Case for Human Space Exploration Professor Frank Close, OBE Dr John Dudeney, OBE Professor Ken Pounds, CBE FRS 2 Contents (A) Executive Summary 3 (B) The Formation and Membership of the Commission 6 (C) The Terms of Reference 7 (D) Summary of the activities/meetings of the Commission 8 (E) The need for a wider context 8 (E1) The Wider Science Context (E2) Public inspiration, outreach and educational Context (E3) The Commercial/Industrial context (E4) The Political and International context. (F) Planetary Science on the Moon & Mars 13 (G) Astronomy from the Moon 15 (H) Human or Robotic Explorers 15 (I) Costs and Funding issues 19 (J) The Technological Challenge 20 (J1) Launcher Capabilities (J2) Radiation (K) Summary 23 (L) Acknowledgements 23 (M) Appendices: Appendix 1 Expert witnesses consulted & contributions received 24 Appendix 2 Poll of UK Astronomers 25 Appendix 3 Poll of Public Attitudes 26 Appendix 4 Selected Web Sites 27 3 (A) Executive Summary 1. Scientific missions to the Moon and Mars will address questions of profound interest to the human race. These include: the origins and history of the solar system; whether life is unique to Earth; and how life on Earth began. If our close neighbour, Mars, is found to be devoid of life, important lessons may be learned regarding the future of our own planet. 2. While the exploration of the Moon and Mars can and is being addressed by unmanned missions we have concluded that the capabilities of robotic spacecraft will fall well short of those of human explorers for the foreseeable future.
    [Show full text]
  • Vector-Based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-02-03 Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming Krasovski, Sergey Krasovski, S. (2015). Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/28635 http://hdl.handle.net/11023/2080 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming by Sergey Krasovski A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOMATICS ENGINEERING CALGARY, ALBERTA JANUARY, 2015 © Sergey Krasovski 2015 Abstract This thesis investigates the ability of a vector-based Global Positioning System (GPS) receiver and an ultra-tight GPS/inertial receiver to detect and mitigate Continuous Wave (CW) interference in tracking and navigation domains. In this work, an Interference Detector (ID) is incorporated into the tracking domain of a GPS software receiver and a new observation weighting (OW) algorithm is developed to help classify GPS measurements when CW signal is present.
    [Show full text]
  • Territorial Satellite Technologies the NEREUS Network’S Italian Partners’ Experiences
    Territorial satellite technologies The NEREUS Network’s Italian partners’ experiences December 2011 1 Contents 1. FOREWORD .............................................................................................................. 5 1.1. Reasons behind and object of this document ........................................................... 5 1.2. Activities conducted for the monitoring procedure .................................................. 6 PART I – THE SATELLITE APPLICATIONS CHART ........................................................... 9 2. SUPPLY AND DEMAND RELATING TO SATELLITE SERVICES IN THE CONTEXT OF THE NEREUS NETWORK’S ITALIAN PARTNERS .................................................................................. 10 2.1. Criteria adopted for the survey on the supply of and demand for satellite services 10 2.2. The chart of the Italian NEREUS partners’ satellite applications ............................. 12 PART III – ANALYSES AND PROPOSALS ...................................................................... 70 3. ELEMENTS EMERGING FROM THE SUPPLY AND DEMAND CHART ........................................ 71 3.1. Quantitative outline of the supply and demand chart ............................................ 71 3.2. Schemes identified as a demand needing to be met ............................................... 72 3.3. Projects in the “pre‐operational” stage and close to “end‐user needs” .................. 76 4. CONCLUSIONS ...................................................................................................
    [Show full text]
  • Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-09 Systems engineering approach to develop guidance, navigation and control algorithms for unmanned ground vehicle Lim, Eng Soon Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/50579 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SYSTEMS ENGINEERING APPROACH TO DEVELOP GUIDANCE, NAVIGATION AND CONTROL ALGORITHMS FOR UNMANNED GROUND VEHICLE by Eng Soon Lim September 2016 Thesis Advisor: Oleg A. Yakimenko Second Reader: Fotis A. Papoulias Approved for public release. Distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leave blank) September 2016 Master’s thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS SYSTEMS ENGINEERING APPROACH TO DEVELOP GUIDANCE, NAVIGATION AND CONTROL ALGORITHMS FOR UNMANNED GROUND VEHICLE 6. AUTHOR(S) Eng Soon Lim 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9.
    [Show full text]
  • National Space Programmes 2012 - 2013
    National Space Programmes 2012 - 2013 Introduction projects – a massive injection of innovation into the blood stream of the UK’s space sector. Meanwhile, the Welcome to the second edition of the UK Space programme of scientific instruments has reached a Agency’s National Space Programmes brochure. milestone with the delivery of MIRI for the James Webb This document contains financial and management Space Telescope, the result of over a decade’s hard information about our suite of National Space work by the UK-led European consortium. The national Programmes, provided in order to give you an insight exploration and the Earth observation technology into the wide range of investment we are making in programmes have also made good progress, while the UK’s space sector. both UKube-1 and TechDemoSat-1 are preparing for launch in 2013. It is going to be another exciting year. It is now approaching two years since the Agency’s full establishment. During this time the UK space sector We hope you find the brochure valuable. It’s hard has continued to grow, as has its contribution to the to capture the huge range of projects that the UK economy as a whole, currently thought to be £9.1 Space Agency has underway in a few pages. For billion a year and directly employing 28,900 people. further information and also to download our other The average growth rate of the UK space sector is publications, please see our website: almost 7.5%; the National Space Programmes are in http://www.bis.gov.uk/ukspaceagency place to complement our investments in a range of European Space Agency, European Commission and And don’t forget to sign up for our monthly newsletter bilateral projects in order to further this growth in line and follow us on Twitter - @spacegovuk ! with the six themes of our civil space strategy: Dr.
    [Show full text]
  • Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field Taylor N
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-22-2019 Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field Taylor N. Lee Follow this and additional works at: https://scholar.afit.edu/etd Part of the Navigation, Guidance, Control and Dynamics Commons Recommended Citation Lee, Taylor N., "Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field" (2019). Theses and Dissertations. 2268. https://scholar.afit.edu/etd/2268 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field THESIS Taylor Lee, 1st Lieutenant, USAF AFIT-ENG-MS-19-M-039 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government, the Department of Defense, or the Air Force Institute of Technology.
    [Show full text]
  • Annual Report
    The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • Gardini, Bruno; Ongaro, Franco; Vennemann, Dietrich
    Aurora Exploration Programme 7th ESAWorkshoponAdvancedSpaceTechnologiesforRoboticsandAutomation'ASTRA2002' ESTEC, Noordwijk,TheNetherlands,November19-21,2002 1 The Robotic Exploration Missions of the Aurora Programme 7th ASTRA Workshop, ESTEC 19-21 November 2002 ASTRA, 19-21 B.Gardini, F.Ongaro, D.Vennemann – ESA/ESTEC 1 November 2002 List of Contents 7th ESAWorkshoponAdvancedSpaceTechnologiesforRoboticsandAutomation'ASTRA2002' • Introduction • Objectives of the Aurora Programme ESTEC, Noordwijk,TheNetherlands,November19-21,2002 • Aurora Programme outline • Aurora Preparatory Period • Exploration Scenario • European Human/Robotic Exploration Scenario • Near term Planning • Near Term Missions Scenario 2 • Aurora candidate missions – Exobiology Mission (ExoMars) – Mars Sample Return Mission (MSR) – In Situ Resource Utilisation (ISRU) Mission – Lunar Mission – Advanced MSR – Arrow Missions • Aurora Mission Scenario • Conclusions. ASTRA, 19-21 2 November 2002 Introduction 7th ESAWorkshoponAdvancedSpaceTechnologiesforRoboticsandAutomation'ASTRA2002' • In the coming decades the scientific and human exploration of the solar ESTEC, Noordwijk,TheNetherlands,November19-21,2002 system is expected to progress further beyond the low Earth orbits. An international human mission to Mars may become a reality by the years 2020 – 2030. 3 • To decide in which areas of expertise Europe wants to have a lead in the future requires a detailed analysis of the European Technology strengths and an assessment of its strategic value. • The Aurora Programme, approved
    [Show full text]
  • Reliability Monitoring of GNSS Aided Positioning for Land Vehicle Applications in Urban Environments
    5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Institut Supérieur de l’Aéronautique et de l’Espace 1SÏTFOUÏFFUTPVUFOVFQBS Khairol Amali BIN AHMAD le jeudi 11 juin 2015 5JUSF Surveillance de la fiabilité du positionnement par satellite (GNSS) pour les applications de véhicules terrestres dans les milieux urbains Reliability Monitoring of GNSS Aided Positioning for Land Vehicle Applications in Urban Environments ²DPMF EPDUPSBMF et discipline ou spécialité ED MITT : Réseaux, télécom, système et architecture 6OJUÏEFSFDIFSDIF Équipe d'accueil ISAE-ONERA SCANR %JSFDUFVS T EFʾÒTF M. Christophe MACABIAU (directeur de thèse) M. Mohamed SAHMOUDI (co-directeur de thèse) Jury : M. Michel BOUSQUET - Président M. David BÉTAILLE M. Philippe BONNIFAIT M. Roland CHAPUIS M. Maan EL-BADAOUI EL-NAJJAR - Rapporteur M. Bernd EISSFELLER - Rapporteur M. Christophe MACABIAU - Directeur de thèse M. Mohamed SAHMOUDI - Co-directeur de thèse Abstract This thesis addresses the challenges in reliability monitoring of GNSS aided navigation for land vehicle applications in urban environments. The main objective of this research is to develop methods of trusted positioning using GNSS measurements and confidence measures for the user in constrained urban environments. In the first part of the thesis, the NLOS errors in urban settings are characterized by means of a 3D model of the ur- ban surrounding. In an environment with limited number of visible satellites, excluding degraded signals could result in not having enough number of acceptable measurements for a position fix or adversely affect the satellites geometry. Using a GNSS simulator together with the 3D model, NLOS signals are identified and their biases are predicted.
    [Show full text]
  • Technologies for Exploration
    SP-1254 SP-1254 TTechnologiesechnologies forfor ExplorationExploration T echnologies forExploration AuroraAurora ProgrammeProgramme Proposal:Proposal: Annex Annex DD Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1254 November 2001 Technologies for Exploration Aurora Programme Proposal: Annex D This report was written by the staff of ESA’s Directorate of Technical and Operational Support. Published by: ESA Publications Division ESTEC, PO Box 299 2200 AG Noordwijk The Netherlands Editor/layout: Andrew Wilson Copyright: © 2001 European Space Agency ISBN: 92-9092-616-3 ISSN: 0379-6566 Printed in: The Netherlands Price: €30 / 70 DFl technologies for exploration Technologies for Exploration Contents 1 Introduction 3 2 Exploration Milestones 3 3 Explorations Missions 3 4Technology Development and Associated Cost 5 5 Conclusion 6 Annex 1: Automated Guidance, Navigation & Control A1.1 and Mission Analysis Annex 2: Micro-Avionics A2.1 Annex 3: Data Processing and Communication Technologies A3.1 Annex 4: Entry, Descent and Landing A4.1 Annex 5: Crew Aspects of Exploration A5.1 Annex 6: In Situ Resource Utilisation A6.1 Annex 7: Power A7.1 Annex 8: Propulsion A8.1 Annex 9: Robotics and Mechanisms A9.1 Annex 10: Structures, Materials and Thermal Control A10.1 1 Table 1. Exploration Milestones for the Definition of Technology Readiness Requirements. 2005-2010 In situ resource utilisation/life support (ground demonstration) Decision on development of alternative
    [Show full text]
  • Broadcast Ephemeris Model of the Beidou Navigation Satellite System
    JOURNAL OF Journal of Engineering Science and Technology Review 10 (4) (2017) 65-71 Engineering Science and estr Technology Review J Research Article www.jestr.org Broadcast Ephemeris Model of the BeiDou Navigation Satellite System Xie Xiaogang* and Lu Mingquan Department of Electronic Engineering, Tsinghua University, Beijing 100084, China Received 2 March 2017; Accepted 1 August 2017 ___________________________________________________________________________________________ Abstract The BeiDou Navigation Satellite System (BDS) space constellation is composed of geostationary earth orbit (GEO), medium earth orbit (MEO), and inclined geosynchronous satellite orbit (IGSO) satellites, all of which adopt the Global Positioning System (GPS) broadcast ephemeris model of the United States of America (U.S.A). However, in the case of small eccentricity and small orbit inclination angle, the coefficient matrix is non-positive when fitting the broadcast ephemeris parameters due to the fuzzy definition of a few Keplerian orbit elements, thereby resulting in low precision or even failure. This study proposed a novel broadcast ephemeris model based on the second class of non-singular orbit elements. The proposed model can address the unsuitability of the classical broadcast ephemeris model in the condition of small eccentricity and small orbit inclination angle, and unify the broadcast ephemeris parameters user algorithm models of GEO, MEO, and IGSO. The proposed model is a 14-parameters broadcast ephemeris model constructed with the second class of non-singular orbit elements and the corresponding broadcast ephemeris parameters perturbation over time. Lastly, the proposed model was verified by precision orbit data generated by the Satellite Tool Kit (STK). Results show that the 14-parameters broadcast ephemeris model is suitable for the GEO, MEO, and IGSO satellites and has high fitting precision to fully meet the requirements of the BDS.
    [Show full text]