Detection of the Tau-Neutrino at The

Total Page:16

File Type:pdf, Size:1020Kb

Detection of the Tau-Neutrino at The DETECTION OF THE TAIPNEIITRINO AT me LI·IC* Klaus Winter CERN. Geneva. Switzerland I. Introduction Following the discovery of the tau-lepton in e+e` collisions by M. Perl and collabo rators [1 ], all evidence today favours the hypothesis that it is a sequential heavy lepton belonging to a third lepton Family [2]. From measurements of the forward-bacl< ward angular asymmetry of tau produced in e+e` annihilations [3], [4] e+e* +* ft a value of the axial-vector neutral current coupling constant of ga = — 0.—l5 1 0.05 was deduced in agreement with ga = -1 /2 for the assignment of lel’t—handed tau leptons as the "down" state (I3 = -1 /2) of a weak isospin doublet. Hence, the most natural assignment of the "up" state (I3 = +1/2) would be to a neutrino with the same lepton flavour. the tau-neutrino. Further indirect evidence about the tau—neutrino can be obtained from leptonic tau decays [4]. e.g. 1:- Q u_v,,X. The muon energy spectrum has the familiar [2] Michel shape suggesting that the par ticle X is a spin l /2 particle. Its mass has been constrained to less than 35 MeV by analysing semi-leptonic tau—deca)s with multipion final states [5]. Hence, the particle Xmay be a neutrino. Is it a sequential neutrino, with a flavour property which distin guishes it from the electron- and the muon-neutrino? The possibility of a complete identity with we or uu can indeed be excluded. Searches for charged current neutrino reactions which produce a tau-lepton UN ·=* T_X have given negative results. A search in a beam dump experiment with vu and we at Working group on neutrino physics: L. Camilleri, A. Capone, A. De Rujula, LI. Dore, A. Eredidato, E. Fernandez, _I. Gomez, A.B. Kaidalov, P.F. Lovere, V. Palladino, F. Pietropaolo. L. Rolandi. R. Santacesaria. S. Schlenstedt, F. Vanucci and K. Winter. 37 OCR Output CERN [6] excluded the identity ve E vt by six standard deviations. A search in a muon-neutrino beam at FNAL [7] gave limits on the coupling constant of vn and t of 0.0021 and on the coupling constant oF vp and t of 0.073. Together with the life time and leptonic branching ratio measurements [3] [4], these results show that the tau—neutrin0 is distinct from ve and v Does the tau-neutrino exist as a particle? Surprisingly, this question cannot be answered by yes or no. Its existence can be proved by direct observation of the charged current reaction vTN - t" X. All attempts to directly observe the reaction have failed up to now. Searches in so—called beam dump experiments have been performed at the 450 GeV CERN—SPS. ln this type of experiment the proton beam is absorbed by a long block of copper [6]. Because of their strong absorption in copper, decays of long-lived mesons (rc and K) are suppressed by a Factor of ~l0‘. Neutrinos From decays of short—lived charm mesons (lifetime ~3‘i0`s)l3 are not suppressed. Among the known decay channels there are semiieptonic decays of the D meson (cd) into ve and vu and of the Ds meson (cs) into tvt. The contribution of the latter channel which produces tau-neu trinos is too low at the CERN proton energy of 450 GeV to be detectable. At the 800 GeV Tevatron the situation would be slightly more favourable. However, the experiments [8] have been indefinitely deferred. A new experiment [9] has been designed to detect the tau-neutrino at the 3TeV proton accelerator UNK which is presently under construction at Protvino (Serpukhov) in the LISSR. With the advent of high energy pp colliders (LHC and SSC) new possi bilities have arisen which will be discussed in the Following sections. 2. The Concept of Tau-Neutrino Detection Previous experience with the detection of short-lived particles, e.g. of charm-mesons has shown that their identificaton by kinematics and by transverse momentum unbal ance due to undetected neutrinos is not possible in the presence of a large back ground. The short lifetime itseIF is an unambiguous method to detect and to identify them. With a mean tau—neutrino event energy of 300 GeV at LHC we expect a mean decay path of ~i cm. The majority of the tau decay modes (86%) produce a single 38 OCR Output 39 charged particle. The decay angle (kink) between the tau and the charged particle is small. about 1 O on average and therefore difficult to detect. The decay length has a broad distribution because of the wide tau—neutrino energy spectrum. Because of the energy and momentum carried away in tau—decay by the vT the energy of each tau-lepton and. hence. its lifetime in the rest system cannot be determined. For the identification of a tau decay vertex we require instead a visible transverse decay length (kink) or a visible transverse impact parameter of a particle track with respect to the event vertex (figure I). Figure 2 shows the expected transverse decay length and impact parameter distribu tion with mean values of XT = 243 um and X. = 65 um. These values are nearly inva riant with respect to the spread of tau—neutrino energies. The transverse decay angle is large; a spectacular event with a t + uvnvr decay, simulated by Monte Carlo me thods is shown in figure 3 [9]. lt illustrates the basic concept. Detection of short lived particles requires good space resolution (~20 um). There exist proven methods: emulsions, holographic bubble chambers or Silicon micro-strip detectors. Other detection techniques using e.g. a liquid argon drift chamber have al so been investigated [IO]. Because of the high muon flux (see Chapter 3) it is essential to have good time resolution (E, l0 us). This condition eliminates the emulsion and the bubble chamber as detectors. The CHARM lI·—Zeuthen Collaboration has been considering either Silicon micro-strip detectors or scintillating fibres [9], others have developed liquid argon drift chambers [10] for detecting the tau- neutrino. ln Chapter 3, I am briefly describing the vt beam and the expected vt event rate in Chapter 4 the detector and in Chapter 5 the expected performance. 3. The Tau-Neutrino Beam Tau neutrinos can be obtained from the production and decay of heavy quark flavors (cc. bb) in proton-proton collisions. The main source of vT is the leptonic decay D; -» vt ++t, 1*» vt + X which is expected to occur with a branching ratio of ~3%. The secondary vt from t decay has higher energy. on average 300 GeV at LHC energy, because of the Lorentz boost of the tau lepton in DQ decay. and is there dominating the expected event rate. OCR Output At the energy of fixed target accelerators (LINK, LHC, SSC) of »/s #-80- 120GeV the cross section for DQ production can be safely estimated from results obtained at the ISR and at the pp colliders [9]. Llsing the collider mode of LHC, following a suggestion of A. De Rujula and R. Riickl [11], a ti., beam can be produced in —/s z 16 TeV pp col lisions. The cross section dependence on w/s and on the Feynman scaling variable xl: has been estimated by a scaling law approach [11], by the quark-gluon string model of Kai dalov et al. [12] and by the PYTHIA QCD Monte Carlo program. A very steeply rising xp dependence at x ~0, like 1/x and a strong cross section increase with energy is predicted. with o(D+) ~ o(Dd)~o(DS)~ 1 mb at 16 TeV, a factor ~20 higher than in the fixed target mode at 1/s ~ 120GeV. These predictions must be subjected to experimental tests. Figure #1- shows the energy spectrum of vt at —/s = 16TeV as calculated by De Rujula, Fernandez and Gomez. Because of the energy imparted to the parent DS mesons the angular distribution of the vt flux is strongly peaked at small angles with respect to the proton direction (see figure 5). The luminosity, the vt event rate for 10’s for a detector with a mass of 2 kg/cm2 subtending an angular acceptance of :2.5mrad, and the rate of v,, and vn induced reactions (from heavy quark decays) in a conventional detector with a mass of 6 kg/cm2 is given in Table 1 for three different modes of operation: a gas jet with a density of p~ 4-1014 nucleons/cm3 and a beam dump receiving 1010 protons/s by slow ejection operate in the fixed target mode; for the beam—beam mode we have assumed a mean luminosity of 103’1cm`2s`1 whereas the peak luminosity may be as high as 4-1034. For comparison we also show the rate at a fixed target accelerator (LINK) with 10protons/s.13 OCR Output Table 1 Comparison of event rates in different operation modes at the LHC and at LINK. Mode L(cm_2s`1) I N(v,)4) I N(v)S)= N(v) {i€ Beam-Beam 1034 3800 80'0O0 Gas—_]et” (fixed target) I 2·103 500 Beam dump2'(fixed iargi-;t>| 2-103 2500 50000 LINK fixed target3 1038 20'000 1) p (jet) ~ L10nucleons/cm14 2) slow ejection 10protons/s10 3) slow ejection 1013 protons/s 4) target mass ~2kg/cm2, A(E)~12.5mrad, 107s S) target mass~6kg/cm2, A@~:2.5 mrad, l07s Detecting t decays in the leptonic decay it -¢ uvHvT with a branching ratio of 17.8% and a detection efficiency (see Chapter -l-) of E~30% observation of the reaction vTN tX may be possible.
Recommended publications
  • Decays of the Tau Lepton*
    SLAC - 292 UC - 34D (E) DECAYS OF THE TAU LEPTON* Patricia R. Burchat Stanford Linear Accelerator Center Stanford University Stanford, California 94305 February 1986 Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Techni- cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Price: Printed Copy A07, Microfiche AOl. JC Ph.D. Dissertation. Abstract Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb-l of data accumulated with the Mark II detector at the PEP e+e- storage ring. The sample is selected using the decay products of one member of the r+~- pair produced in e+e- annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources.
    [Show full text]
  • Probing Light Gauge Bosons in Tau Neutrino Experiments
    Probing Light Gauge Bosons in Tau Neutrino Experiments Felix Kling∗ SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA The tau neutrino is probably the least studied particle in the SM, with only a handful of interaction events being identified so far. This can in part be attributed to their small production rate in the SM, which occurs mainly through Ds meson decay. However, this also makes the tau neutrino flux measurement an interesting laboratory for additional new physics production modes. In this study, we investigate the possibility of tau neutrino production in the decay of light vector bosons. We consider four scenarios of anomaly-free U(1) gauge groups corresponding to the B−L, B−Lµ−2Lτ , B − Le − 2Lτ and B − 3Lτ numbers, analyze current constraints on their parameter spaces and explore the sensitivity of DONuT and as well as the future emulsion detector experiments FASERν, SND@LHC and SND@SHiP. We find that these experiments provide the leading direct constraints in parts of the parameter space, especially when the vector boson's mass is close to the mass of the ! meson. I. INTRODUCTION other neutrino flavors. This small SM production rate makes the tau neutrino flux measurement an interesting The standard model (SM) consist of 17 particles, out laboratory for additional beyond the SM (BSM) produc- tion modes. of which the tau neutrino ντ is the least experimentally constrained one. To detect the rare tau neutrino interac- One example of such new physics are light vector tions, an intense neutrino beam with a sufficiently large bosons V associated with additional gauge groups.
    [Show full text]
  • J = Τ MASS Page 1
    Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) J 1 τ = 2 + + τ discovery paper was PERL 75. e e− → τ τ− cross-section threshold behavior and magnitude are consistent with pointlike spin- 1/2 Dirac particle. BRANDELIK 78 ruled out pointlike spin-0 or spin-1 particle. FELDMAN 78 ruled out J = 3/2. KIRKBY 79 also ruled out J=integer, J = 3/2. τ MASS VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 1776..86 0..12 OUR AVERAGE ± +0.10 1776.91 0.12 1171 1 ABLIKIM 14D BES3 23.3 pb 1, Eee = ± 0.13 − cm − 3.54–3.60 GeV 1776.68 0.12 0.41 682k 2 AUBERT 09AK BABR 423 fb 1, Eee =10.6 GeV ± ± − cm 1776.81+0.25 0.15 81 ANASHIN 07 KEDR 6.7 pb 1, Eee = 0.23 ± − cm − 3.54–3.78 GeV 1776.61 0.13 0.35 2 BELOUS 07 BELL 414 fb 1 Eee =10.6 GeV ± ± − cm 1775.1 1.6 1.0 13.3k 3 ABBIENDI 00A OPAL 1990–1995 LEP runs ± ± 1778.2 0.8 1.2 ANASTASSOV 97 CLEO Eee = 10.6 GeV ± ± cm . +0.18 +0.25 4 Eee . 1776 96 0.21 0.17 65 BAI 96 BES cm= 3 54–3 57 GeV − − 1776.3 2.4 1.4 11k 5 ALBRECHT 92M ARG Eee = 9.4–10.6 GeV ± ± cm +3 6 Eee 1783 4 692 BACINO 78B DLCO cm= 3.1–7.4 GeV − We do not use the following data for averages, fits, limits, etc.
    [Show full text]
  • Tau (Or No) Leptons in Top Quark Decays at Hadron Colliders
    Tau (or no) leptons in top quark decays at hadron colliders Michele Gallinaro for the CDF, D0, ATLAS, and CMS collaborations Laborat´oriode Instrumenta¸c˜aoe F´ısicaExperimental de Part´ıculas LIP Lisbon, Portugal DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-02/12 Measurements in the final states with taus or with no-leptons are among the most chal- lenging as they are those with the smallest signal-to-background ratio. However, these final states are of particular interest as they can be important probes of new physics. Tau identification techniques and cross section measurements in top quark decays in these final states are discussed. The results, limited by systematical uncertainties, are consistent with standard model predictions, and are used to set stringent limits on new physics searches. The large data samples available at the Fermilab and at the Large Hadron Collider may help further improving the measurements. 1 Introduction Many years after its discovery [1, 2], the top quark still plays a fundamental role in the program of particle physics. The study of its properties has been extensively carried out in high energy hadron collisions. The production cross section has been measured in many different final states. Deviation of the cross section from the predicted standard model (SM) value may indicate new physics processes. Top quarks are predominantly produced in pairs, and in each top quark pair event, there are two W bosons and two bottom quarks. From the experimental point of view, top quark pair events are classified according to the decay mode of the two W bosons: the all-hadronic final state, in which both W bosons decay into quarks, the “lepton+jet” final state, in which one W decays leptonically and the other to quarks, and the dilepton final state, in which both W bosons decay leptonically.
    [Show full text]
  • Search for Rare Multi-Pion Decays of the Tau Lepton Using the Babar Detector
    SEARCH FOR RARE MULTI-PION DECAYS OF THE TAU LEPTON USING THE BABAR DETECTOR DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ruben Ter-Antonyan, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Approved by Richard D. Kass, Adviser Klaus Honscheid Adviser Michael A. Lisa Physics Graduate Program Junko Shigemitsu Ralph von Frese ABSTRACT A search for the decay of the τ lepton to rare multi-pion final states is performed + using the BABAR detector at the PEP-II asymmetric-energy e e− collider. The anal- 1 ysis uses 232 fb− of data at center-of-mass energies on or near the Υ(4S) resonance. + 0 In the search for the τ − 3π−2π 2π ν decay, we observe 10 events with an ex- ! τ +2:0 pected background of 6:5 1:4 events. In the absence of a signal, we calculate the − + 0 6 decay branching ratio upper limit (τ − 3π−2π 2π ν ) < 3:4 10− at the 90 % B ! τ × confidence level. This is more than a factor of 30 improvement over the previously established limit. In addition, we search for the exclusive decay mode τ − 2!π−ν ! τ + 0 +1:0 with the further decay of ! π−π π . We observe 1 event, expecting 0.4 0:4 back- ! − 7 ground events, and calculate the upper limit (τ − 2!π−ν ) < 5:4 10− at the B ! τ × 90 % confidence level. This is the first upper limit for this mode.
    [Show full text]
  • Dstau: Study of Tau Neutrino Production with 400 Gev Protons from the CERN-SPS
    Prepared for submission to JHEP DsTau: Study of tau neutrino production with 400 GeV protons from the CERN-SPS Shigeki Aoki,a Akitaka Ariga,b;1 Tomoko Ariga,b;c Sergey Dmitrievsky,d Elena Firu,e Dean Forshaw,b Tsutomu Fukuda,f Yuri Gornushkin,d Ali Murat Guler,g Maria Haiduc,e Koichi Kodama,h Masahiro Komatsu,f Muhtesem Akif Korkmaz,g Umut Kose,i Madalina Miloi,e Antonio Miucci,b Motoaki Miyanishi,f Mitsuhiro Nakamura,f Toshiyuki Nakano,f Alina Neagu,e Hiroki Rokujo,f Osamu Sato,f Elizaveta Sitnikova,d Yosuke Suzuki,f Tomoki Takao,f Svetlana Vasina,d Mykhailo Vladymyrov,b Thomas Weston,b Junya Yoshida,j Masahiro Yoshimoto.k The DsTau Collaboration aKobe University, Kobe, Japan bAlbert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, Bern, Switzerland cKyushu University, Fukuoka, Japan dJoint Institute for Nuclear Research, Dubna, Russia eInstitute of Space Science, Bucharest, Romania f Nagoya University, Nagoya, Japan gMiddle East Technical University, Ankara, Turkey hAichi University of Education, Kariya, Japan iCERN, Geneva, Switzerland jAdvanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan kGifu University, Gifu, Japan E-mail: [email protected] Abstract: In the DsTau experiment at the CERN SPS, an independent and direct way to measure tau neutrino production following high energy proton interactions was proposed. As the main source of tau neutrinos is a decay of Ds mesons, produced in proton-nucleus arXiv:1906.03487v1 [hep-ex] 8 Jun 2019 interactions, the project aims at measuring a differential cross section of this reaction. The experimental method is based on a use of high resolution emulsion detectors for effective registration of events with short lived particle decays.
    [Show full text]
  • Neutrino Physics
    0 Neutrino Physics Zhi-zhong Xing ★ Neutrino’s history & lepton families (IHEP, Beijing) ★ Dirac & Majorana neutrino masses ★ Lepton flavor mixing & CP violation ★ Neutrino oscillation phenomenology ★ Seesaw & leptogenesis mechanisms ★ Extreme corners in the neutrino sky Lecture A @ the 2nd Asia-Europe-Pacific School of HEP, 11/2014, Puri, India Neutrinos everywhere 1 SM Properties: charge = 0 spin = ½ mass = 0 Big Bang speed = c neutrinos Galaxy Human Supernova Sun Earth Reactor Accelerator Neutrinos: witness and participant 1 in the evolution of the Universe 3 2 < 1% Some open questions 3 . the absolute mass scale? . the mass hierarchy? . the flavor desert? . leptonic CP violation? . the Majorana nature? . How many species? . cosmic background? . supernova & stellar ’s? . UHE cosmic ’s? . warm dark matter? . matter-antimatter asymmetry… Lecture A1 ★ Neutrinos from new physics ★ Interactions and discoveries ★ Flavors / families of leptons Beta decays in 1930 5 2-body Energy crisis = New physics ? decays J. Chadwick 1914/C. Ellis 1920-1927 What to do? Two ways out? 6 . giving up sth . adding in sth Niels Bohr Wolfgang Pauli (1930) Pauli put forward this idea in a letter instead of a paper….. Solvay 1933 7 Pauli gave a talk on his neutrino proposal in this congress. Fermi’s theory 8 Enrico Fermi assumed a new force for I will be remembered decay by combining 3 new concepts: for this paper. ------ Fermi in Italian ★ Pauli’s idea: neutrinos Alps, Christmas 1933 ★ Dirac’s idea: creation of particles ★ Heisenberg’s idea: isospin symmetry Fermi’s paper 9 This is Fermi’s best theoretical work! ---- C.N. Yang Published first in this journal and later in Z.
    [Show full text]
  • Masses of the Sub-Nuclear Particles Fit Into One Equation
    Masses of the Sub-Nuclear Particles Theodore M. Lach The masses of the quarks and leptons are for the most part a mystery to particle physicists. Currently there seems to be no correlation between the masses of the elementary particles. This paper is an attempt to formulate a theory that would begin to explain the relationship between the sub-nuclear particle masses. A key premise of the Standard Model is that there are 3 and only 3 generations of quarks and leptons. The currently accepted masses of these elementary particles are: (1) Table 1. Generation # 1 Generation # 2 Generation # 3 Up quark = 3 MeV, (1-5) Charmed quark = 1.25+0.1 GeV Top quark = 175 +5 GeV Down quark = 6 MeV Strange quark = 100 MeV Bottom quark = 4.2 GeV (3-9 MeV) (75-170 MeV) + 0.2 GeV Electron = 0.5109989MeV Muon = 105.6583 MeV Tau = 1777.1 MeV The neutrino masses in the standard model are still a hotly debated issue, yet arXiv:nucl-th/0008026 14 Aug 2000 most current references put the upper bound of the three neutrinos at: Table 2. Electron neutrino = 10 ev (5 – 17 ev) Muon neutrino = 270 KeV (200 – 270 KeV) Tau neutrino = 31 MeV (20 – 35 MeV) In an attempt to determine why the quark masses predicted in the CBM (2), Checker Board Model of the nucleus, do not fit into the standard model, I will deviate from the S.M. and assume that my quark masses in table 3 are correct and that there are more than 3 generations.
    [Show full text]
  • The Tau and Beyond: Future Research on Heavy Leptons*
    SLAC-PUB-4819 January 1988 Pm) THE TAU AND BEYOND: FUTURE RESEARCH ON HEAVY LEPTONS* MARTIN L. PERL Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 . ABSTRACT: This paper outlines directions for future experimental research on the tau and tau neutrino. Present limits on the existence of heavier charged leptons are re- viewed, with emphasis on the close-mass lepton pair con- cept. *Work supported by the Department of Energy, contract DE-AC03-76SF00515. Presented at the 8th International Conference on Physics in Collision, Capri, Italy, October 19-21, 1988. Table of Contents I. Introduction II. The Tau A. The Decay Mode Problem B. Better Measurements of Conventional Properties C. Tau Lepton Number Conservation D. Deviations From a Dirac Point Particle E. The Concept of Lepton-Specific Forces and the Tau III. The Tau Neutrino A. Tau Neutrino Mass B. Tau Neutrino Mixing C. Interactions of the Tau Neutrino D. Variations on the Tau Neutrino IV. Limits on the Existence of Heavier Charged Leptons A. Present Limits B. Future Searches for Charged Leptons I. Introduction In 1981, at the first Physics In Collision Conference, I reviewed the status of the tau and of the search for heavier leptons. Now, seven years later, I have the pleasure of presenting another such review. Those seven years demonstrate the perversity of nature, or more precisely, demonstrate the obstinacy of nature with respect to the desires and expectations of the physicist. By 1981 the tau was established and the particle physicist looked forward to the discovery of more and heavier leptons. Two new electron-positron colliders PETRA and PEP were in operation, and the CERN pp collider was under construction.
    [Show full text]
  • Physics with Tau Lepton Final States in ATLAS
    EPJ Web of Conferences 49, 18022 (2013) DOI: 10.1051/epjconf/ 20134918022 C Owned by the authors, published by EDP Sciences, 2013 Physics with Tau Lepton Final States in ATLAS Almut M. Pingel1,a, on behalf of the ATLAS Collaboration 1Niels Bohr Institute, University of Copenhagen Abstract. The ATLAS detector records collisions from two high-energetic proton beams circulating in the LHC. An integral part of the ATLAS physics program are analyses with tau leptons in the final state. Here an overview is given over the studies done in ATLAS with hadronically-decaying final state tau leptons: Standard Model cross-section measurements of Z ⌧⌧, W ⌧⌫ and tt¯ bbe¯ /µ⌫ ⌧ ⌫; ⌧ polarization measurements ! ! ! had in W ⌧⌫ decays; Higgs searches and various searches for physics beyond the Standard Model. ! 1 Introduction 2 Standard Model cross-section measurements The ATLAS [1] physics program covers a wide range of analyses with tau leptons in the final state, which are The SM processes W ⌧⌫ and Z ⌧⌧ are backgrounds ! ! important both to test the Standard Model (SM) and in in many studies with final state tau leptons, in particular in searches for new physics. In 2010 and 2011, the LHC [2] searches for the Higgs boson. It is therefore important to was operated at a center-of-mass energy of ps = 7 TeV, study and measure the cross-sections precisely. Further- and at ps = 8 TeV in 2012. Physics searches presented more, deviations from predicted SM cross-sections are an 1 here are based on the full 2011 dataset of 4.7 fb− if not indicator for new physics processes.
    [Show full text]
  • Discoverers of the Neutrino and Tau Recognised
    RESEARCH I NEWS Discoverers of the Neutrino the turn of two of the six leptons of today's and Tau Recognised particle physics, the electron-neutrino ve and the T lepton, tau, to acquire 'Nobelity'. Particles that Acq ui red 'hlobei ity' K V L Sarma Frederick Reines (University of California, Irvine), now 77,with Clyde L Cowan Jr. (who The 1995 Nobel Prize in Physics is shared by died in 1974) reported the first direct evidence the American physicists Frederick J Reines of the existence of the 'neutrino' in 1956. The and Martin L Perl for their pioneering experi­ neutrino is a tiny neutral particle hypoth­ mental contributions to 'lepton' physics. Lep­ esized by Wolfgang Pauli Jr. in 1930. Twenty tons, such as the electron, do not feel the five years later and with the invention of the nuclear force but only the electromagnetic nuclear reactor it was possible to verify its and the weak beta decay force. This year it is existence. This year's Nobel award in Physics is in recognition belong. A summary of the discoveries made in the of two landmark experiments in elementary par­ world of leptons is given in the table below. The ticle physics. One provided the confirmation of the third generation has now started getting Nobel neutrino, as envisaged by Pauli more than two prizes. It should be noted that v T still needs to be decades earlier. The second discovered the heavy identified experimentally land hence the question charged lepton "t which heralded the third, and marks in the last row of the table!.
    [Show full text]
  • Tau Leptons New Measurements of the Tau Mass
    Tau lineup. At this year's workshop on tau lepton physics, the second in the series, and hosted by Ohio State University, tau pioneer Martin Perl is seen with workshop chairman K.K. Gan (left) and Michel Davier, one of the chairmen of the first workshop, held in Orsay, France, in 1990. At the workshop it also emerged that a large amount of information on the scintillation properties of several materials and ions already has been compiled. In particular, cerium compounds can offer advantages when fast scintillation (some 20 ns) is needed. For ultrafast (nanosecond) scintillation, only crystals exhibiting special 'crossover' transitions can be considered, with the drawback of emitting in the vacuum UV. Similar expertise was gathered from exten­ sive work in solid state chemistry and crystalline defects. The Chamonix meeting was organ­ ized jointly by CERN, the French CNRS and the Italian INFN. The workshop opened with a talk on ment in the precision of the measure­ Tau leptons new measurements of the tau mass. ments, there is still a nagging dis­ At the Beijing electron-positron crepancy. Once an oddity, tau leptons are now collider, seven events were observed Tau decays with one or three being mass produced at electron- in a scan of the tau production charged hadrons in the final states positron colliders, and tau physics is threshold yielding a new measure­ were the subject of two full sessions. becoming daily life. This was re­ ment of the tau mass (July, page 13) New measurements from ARGUS flected at the Second Workshop on an order of magnitude more precise (DESY, Hamburg), CLEO (CESR, Tau Lepton Physics, held at Ohio than the previous measurement by Cornell), and the LEP experiments at State University, September 8-11.
    [Show full text]