<<

BELLE

Tau lifetime and decays

D. Epifanov The University of Tokyo

29 May 2014

Outline:

1 Introduction 2 τ lifetime at B-factories 3 0 Decays with KS at B-factories 4 LFV τ decays at LHCb 5 Summary

29 May 2014 lifetime and decays D. Epifanov The University of Tokyo 1/25 Introduction

The world largest statistics of τ collected by e+e− B-factories (Belle and BaBar) and LHCb opens new era in the precision tests of the (SM). Basic tau properties, like: lifetime, , couplings, electric dipole moment, anomalous magnetic dipole moment and other appear as free parameters in the SM (mass), which should be measured experimentally as precise as possible, or provide unique possibility to test SM and search for the effects of New Physics (anomalous magnetic moment). In the SM τ decays due to the charged described by the exchange of W ± with a pure vector coupling to only left-handed . There are two main classes of tau decays: − − − − Decays with leptons, like: τ → ℓ ν¯ℓντ , τ → ℓ ν¯ℓντ γ, − − ′+ ′− ′ τ → ℓ ℓ ℓ ν¯ℓντ ; ℓ,ℓ = e, µ. They provide very clean laboratory to probe electroweak couplings, which is complementary/competitive to precision studies with (in experiments with muon beam). Plenty of New Physics models can be tested/constrained in the precision studies of the dynamics of decays with leptons. Hadronic decays of τ offer unique tools for the precision study of low energy QCD.

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 2/25 Introduction: B-factories (Belle and BaBar)

BABAR detector

¯ 9 σ(bb)= 1.1 nb Nbb¯ = 1.3 × 10 9 σ(cc¯)= 1.3 nb Ncc¯ = 2.0 × 10 9 σ(ττ)= 0.9 nb Nττ = 1.4 × 10 B-factories are also charm- and τ-factories ! B-factory experimental strategy is proved to be fruitful to search for New Physics.

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 3/25 Precision studies of τ properties at B-factories

Tau lifetime: Belle: τ = (290.17 0.53(stat) 0.33(syst)) fs; PRL 112, 031801 (2014) τ ± ± BaBar(prelim.): τ = (289.40 0.91(stat) 0.90(syst)) fs; Nucl. Phys. B 144, 105 (2005) τ ± ± Tau mass: Belle: m = (1776.61 0.13(stat) 0.35(syst)) MeV/c2; PRL 99, 011801 (2007) τ ± ± BaBar: m = (1776.68 0.12(stat) 0.41(syst)) MeV/c2; PRD 80, 092005 (2009) τ ± ± Accuracy comparable with the most precision measurements done by KEDR and BES at the τ+τ− production threshold. Tau electric dipole moment (EDM): Belle: Re(d ) = (1.15 1.70) 10−17 e cm, Im(d ) = ( 0.83 0.86) 10−17 e cm; τ ± × · τ − ± × · PLB 551, 16 (2003) ( Ldt = 29.5 fb−1) We are working on EDM with full statistics − − 0 Hadronic contributionR to aµ (τ → π π ντ ): Belle: aππ = (523.5 1.1(stat) 3.7(syst)) 10−10; PRD 78, 072006 (2008) µ ± ± × universality: g BaBar: µ = 1.0036 0.0020, gτ = 0.9850 0.0054, h=π, K; ge τ ± gµ h ± PRL 105,` 051602´ (2010) ` ´ in τ → ℓνν(γ) (ρ, η, ξ, δ, η¯, κ): Belle: study is going on.

Anomalous magnetic moment of τ (aτ ): In τ − ℓ−ν¯ ν γ it is not so promising to measure a at B-factories (see the talk: → ℓ τ τ D. Epifanov ”Tau physics at Super B-factory” at KEK-FF2014 Workshop). Technique to measure a in e+e− τ +τ − process is under discussion. τ → 29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 4/25 Measurement of the τ-lepton lifetime, motivation

Precise measurement of the tau lifetime is necessary for the tests of lepton universality in the SM: ge = gµ = gτ τ µ e W W gτ g gµ g =e,µ e ν ν ν ν τ µ e

− − 2 2 5 (L ℓ ν¯ νL(γ)) g g m Γ(L− ℓ−ν¯ ν (γ)) = B → ℓ = L ℓ L F (m , m ) ℓ L 4 3 corr L ℓ → τL 32MW 192π

2 3 mL α(mL) 25 2 Fcorr(mL, mℓ) = f () 1 + 1 + π 5 M2 2π 4 − „ W «„ „ «« f (x) = 1 8x + 8x3 x4 12x2 ln x, x = m /m − − − ℓ L − − (µ e ν¯e ν (γ)) = 1 B → µ 5 gτ τµ m Fcorr(mµ, me) gτ = (τ − µ−ν¯ ν (γ)) µ , = 1.0024 0.0021 (HFAG2012) µ τ 5 ge sB → ττ mτ Fcorr(mτ , mµ) ge ±

5 gτ τµ m Fcorr(mµ, me ) gτ = (τ − e−ν¯ ν (γ)) µ , = 1.0006 0.0021 (HFAG2012) µ τ 5 gµ sB → ττ mτ Fcorr(mτ , me ) gµ ±

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 5/25 Measurement of the τ-lepton lifetime, motivation

LEP EW WG (W → τ ντ)/(W → µ νµ) 1.0390 ± 0.0130 LEP EW WG (W → τ ν )/(W → e ν ) τ → ν ν × τ τ τ e HFAG Fit ( e e τ) µ/ τ ± 1.0008 0.0021 1.0360 ± 0.0140 HFAG Fit (τ → π ντ)/(π → µ νµ) 0.9961 ± 0.0030 HFAG Fit (τ → µ νµ ντ) × τµ/ττ HFAG Fit (τ → K ντ)/(K → µ νµ) ± 0.9857 0.0073 1.0027 ± 0.0021 HFAG Average (τ → π ντ, K ντ) 0.9949 ± 0.0029 τ → ν ν π ν ν HFAG Average ( e e τ, τ, K τ) 0.9998 ± 0.0020

HFAG-Tau HFAG-Tau Summer 2011 Summer 2011 0.9 1 0.9 1 |g /g | |g /g | τ µ τ e

S. Schael et al. [ALEPH, DELPHI, L3, OPAL, LEP EWG] Phys. Rep. 532, 119 (2013)

2B(W → τν ) τ = 1.066 ± 0.025 B(W → µνµ)+ B(W → eνe)

2.6σ deviation from the Standard Model

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 6/25 Measurement of ττ at Belle, method

+ + + + + We analyze e e− → τ τ − → (π π π−ν¯τ , π π−π−ντ ) events.

+ Φ − π 1 → CMS π P − 1 frame π Φ → θ 2 1 → − n V ν + 1 τ h1 → l1 → − ψ P V τ 1 ν1 01 − + e e dl + → → τ ψ Pν2 V 2 02 + → → l2 n V h - θ 2 π+ 2 2 → P + ν 2 π − τ π 2 2 2Eτ Eh −M −m ℓ 1,2 τ h1,2 x = cos ψ = βτ γτ 1,2 2pτ p h1,2 τ momentum direction is determined with two-fold ambiguity in CMS, for the analysis we use the average axis. Asymmetric-energy layout of experiment allows us to determine + τ τ − production point in LAB independently from the position of beam IP. + Possibility to test CPT conservation measuring τ − and τ lifetimes separately.

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 7/25 Measurement of ττ at Belle, selections

1 6 Use the data sample of Ldt = 711 fb− with Nττ = 650 × 10 R Selection criteria: Event is separated into two hemispheres in CMS, Thrust>0.9. Each hemisphere contains 3 charge with the 1 net charge. ± 0 0 There are no additional KS , Λ, π candidates. Number of TOT additional Nγ < 6 with Eγ < 0.7 GeV. 2 2 P⊥(6π) > 0.5 GeV/c, 4 GeV/c < Minv(6π) < 10.25 GeV/c .

88

2 2 m)

µ 87

Pseudomass M + 2(E E )(E P ) < 1.8 GeV/c , ( beam h h h τ

h λ − − 86 − + 85 h = (3π) , (q3π) . 84 83

82 Cuts on the quality parameters of the vertex fits and tau axis -2 -1 10 10 1 value of dl cut (cm) reconstruction. 87.3 m)

µ 87.2 ( τ Minimal distance between τ − and τ + axes in LAB c 87.1 87 dl < 0.02 cm. 86.9 86.8

86.7 -2 -1 10 10 1 value of dl cut (cm) 1148360 events were selected with ∼2% background contamination, + the main background comes from e e− → qq¯ (q =u, d, s).

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 8/25 Measurement of ττ at Belle, fit of decay length

770.8 / 794 Decay length PDF P1 0.2692E+05 46.74 P2 -0.7470E-04 0.4629E-05 4 P3 0.3845E-02 0.4587E-04 10 P4 -0.1932E-01 0.1015E-02 P5 0.3237 0.7377E-02 ′ P6 -0.3029 0.1705E-01 −x /λτ ′ ~ ′ ~ (x) = e R(x x ; P)dx + uds R(x; P) + cb(x), m 10 3 P N − N P µ Z 2 x P 2 ( 1) 10 R(x; P~ ) = (1 2.5x) exp − , − · − 2σ2 „ « 10 Entries / 2.5 1/2 3/2 σ = P2 + P3 x P1 + P4 x P1 + P5 x P1 | − | | − | | − | 1

-0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1 Free parameters of the fit: λ , , P~ = (P , ..., P5) x - x (cm) τ N 1 rec true λτ - estimator of cττ , cττ = λτ + ∆corr, ∆corr is determined from MC; R(x; ~P) - detector resolution function;

uds - contribution of background from Ne+e− qq¯ (q = u, d, s) (predicted by MC) → + − cb(x) - PDF for background from e e qq¯ (q = c, b) (fixedP from MC) →

From the fit of experimental data λτ = 86.53 ± 0.16 µm, applying correction ∆corr = 0.46 µm we got: cττ = 86.99 ± 0.16 µm

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 9/25 Measurement of ττ at Belle, result

289.0 ± 2.8 ± 4.0 CLEO Systematic uncertainties Source ∆cτ (µm) 289.2 ± 1.7 ± 1.2 OPAL Silicon vertex 0.090 290.1 ± 1.5 ± 1.1 ALEPH detector alignment 293.2 ± 2.0 ± 1.5 L3 fixing 0.030 290.9 ± 1.4 ± 1.0 DELPHI Fitrange 0.020 Beam energy, ISR, FSR 0.024 ± 290.6 1.0 mean PDG Background contribution 0.010 289.40 ± 0.91 ± 0.90 BaBar (prelim.) τ-leptonmass 0.009 290.17 ± 0.53 ± 0.33 Belle Total 0.101

285 290 295 cττ = (86.99 ± 0.16(stat) ± 0.10(syst)) µm. ττ (fs) ττ = (290.17 ± 0.53(stat) ± 0.33(syst)) fs. −3 |ττ + − ττ − |/τaverage < 7.0 × 10 at 90% CL.

Lepton universality PDG ττ (Belle) gτ /ge = 1.0024 ± 0.0021 (HFAG2012)

gτ /ge = 1.0031 ± 0.0016 (new Belle ττ )

SM gτ /gµ = 1.0006 ± 0.0021 (HFAG2012) gτ /gµ = 1.0013 ± 0.0016 (new Belle ττ )

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 10/25 Hadronic τ decays

2 2 Cabibbo-allowed decays ( cos θc) Cabibbo-suppressed decays ( sin θc) B ∼ B ∼ B(S = 0)=(61.85 ± 0.11)% (PDG) B(S = −1)=(2.88 ± 0.05)% (PDG)

µ ˆS= 0 2 S = 0 GF µ 5 cos θc (q ) Jµ (q ) 0 2 2 iMfi = uντ γ (1 γ )uτ ·h µ | S=−1 2 | i , q Mτ S = 1 √2 − · sin θc hadrons(q ) Jˆ (q ) 0 ≤  − ff ( ·h | µ | i ) The main tasks Measurement of branching fractions with highest possible accuracy Measurement of low-energy hadronic spectral functions Determination of the decay mechanism (what are intermediate and their contributions) Precise measurement of and widths of the intermediate mesons Search for CP violation Comparison with hadronic formfactors from e+e− experiments to check CVC theorem

Measurement of Γinclusive(S = 0) to determine αs

Measurement of Γinclusive(S = −1) to determine s- mass and Vus:

Rstrange = Bstrange/Be Rstrange V | us| = R Rnon−strange = Bnon−strange/Be v non−strange u −δRtheory u |V |2 u ud δR - SU(3)-breaking contribution t theory 29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 11/25 − 0 − Study of τ → KS X ντ decays at Belle

S. Ryu et al. [Belle Collaboration], Phys. Rev. D 89, 072009 (2014)

−1 6 Data sample of R Ldt = 669 fb with Nττ = 616 × 10 was used to study inclusive − 0 − decay τ → KS X ντ as well as 6 exclusive modes: 0 0 0 0 π−KS ντ K −KS ντ π−KS KS ντ 0 0 0 0 0 0 0 π−KS π ντ K −KS π ντ π−KS KS π ντ

After the standard ττ preselection criteria we select events with particular configuration. π+ γ Event is separated into two hemispheres in CMS, π− γ Thrust>0.9 Tag side: 1-prong (e, µ or π/K (n 0)π0) − ≥ CMS π frame 0 π0 Signal side: K S ν K 0 π+π−: τ S → − 0.485 GeV/c2 < M < 0.511 GeV/c2 ( 5σ), τ ππ ± − + 2 cm< LK 0 < 20 cm, ∆Z1,2 < 2.5 cm e e S 5.29 GeV 5.29 GeV mγγ −m π0 γγ: 6 < S (= π0 ) < 5 τ+ → − γγ σγγ Charged kaon (pion): LK + K /π = > 0.7(< 0.7) µ P Lπ+LK ν ν LAB µ τ Eγextra < 0.2 GeV

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 12/25 Calculation of branching fractions

Mode K 0X− −K 0 K −K 0 −K 0 0 K −K 0 0 −K 0K 0 −K 0K 0 0 S π S S π Sπ S π π S S π S Sπ Ndata 397806 ± 631 157836 ± 541 32701 ± 295 26605 ± 208 8267 ± 109 6684 ± 96 303 ± 33 εdet (%) 9.66 7.09 6.69 2.65 2.19 2.47 0.82 bg N (%) 4.20 ± 0.46 8.86 ± 0.05 3.55 ± 0.07 5.60 ± 0.10 2.43 ± 0.10 7.89 ± 0.24 11.6 ± 1.60 Ndata ∆B (%) 2.4 2.5 4.0 3.9 5.2 4.4 8.1 B syst ` ´ The main non-ττ background comes from e+e− qq¯ (q = u, d, s, c). To take into account cross-feed background 6 decay modes are analysed→ simultaneously:

Nsig = ( −1) (Ndata Nbg) i E ij j − j Xj

− 0 − 0 − 0 0 − 0 0 For the π KS ν, K KS ν, π KS π ν and K KS π ν modes lepton tag is applied and normalisation to the two-lepton events (τ ∓ e∓νν, τ ± µ±νν) method is used to calculate branching fractions: → → sig Ni e µ i = sig B B B N e + µ e-µ B B − 0 0 − 0 0 0 To increase statistics for the remaining π KS KS ν and π KS KS π ν modes 1-prong tag and luminosity normalisation method are used:

sig Ni i = B 2 σ L ττ B1−prong

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 13/25 Result on branching fractions (Belle and BaBar)

(τ − K 0X −ν ) = (9.14 0.01 0.22) 10−3 B → S τ ± ± × L3 95’ (0.950 ± 0.150 ± 0.060) % CLEO 96’ ALEP 98’ CLEO 96’ (0.704 ± 0.041 ± 0.072) % (0.158 ± 0.042 ± 0.017) % (2.30 ± 0.50 ± 0.30) × 10-4 ALEP 98’ (0.855 ± 0.117 ± 0.066) % ALEP 99’ ALEP 99’ ALEP 98’ (0.162 ± 0.021 ± 0.011) % (2.60 ± 0.10 ± 0.50) × 10-4 (0.928 ± 0.045 ± 0.034) % CLEO 96’ BaBar 12’ OPAL 00’ -4 (0.933 ± 0.068 ± 0.049) % (0.151 ± 0.021 ± 0.022) % (2.31 ± 0.04 ± 0.08) × 10 Belle 07’ (0.808 ± 0.004 ± 0.026) % Belle 14’ Belle 14’ Belle 14’ (0.148 ± 0.001 ± 0.005) % (2.33 ± 0.03 ± 0.09) × 10-4 (0.831 ± 0.002 ± 0.016) %

0.2 0.4 0.6 0.8 1 x 10-2 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 x 10-2 0.5 1 1.5 2 2.5 3 x 10-4 0 - - - Β(τ π→ K ντ) Β τ- → 0 ν Β τ- π→ - 0 0 ν ( K K τ) ( KSKS τ)

L3 91’ (0.410 ± 0.120 ± 0.030) % CLEO 96’ CLEO 96’ (0.145 ± 0.036 ± 0.020) % BaBar 12’ (0.417 ± 0.058 ± 0.044) % ALEP 98’ (1.60 ± 0.20 ± 0.22) × 10-5 ALEPH 98’ (0.152 ± 0.076 ± 0.021) % (0.294 ± 0.073 ± 0.037) % ALEP 99’ ALEPH 99’ ± ± (0.347 ± 0.053 ± 0.037) % (0.143 0.025 0.015) % Belle 14’ Belle 14’ Belle 14’ (2.00 ± 0.22 ± 0.20) × 10-5 (0.386 ± 0.004 ±0.014) % (0.150 ± 0.002 ± 0.007) %

-0.1 0 0.1 0.2 0.3 0.4 0.5 -2

x 10 - -0.1 -0.05 0 0.05 0.1 0.15 0.2 x 10-2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 x 10 0 - - 0 - 0 0 Β(τ π→ K π ντ) Β τ- → 0π0 ν Β τ- π→ - π0 ν ( K K τ) ( KSKS τ) Yellow bands show the world averages and their uncertainties from PDG: J. Beringer et al., Phys. Rev. D 86, 010001 (2012). J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 86, 092013 (2012)

(τ − K −K 0K 0ν ) < 6.3 10−7 at 90% CL B → S S τ × (τ − K −K 0K 0π0ν ) < 4.0 10−7 at 90% CL B → S S τ × 29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 14/25 − − 0 0 0 Study of τ → π KS KS π ντ dynamics at Belle

0 0 f1(1285)π−(34±5)% ⊕ f1(1420)π−(12±3)% ⊕ K ∗(892)−KS π (54±6)%

60 50

Data 50 40 All Fit 2 π-f(1285) + π-f(1420) 2 *- 0π0 40 K KS τ- → π- 0 0 ν 30 KS KS τ qq 30

20 20 Events / 0.02 GeV/c Events / 0.02 GeV/c

10 10

0 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 0.6 0.7 0.8 0.9 1 1.1 π0 0 0 2 π- 0 2 M( KSKS) (GeV/c ) M( KS) (GeV/c )

1.2 7 1.2 1.2 3.5 EXP MC K ∗(892)−K 0π0 4 MC f (1285)π− + f (1420)π− 6 S 1 1 1.1 1.1 3.5 1.1 3

5 3 2.5 ) ) ) 2 1 2 1 2 1 2.5 4 2

) (GeV/c 0.9 ) (GeV/c 0.9 ) (GeV/c 0.9 - - 2 - π π π

0 S 3 0 S 0 S 1.5 1.5

M(K 0.8 M(K 0.8 M(K 0.8 2 1 1

0.7 1 0.7 0.7 0.5 0.5

0.6 0 0.6 0 0.6 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 0 0 2 0 0 2 π0 0 0 2 M(π0K K ) (GeV/c ) M(π0K K ) (GeV/c ) M( KSKS) (GeV/c ) S S S S 0 0 0 Simultaneous fit of MINV(π KS KS )(f1(1285) and f1(1420)) and − 0 ∗ − MINV(π KS )(K (892) ) distributions. ∗ − Obtained significances: f1(1285)(12σ), f1(1420)(4.8σ), K (892) (7.8σ). 29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 15/25 − − 0 0 0 Study of τ → π KS KS π ντ dynamics at Belle

− → − 0 0 0 No other mechanisms were found for τ π KS KS π ντ 45 60 60 40 50 35 50 2 2 2 30 40 40 25 30 20 30

15 20 20 Events / 0.02 GeV/c 10 Events / 0.02 GeV/c Events / 0.02 GeV/c 10 10 5 0 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 - 0 2 0π0 2 0 0 2 M(π π ) (GeV/c ) M(KS ) (GeV/c ) M(KSKS) (GeV/c )

45 50 45 40 40

2 35 2 35 30 Data 30 25 25 Signal MC 20 20 - - 0 0 τ →π K K ντ 15 15 S S Events / 0.02 GeV/c Events / 0.02 GeV/c 10 qq 10 5 5 0 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 0.8 0.9 1 1.1 1.2 1.3 0 0π- 2 0π-π0 2 M(KSKS ) (GeV/c ) M(KS ) (GeV/c )

(τ − f (1285)π−ν ) (f (1285) K 0K 0π0) = (0.68 0.13 0.07) 10−5, B → 1 τ ·B 1 → S S ± ± × (τ − f (1420)π−ν ) (f (1420) K 0K 0π0) = (0.24 0.05 0.06) 10−5, B → 1 τ ·B 1 → S S ± ± × (τ − K ∗(892)−K 0π0ν ) (K ∗(892)− K 0π−) = (1.08 0.14 0.15) 10−5. B → S τ ·B → S ± ± ×

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 16/25 Lepton-flavor-violating (LFV) τ decays γ Model B(τ → µγ) B(τ → ℓℓℓ) W mSUGRA+seesaw 10−8 10−9 SUSY+SO(10) 10−8 10−10 SM+seesaw 10−9 10−10 τ Non-universal Z’ 10−9 10−8 ν ν SUSY+Higgs 10−10 10−8 τ µ(e) µ (e) Probabililty of LFV decays of charged leptons is extremely small 2 2 ∆mν 54 in the Standard Model, B(τ → ℓν) ∼ m2 < 10−  W  Many models beyond the SM predict LFV decays with the 8 branching fractions up to . 10− . As a result observation of LFV is a clear signature of New Physics (NP). τ lepton is an excellent laboratory to search for the LFV decays due to the enhanced couplings to the new as well as large number of LFV decay modes Study of the different τ LFV decay modes allows us to test various NP models. Recently LHCb performed results of the search for LFV + + τ − → µ−µ µ− and LNV+BNV τ − → pµ−µ−, p¯µ µ− at hadronic collider (PLB 724, 36 (2013)).

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 17/25 LHCb experiment

One-arm forward spectrometer (15 300 mrad) ÷ Design luminosity: 2 1032 1/(cm2s) × Experimental information: 2011: 1 fb−1@7 TeV, 2012: 2 fb−1@8 TeV Trigger: L0(hardware): 1 MHz, HLT(software): 3-4 KHz µID: efficiency 97% with 3% π µ misid for P = 2 100 GeV ∼ ≤ → ÷

σinclusive(τ)= 80 µb @ 7 TeV (80% from Ds− → τ −ν¯τ ) LHCB is also Super-τ factory with N(τ) ≃ 2.4 × 1011 !

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 18/25 LFV τ − → µ−µ+µ−, pµ−µ−, p¯µ+µ− at LHCb Statistics of 1 fb−1@7 TeV collected in 2011, − + − − Ds → φ(µ µ )π is used for normalization.

M3body ∈ [0.65, 1.0] 1trk 3trk MPID ∈ [0.725, 1.0] pT > 0.3 GeV/c, pT > 4 GeV/c 3trk ~ ◦ ct(SV-PV)>100 µm, ψ(~p , RSV −PV ) ∼ 0 2 Mµ+µ− > 0.45 GeV/c to suppress background − + − − from Ds → η(µ µ γ)µ ν¯µ Blinded analysis: M3body ∈ [0.40, 1.0] 2 2 (mτ − 20 MeV/c ) < Minv < (mτ + 20 MeV/c ) (±2σM ) region is blinded τ candidate is categorized using 3 likelihoods:

M3body: includes geometrical properties to M3body ∈ [0.40, 1.0] identify displaced 3-body decays MPID: identification (RICH+ECAL+Muon) Minv : of τ decay products

Ds det trg − + − − fτ ǫnormǫnorm Nsig B(LFV)= B(D → φ(µ µ )π ) trg s − − det Nnorm B(Ds →τ ν¯τ ) ǫsig ǫsig f Ds = 0.78 0.05: fraction of taus from D− decays τ ± s

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 19/25 LFV τ − → µ−µ+µ−, pµ−µ−, p¯µ+µ− at LHCb

τ − → p¯µ+µ− τ − → pµ−µ− M3body Expected Observed Expected Observed −0.05 ÷ 0.20 37.9 ± 0.8 43 41.0 ± 0.9 41 0.20 ÷ 0.40 12.6 ± 0.5 8 11.0 ± 0.5 13 0.40 ÷ 0.70 6.76 ± 0.37 6 7.64 ± 0.39 10 0.70 ÷ 1.00 0.96 ± 0.14 0 0.49 ± 0.12 0

Observed limits at 90% (95%) CL: + 8 B(τ − → µ−µ µ−) < 8.0 (9.8) × 10− , + 7 B(τ − → p¯µ µ−) < 3.3 (4.3) × 10− , 7 B(τ − → pµ−µ−) < 4.4 (5.7) × 10− .

Decays with violate barion(B) and lepton(L) numbers, but |∆(B − L)| = 0

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 20/25 Results on LFV decays of τ

48 different LFV modes were studied at B-factories lγ lP0 lS0 lV0 lll lhh Λh 10-5 decays τ

10-6

-7 CLEO 10 BaBar Belle LHCb 10-8 ’ ’ ------

0 0 0 0 0 0 0 S 0 S 0 S 0 S φ φ γ γ η η Λ Λ η η ω ω Λ Λ π π π π π π

µ µ µ

ρ ρ π π

f f

- - - -

e K* e e - - K*

K K K - K K K K K ------90% C.L. upper limits for LFV K* K*

- - + + K + K + + + + K K + + - - + + + + + + + + + + + - - e - - e e µ µ - - µ π e e e π µ µ µ 0 S 0 S e K K π π µ e µ µ µ µ µ π π e e µ µ µ µ e e

µ e e

e

e e K

K

------K K ------K K π e e π - - µ e µ µ e µ π e e π µ µ K e K µ e µ

+ 7 B(τ − → p¯µ µ−) < 3.3 × 10− , 7 B(τ − → pµ−µ−) < 4.4 × 10− .

First UL for BNV and LNV τ decays with protons from LHCb !

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 21/25 Summary

The world largest statistics of τ leptons collected by e+e− B-factories (Belle and BaBar) and LHCb opens new era in the precision tests of the Standard Model and search for the effects of New Physics. With statistics of 711 fb−1 τ lifetime and upper limit on the relative lifetime difference between τ + and τ − have been measured at Belle:

ττ = (290.17 0.53(stat) 0.33(syst)) fs., ± ± −3 τ + τ /τaverage < 7.0 10 at 90% CL. | τ − τ− | × New result is almost twice more precise than the current world average value. τ + τ /τaverage has been measured for the first time. | τ − τ− | −1 0 Using data sample of Ldt = 669 fb six τ hadronic decay modes with KS have been investigated at Belle. Branching fractions for all modes as well as for the inclusive decay − 0 − R − − 0 0 0 − τ KS X ντ have been measured. For the τ π KS KS π ντ decay f1(1285)π ντ →∗− 0 → and K (892)KS ντ mechanisms have been observed. BaBar obtained strong UL on the branching fraction of the strange hadronic decays with 3 . With statistics of 1 fb−1 collected by LHCb at √s = 7 TeV searches for LFV decay τ − µ−µ+µ− and LNV+BNV decays τ − pµ−µ−, p¯µ+µ− were carried out. Upper limits→ on the branching fractions of LNV+BNV→ decays: (τ − p¯µ+µ−) < 3.3 10−7, B → × (τ − pµ−µ−) < 4.4 10−7 B → × were measured for the first time. Lots of ongoing τ analyses at Belle, BaBar and LHCb, new results are expected soon. Broad τ physics program with ×50 statistics expected from Belle II e+e− Super Flavor Factory in the next decade (today's talk about Belle II by Alan Schwartz).

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 22/25 Backup slides

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 23/25 CPV in hadronic τ decays at B-factories CPV has not been observed in lepton decays CP −12 It is strongly suppressed in the SM (ASM . 10 ) and observation of large CPV in lepton sector would be clean sign of New Physics τ lepton provides unique possibility to search for CPV effects, as it is the only lepton decaying to hadrons, so that the associated strong phases allows us to visualize CPV in hadronic τ decays. − − 0 I. CPV in τ → π KS (≥ 0π )ντ at BaBar (Phys. Rev. D 85, 031102 (2012)) Data sample of Ldt = 476 fb−1 was analyzed Γ(τ +→π+K 0(≥0π0)¯ν )−Γ(τ −→π−K 0(≥0π0)ν ) A = S τ R S τ = (−0.36 ± 0.23 ± 0.11)% CP τ +→π+K 0 ≥0π0 ν τ −→π−K 0 ≥0π0 ν Γ( S ( )¯τ )+Γ( S ( ) τ ) K 0 2.8σ deviation from the SM expectation: ACP = (+0.36 ± 0.01)%

− 0 − −1 II. CPV in τ → KS π ντ at Belle (Phys. Rev. Lett. 107, 131801 (2011)) R Ldt=699 fb Angular distributions were analyzed, A W M was measured (d d cos d cos ): CP( = KS π) ω = β θ dΓ − dΓ + cos cos τ τ d β ψ d − d ω ω ω ! ACP(W ) = R cos β cos ψ − cos β cos ψ + dΓ − dΓ + τ τ 1 τ τ d ≃ h i −h i 2 d + d ω ω ω ! ν R ν τ− τ τ− τ − − − − − u π η CP η* − u π W s s H η s KS s s KS |Im(ηS)| < 0.026

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 24/25 Further studies of CPV in τ at e+e− factories

At e+e− machines with unpolarized beams effect of τ -spin correlation in e+e− τ +(ζ~+)τ −(ζ~−) reaction can be used to study CPV effects in the spin-dependent part of→ the decay rate. The idea is to study (τ ∓ h∓ ν ; τ ± ρ±ν) events (as an example let’s take → CP → h∓ = (K π)∓). τ ± ρ±ν serves as spin analyzer. CP →

∗ ∗ dσ(ζ~∗, ζ~′ ) α2 dΓ(τ ±(ζ~′ ) ρ±ν) ∗ ′∗ ′ ~′ ′∗ = βτ (D0 + Dij ζ ζ ), → = A B ζ~ 2 i j 2 ∗ ˜ ∓ dΩτ 64Eτ dmππ dΩρdΩπ Φ1 ∓ ~∗ ∓ ~ ~ ∗ Φ dΓ(τ (ζ ) (K π) ν) (A0 + ηCP A1) + (B0 + ηCP B1)ζ~ 2 → = ∗ ∗ ∗ π 2 ∗ ˜ (A + η A ) (~B + η ~B )ζ~ KS dmK πdΩK πdΩπ 0 CP 1 0 CP 1 − χ α ∓ ± 2 dσ((K π) , ρ ) α βτ + η = CP ψ 2 F ∗ G dm2 dΩ∗ dΩ˜ dm2 dΩ∗dΩ˜ dΩ 64E + ηCP + K π K π π ππ ρ π τ τ „ F G « ρ = D A A′ D B B′, = D A A′ D B B′ F 0 0 − ij 0i j G 0 1 − ij 1i j

∓ ± ∓ ± ∂(Ω∗ , Ω∗, Ω ) dσ((K π) , ρ ) dσ((K π) , ρ ) K π ρ τ = 2 ˜ 2 ˜ 2 ∗ ˜ 2 ∗ ˜ dpK dΩK dm dΩπdpρdΩρdm dΩπ dm dΩ dΩπdm dΩ dΩπ dΩτ ˛ ∂(pK , ΩK , pρ, Ωρ) ˛ π π K π ππ Φ1X,Φ2 K π K π ππ ρ ˛ π π ˛ ˛ ˛ ˛ ˛

ηCP is extracted in the simultaneous unbinned maximum likelihood fit of the ((K π)−, ρ+) and ((K π)+, ρ−) events in the 12D phase space. Similar technique was developed to measure Michel parameters at B-factories.

29 May 2014 Tau lifetime and decays D. Epifanov The University of Tokyo 25/25