Reliability Monitoring of GNSS Aided Positioning for Land Vehicle Applications in Urban Environments

Total Page:16

File Type:pdf, Size:1020Kb

Reliability Monitoring of GNSS Aided Positioning for Land Vehicle Applications in Urban Environments 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Institut Supérieur de l’Aéronautique et de l’Espace 1SÏTFOUÏFFUTPVUFOVFQBS Khairol Amali BIN AHMAD le jeudi 11 juin 2015 5JUSF Surveillance de la fiabilité du positionnement par satellite (GNSS) pour les applications de véhicules terrestres dans les milieux urbains Reliability Monitoring of GNSS Aided Positioning for Land Vehicle Applications in Urban Environments ²DPMF EPDUPSBMF et discipline ou spécialité ED MITT : Réseaux, télécom, système et architecture 6OJUÏEFSFDIFSDIF Équipe d'accueil ISAE-ONERA SCANR %JSFDUFVS T EFʾÒTF M. Christophe MACABIAU (directeur de thèse) M. Mohamed SAHMOUDI (co-directeur de thèse) Jury : M. Michel BOUSQUET - Président M. David BÉTAILLE M. Philippe BONNIFAIT M. Roland CHAPUIS M. Maan EL-BADAOUI EL-NAJJAR - Rapporteur M. Bernd EISSFELLER - Rapporteur M. Christophe MACABIAU - Directeur de thèse M. Mohamed SAHMOUDI - Co-directeur de thèse Abstract This thesis addresses the challenges in reliability monitoring of GNSS aided navigation for land vehicle applications in urban environments. The main objective of this research is to develop methods of trusted positioning using GNSS measurements and confidence measures for the user in constrained urban environments. In the first part of the thesis, the NLOS errors in urban settings are characterized by means of a 3D model of the ur- ban surrounding. In an environment with limited number of visible satellites, excluding degraded signals could result in not having enough number of acceptable measurements for a position fix or adversely affect the satellites geometry. Using a GNSS simulator together with the 3D model, NLOS signals are identified and their biases are predicted. From this prediction, NLOS signals are corrected and used to improve the accuracy and integrity of the estimated positions. For the second part of the thesis, the work proposes a reliability monitoring technique in the range domain for urban environment using a trusted velocity sensor. The approach takes on pseudorange (PR) prediction using hybridization with other sensors. Single odometer and a gyro are used to obtain a reference position for reliability checking of GNSS pseudorange. By using the hybrid approach, residuals are generated and test statistic are calculated, and tested against a threshold. A few forms of residuals were derived based on several observables, namely the PR, the range rate and the velocity. Finally, the research developed a novel exper- imental scheme in integrity monitoring for positioning in urban environment. Working directly in the position domain, Horizontal Position Errors (HPE) are characterized us- ing generalized Pareto Distribution. Then, a test statistic is derived based on position residuals which CDF are mapped or inflated to match the characterized overbounding position error CDF. By monitoring the test statistic against a specific threshold, the positioning integrity and continuity are met at a certain level of confidence. In addition, the Horizontal Protection Level (HPL) computation using a composite approach has also been analysed. Acknowledgements I would like to express my sincere gratitude to those who have helped me in whatever ways along my journey to complete this thesis. I especially wish to acknowledge my two supervisors, Dr. Christophe Macabiau and Dr. Mohamed Sahmoudi, whom I am forever indebted, for making this research possible. Thank you both for the supervision, guidance and mentoring throughout the studies and also for the encouragement and providing insightful comments which are beneficial for the progress of the thesis. I would like to extend my thanks also to the jury members who have taken their time to review the thesis and shared their vast knowledge and experience in providing their comments and recommendations. My gratitude also goes to the colleagues and staffs of DEOS - Aude, Syed, Paulo, Cheng, Azeddine, Remy, Nabil, Quintin, Beno^ıt,Gael and others, - who in one way or another give me the sense of companionship and comradery that I am not alone in the struggle. And last but not least, to my beloved family - who had accompanied me with persever- ance along this arduous journey till the end. ii Contents Abstract i Acknowledgements ii List of Figures vii List of Tables xi Abbreviations xiii RESUM´ E´ DES TRAVAUX EN FRANC¸AIS1 1 Introduction 53 1.1 Motivation................................... 54 1.2 GNSS Systems Overview............................ 56 1.3 GNSS General Working Principle...................... 60 1.3.1 Pseudorange measurement and positioning............. 60 1.3.2 Doppler Measurement and its relation to range rate and carrier phase.................................. 63 1.3.3 Dilution of Precision (DOP) - Impact of Satellite-User Geometry on positioning.............................. 65 1.4 Navigation solution reliability performance in civil aviation........ 66 1.5 GNSS Augmentation System......................... 68 1.6 Integrity of GNSS Positioning......................... 70 1.7 Thesis objectives................................ 73 1.8 Thesis contributions.............................. 74 1.9 Thesis Structure................................ 75 1.10 List of Publications............................... 76 2 GNSS-based Navigation in Urban Environments: state-of-the-art 79 2.1 Positioning challenges in urban environments................ 80 2.1.1 Obstruction of satellite visibility................... 80 2.1.2 Multipath................................ 81 2.1.3 NLOS signal.............................. 82 2.2 Reliability needs of GNSS navigation for land applications......... 82 2.2.1 Impact of positioning integrity on the reliability of land application 85 2.3 Performance measures for land applications................. 86 2.4 Previous works on improving GNSS positioning Quality in Urban Envi- ronments.................................... 87 iii Contents iv 2.4.1 GNSS Errors Mitigation........................ 87 2.4.1.1 In receiver methods..................... 87 2.4.1.2 Hardware-based approaches................. 89 2.4.1.3 MP and NLOS modelling.................. 90 2.4.1.4 NLOS detection....................... 92 2.4.1.5 Constructive use of NLOS/MP............... 94 2.4.2 Hybridizations............................. 95 2.4.2.1 GNSS/DR Fusion...................... 96 2.4.2.2 Map matching........................ 98 2.4.2.3 GNSS/2D or 3D GIS Fusion................ 99 2.5 Conclusion................................... 100 3 Existing Works on Reliability and Integrity Monitoring of GNSS Po- sitioning 103 3.1 RAIM and Fault Detection.......................... 104 3.2 LSR RAIM................................... 104 3.2.1 Test Statistic.............................. 106 3.2.2 Detection Threshold.......................... 108 3.2.3 Relation between test statistic and position error.......... 109 3.2.4 Weighted LSR RAIM......................... 112 3.2.5 Slope based HPL............................ 113 3.3 Maximum Solution of Separation (MSS) RAIM............... 114 3.3.1 Test Statistic.............................. 115 3.3.2 Detection Threshold.......................... 115 3.3.3 HPL computation........................... 116 3.4 Benefits and Opportunity from Multi-constellation and multi-frequencies 117 3.5 Multiple Faults................................. 117 3.5.1 Iterative approach of multi-faults detection............. 119 3.5.2 Other approaches to deal with multiple faults............ 120 3.5.3 Slope-based HPL in multi-faults case................. 124 3.5.4 NIORAIM: HPL Optimisation.................... 125 3.5.5 Multiple Hypothesis Solution Separation (MHSS) RAIM...... 126 3.6 Error Overbounding.............................. 126 3.6.1 Range Domain Overbound...................... 128 3.6.2 Position Domain Overbound..................... 130 3.6.3 Parameter Inflation.......................... 130 3.6.4 Heavy Tail Overbounding....................... 131 3.7 Conclusion................................... 131 4 NLOS Characterization in Urban Environments Using a 3D Model 133 4.1 Introduction................................... 133 4.2 Predicting GNSS signal propagation conditions via 3D model....... 134 4.2.1 SE-NAV deterministic simulator of GNSS reception in urban en- vironment................................ 136 4.2.2 Reliability of 3D model for reception state prediction and NLOS bias prediction............................. 138 4.3 Proposed approach for positioning with NLOS signals........... 141 Contents v 4.3.1 LOS/NLOS pseudoranges measurements model........... 141 4.3.2 Integration of the 3D-based bias estimation in the PVT Kalman Filter.................................. 144 4.3.3 Data collection, equipment and software............... 146 4.4 Results and analysis.............................. 146 4.4.1 Estimation of Variance (C/No) Model Parameters......... 146 4.4.2 NLOS/LOS prediction by SE-NAV.................. 147 4.4.3 Results of the estimated position................... 149 4.4.4 Bias prediction by SE-NAV...................... 151 4.5 Conclusion................................... 153 5 Measurement Reliability via Pseudorange Prediction Using a Hybrid Approach 155 5.1 Introduction................................... 155 5.2 GNSS Quality control............................. 156 5.3 Hybrid navigation for vehicle in urban areas................. 158 5.4 Vehicle models................................. 160 5.5 Sensor configurations.............................. 164 5.6 Sensors fusion methods............................. 167 5.7 GNSS/Odometer/Gyro integration
Recommended publications
  • GNSS Applications Workshop: Seminar on GNSS Spectrum Protection and Interference Detection and Mitigation
    GNSS Applications Workshop: Seminar on GNSS Spectrum Protection and Interference Detection and Mitigation Course Introduction 20-21 March 2018 Satellite Navigation in the 1950s 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 4 Oct 1957 Dec 1958 Sputnik I The U.S. Launched Navy Navigation Satellite System (Transit) Approved and Funded 2 Satellite Navigation in the 1960s 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 13 April 1960 First Successful 5 Dec 1963 Jan 1964 Other Successful July 1967 Transit First Transit Experimental Transit Experimental Operational Became Satellites: Released Satellite (1B) Satellite Operational 2A, 22 Jun 1960 for 3B, 21 Feb 1961 Commercial 4A, 29 Jun 1961 Use 4B, 15 Nov 1961 - - - - Establishing U.S. Dual Use SatNav Policy Operational Transit Satellite 3 Satellite Navigation in the 1970s 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1978 GPS Launches April 1973 22 Feb, 13 May, Formation of the GPS 7 Oct, 11 Dec Joint Program Office (JPO) 1971 First Timation Receiver 1975 for the Naval Research First Concept Validation GPS Lab (NRL) Navigator, the GPS X-Set 4 Satellite Navigation in the 1980s 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 9 Oct ‘85 28 Jan ‘86 14 Feb ‘89 Last Block I Challenger Launches Launch Disaster Resume 1984 Commercial 5 Channel GPS Navigator 1986 6 Channel GPS Navigator 1985 1986 GPS + Transit + Omega WM101 GPS Satellite Surveying Set 5 Satellite Navigation in the 1990s 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 4 Apr ‘91 8 Dec ‘93 27 Apr ‘95 S/A Turned GPS IOC GPS
    [Show full text]
  • Vector-Based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-02-03 Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming Krasovski, Sergey Krasovski, S. (2015). Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/28635 http://hdl.handle.net/11023/2080 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming by Sergey Krasovski A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOMATICS ENGINEERING CALGARY, ALBERTA JANUARY, 2015 © Sergey Krasovski 2015 Abstract This thesis investigates the ability of a vector-based Global Positioning System (GPS) receiver and an ultra-tight GPS/inertial receiver to detect and mitigate Continuous Wave (CW) interference in tracking and navigation domains. In this work, an Interference Detector (ID) is incorporated into the tracking domain of a GPS software receiver and a new observation weighting (OW) algorithm is developed to help classify GPS measurements when CW signal is present.
    [Show full text]
  • Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-09 Systems engineering approach to develop guidance, navigation and control algorithms for unmanned ground vehicle Lim, Eng Soon Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/50579 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SYSTEMS ENGINEERING APPROACH TO DEVELOP GUIDANCE, NAVIGATION AND CONTROL ALGORITHMS FOR UNMANNED GROUND VEHICLE by Eng Soon Lim September 2016 Thesis Advisor: Oleg A. Yakimenko Second Reader: Fotis A. Papoulias Approved for public release. Distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leave blank) September 2016 Master’s thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS SYSTEMS ENGINEERING APPROACH TO DEVELOP GUIDANCE, NAVIGATION AND CONTROL ALGORITHMS FOR UNMANNED GROUND VEHICLE 6. AUTHOR(S) Eng Soon Lim 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9.
    [Show full text]
  • Technological Principles and the Policy Challenges of the Global Positioning System
    Technological Principles and the Policy Challenges of the Global Positioning System Marlee Chong Spring 2013 Contents 1 Introduction 3 2 History 4 2.1 Location . .4 2.2 LORAN . .5 2.3 GPS Predecessors . .5 2.4 Developing GPS . .6 3 Technology 8 3.1 User Segment . .8 3.2 Control Segment . .8 3.3 Space Segment . .9 3.4 Signal . 10 3.5 Pseudoranging . 11 3.6 Errors and Accuracy . 12 3.6.1 Clock Errors . 12 3.6.2 Atmospheric Errors . 13 3.6.3 System Noise . 13 3.6.4 Multipath Errors . 13 3.6.5 Dilution of Precision . 14 3.6.6 Accuracy . 14 3.7 Vulnerabilities . 15 4 Applications 16 4.1 Military: Smart Bombs . 16 4.2 Positioning: Fault Monitoring . 16 4.3 Navigation: Mobile Phones . 17 4.4 Timing: Stock Exchanges . 17 4.5 Satellites: Nuclear Test Detection . 18 4.6 Signals: Weather Forecasting . 18 5 Policy 19 5.1 Domestic Governance . 19 5.1.1 Defense . 19 1 CONTENTS 2 5.1.2 Civil . 20 5.1.3 Privacy Issues . 21 5.2 Competing Systems . 21 5.2.1 USSR and Russia . 22 5.2.2 European Union . 22 5.2.3 China . 22 5.2.4 Japan . 23 5.2.5 India . 23 5.2.6 International Cooperation . 23 5.3 Modernization . 23 5.3.1 Space Segment . 24 5.3.2 Control Segment . 24 5.3.3 Replacement . 24 5.4 Future and Recommendations . 25 6 Conclusion 26 7 Acknowledgements 27 Chapter 1 Introduction The Global Positioning System (GPS) has become a part of everyday life.
    [Show full text]
  • Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field Taylor N
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-22-2019 Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field Taylor N. Lee Follow this and additional works at: https://scholar.afit.edu/etd Part of the Navigation, Guidance, Control and Dynamics Commons Recommended Citation Lee, Taylor N., "Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field" (2019). Theses and Dissertations. 2268. https://scholar.afit.edu/etd/2268 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field THESIS Taylor Lee, 1st Lieutenant, USAF AFIT-ENG-MS-19-M-039 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government, the Department of Defense, or the Air Force Institute of Technology.
    [Show full text]
  • History of the GPS Program the Global Positioning System
    History of the GPS Program The Global Positioning System (GPS) is the principal component and the only fully operational element of the Global Navigation Satellite System (GNSS). The history of the GPS program pre-dates the space age. In 1951, Dr. Ivan Getting designed a three-dimensional, position-finding system based on time difference of arrival of radio signals. Shortly after the launch of Sputnik scientists confirmed that Doppler distortion could be used to calculate ephemerides, and, conversely, if a satellites position were know, the position of a receiver on earth could be determined. Within two years of the launch of Sputnik the first of five low-altitude “Transit” satellites for global navigation was launched. In 1967, the first of three “Timation” satellites demonstrated that highly accurate clocks could be carried in space. In parallel with these efforts, the 621B program was developing many of the characteristics of today’s GPS system. In 1973 these parallel efforts were brought together into the NAVSTAR-Global Positioning System, managed by a joint program office headed by then-colonel Dr. Brad Parkinson at the United States Air Force Space and Missile Systems Organization. This office developed the GPS architecture and initiated the development of the first satellites, the worldwide control segment and ten types of user equipment. Today, it continues to sustain the system as the Global Positioning System Directorate of the Space and Missile Systems Center. All performance parameters for the system were verified during ground testing by 1978. Ten development satellites were launched successfully between 1978 and 1985 and the initial ground segment that would provide the critical uploads to the satellites was also developed.
    [Show full text]
  • The Global Positioning System
    The Global Positioning System Assessing National Policies Scott Pace • Gerald Frost • Irving Lachow David Frelinger • Donna Fossum Donald K. Wassem • Monica Pinto Prepared for the Executive Office of the President Office of Science and Technology Policy CRITICAL TECHNOLOGIES INSTITUTE R The research described in this report was supported by RAND’s Critical Technologies Institute. Library of Congress Cataloging in Publication Data The global positioning system : assessing national policies / Scott Pace ... [et al.]. p cm. “MR-614-OSTP.” “Critical Technologies Institute.” “Prepared for the Office of Science and Technology Policy.” Includes bibliographical references. ISBN 0-8330-2349-7 (alk. paper) 1. Global Positioning System. I. Pace, Scott. II. United States. Office of Science and Technology Policy. III. Critical Technologies Institute (RAND Corporation). IV. RAND (Firm) G109.5.G57 1995 623.89´3—dc20 95-51394 CIP © Copyright 1995 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. RAND is a nonprofit institution that helps improve public policy through research and analysis. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. Cover Design: Peter Soriano Published 1995 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet: [email protected] PREFACE The Global Positioning System (GPS) is a constellation of orbiting satellites op- erated by the U.S.
    [Show full text]
  • Broadcast Ephemeris Model of the Beidou Navigation Satellite System
    JOURNAL OF Journal of Engineering Science and Technology Review 10 (4) (2017) 65-71 Engineering Science and estr Technology Review J Research Article www.jestr.org Broadcast Ephemeris Model of the BeiDou Navigation Satellite System Xie Xiaogang* and Lu Mingquan Department of Electronic Engineering, Tsinghua University, Beijing 100084, China Received 2 March 2017; Accepted 1 August 2017 ___________________________________________________________________________________________ Abstract The BeiDou Navigation Satellite System (BDS) space constellation is composed of geostationary earth orbit (GEO), medium earth orbit (MEO), and inclined geosynchronous satellite orbit (IGSO) satellites, all of which adopt the Global Positioning System (GPS) broadcast ephemeris model of the United States of America (U.S.A). However, in the case of small eccentricity and small orbit inclination angle, the coefficient matrix is non-positive when fitting the broadcast ephemeris parameters due to the fuzzy definition of a few Keplerian orbit elements, thereby resulting in low precision or even failure. This study proposed a novel broadcast ephemeris model based on the second class of non-singular orbit elements. The proposed model can address the unsuitability of the classical broadcast ephemeris model in the condition of small eccentricity and small orbit inclination angle, and unify the broadcast ephemeris parameters user algorithm models of GEO, MEO, and IGSO. The proposed model is a 14-parameters broadcast ephemeris model constructed with the second class of non-singular orbit elements and the corresponding broadcast ephemeris parameters perturbation over time. Lastly, the proposed model was verified by precision orbit data generated by the Satellite Tool Kit (STK). Results show that the 14-parameters broadcast ephemeris model is suitable for the GEO, MEO, and IGSO satellites and has high fitting precision to fully meet the requirements of the BDS.
    [Show full text]
  • GPS/GNSS What Is It? How Does It Work? What Are Its Applications?
    GPS/GNSS What is it? How Does it Work? What are its Applications? Historic Navigation • Reference points in the sky used for navigation – The Sun – The Pole Star / North Star – Southern Cross • Gives Direction, but not position • Add a sextant to give latitude • And a clock to give longitude GNSS Principles • GNSS satellites in the sky are the new reference points • If my GNSS receiver "sees" 4 or more satellites, it can compute my position – "see" means track and process navigation signals Satellites as Accurate Reference Points • GNSS signals contain information about the satellites' positions – very accurate reference points • Measure the distance from the satellites to the receiver • Knowing at least three distances from three reference points gives position How do you measure distance? speed = distance / time distance = speed x time satellite signals contain 'time stamps' radio waves travel time = tsent – treceived at light speed "c" – 300,000km in 1 second – 300km in 1ms (1/1000th) – 300m in 1μs (1/millionth) – 300mm in 1ns Compute position distance = speed x time 8 • speed = 3x10 m/s • time = tsent – treceived • but, receiver time not accurately known • so the time stamp from a fourth satellite is measured • compensates for the missing receiver time Example GNSS Signal • radio frequency at "L-band" – typically 1575MHz • at satellite: signal energy spread by a code • at receiver: spread signal energy is unlocked and refocused – "code gain" • allows simple antennas to receive low power signals • and to share the frequency with other satellites/systems Position relative to? • A position is pointless without having a ground reference • A world reference is used, eg WGS84 – World Geodetic System 1984 • Allows position fix to be placed on a World grid • Maps can be referenced to the same grid • you can determine where you are on a map What is GNSS used for? PNT • Positioning… surveying and mapping – location based services – air traffic management – search and rescue • Navigation… a given.
    [Show full text]
  • Beacons for Supporting Lunar Landing Navigation
    CEAS Space Journal manuscript No. (will be inserted by the editor) Beacons for Supporting Lunar Landing Navigation Stephan Theil · Leonardo Bora Received: date / Accepted: date Abstract Current and future planetary exploration missions involve a land- ing on the target celestial body. Almost all of these landing missions are cur- rently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground based infrastructure supporting the on-board navigation system and analyzes the im- pact on the achievable navigation accuracy. For that purpose the paper starts with an existing navigation architecture based on optical navigation and ex- tends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed. Keywords lunar landing · autonomous navigation · beacon navigation 1 Introduction Since the beginning of human space exploration, safe and soft landing on a celestial body (planet, moon, asteroid) has been a central objective. Starting S. Theil German Aerospace Center (DLR) Institute of Space Systems, GNC Systems Department Tel.: +49-421-24420-1113 Fax: +49-421-24420-1120 E-mail: [email protected] L. Bora AIRBUS Defence & Space Ltd Tel.: +44-1438-77-4186 E-mail: [email protected] 2 Stephan Theil, Leonardo Bora from the first landings on the Moon, which had generally a precision above 1 km, today improvements in the navigation architecture and filters have made it possible to improve the final accuracy and increase the safety.
    [Show full text]
  • Understanding GPS: Principles and Applications/[Editors], Elliott Kaplan, Christopher Hegarty.—2Nd Ed
    Understanding GPS Principles and Applications Second Edition For a listing of recent titles in the Artech House Mobile Communications Series, turn to the back of this book. Understanding GPS Principles and Applications Second Edition Elliott D. Kaplan Christopher J. Hegarty Editors a r techhouse. com Library of Congress Cataloging-in-Publication Data Understanding GPS: principles and applications/[editors], Elliott Kaplan, Christopher Hegarty.—2nd ed. p. cm. Includes bibliographical references. ISBN 1-58053-894-0 (alk. paper) 1. Global Positioning System. I. Kaplan, Elliott D. II. Hegarty, C. (Christopher J.) G109.5K36 2006 623.89’3—dc22 2005056270 British Library Cataloguing in Publication Data Kaplan, Elliott D. Understanding GPS: principles and applications.—2nd ed. 1. Global positioning system I. Title II. Hegarty, Christopher J. 629’.045 ISBN-10: 1-58053-894-0 Cover design by Igor Valdman Tables 9.11 through 9.16 have been reprinted with permission from ETSI. 3GPP TSs and TRs are the property of ARIB, ATIS, ETSI, CCSA, TTA, and TTC who jointly own the copyright to them. They are subject to further modifications and are therefore provided to you “as is” for informational purposes only. Further use is strictly prohibited. © 2006 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, includ- ing photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized.
    [Show full text]
  • GNSS History
    GNSS History 1 Disclaimer The views and opinions expressed herein do not necessarily reflect the official policy or position of any government agency 2 Satellite Navigation in the 1950s 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 4 Oct 1957 Dec 1958 Sputnik I The U.S. Launched Navy Navigation Satellite System (Transit) Approved and Funded 3 Satellite Navigation in the 1960s (1 of 3) 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 13 April 1960 First Successful 5 Dec 1963 Jan 1964 Other Successful July 1967 Transit First Transit Experimental Transit Experimental Operational Became Satellites: Released Satellite (1B) Satellite Operational 2A, 22 Jun 1960 for 3B, 21 Feb 1961 Commercial 4A, 29 Jun 1961 Use 4B, 15 Nov 1961 ---- Establishing U.S. Dual Use SatNav Policy Operational Transit Satellite 4 Satellite Navigation in the 1960s (2 of 3) 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1964 1968 World’s First Surface Ship World’s First Satellite Navigator Portable Satellite 1969 AN/SRN-9 (XN-5) Doppler Geodetic World’s First Surveyor Commercial AN/PRR-14 Oceanographic Geoceiver Navigator 5 Satellite Navigation in the 1960s (3 of 3) 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 First Steps Toward GPS; Air Force 621B Program; World’s First Spread Spectrum Navigation Receiver, MX-450 6 Satellite Navigation in the 1970s 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1978 GPS Launches April 1973 22 Feb, 13 May, Formation of the GPS 7 Oct, 11 Dec Joint Program Office (JPO) 1971 First Timation Receiver 1975 for the Naval Research
    [Show full text]