Decays of the Tau Lepton*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved. -
Introduction to Subatomic- Particle Spectrometers∗
IIT-CAPP-15/2 Introduction to Subatomic- Particle Spectrometers∗ Daniel M. Kaplan Illinois Institute of Technology Chicago, IL 60616 Charles E. Lane Drexel University Philadelphia, PA 19104 Kenneth S. Nelsony University of Virginia Charlottesville, VA 22901 Abstract An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle in- teractions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrom- eters and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely. arXiv:physics/9805026v3 [physics.ins-det] 17 Jul 2015 ∗To appear in the Wiley Encyclopedia of Electrical and Electronics Engineering. yNow at Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 1 Contents 1 Introduction 5 2 Overview of Subatomic Particles 5 2.1 Leptons, Hadrons, Gauge and Higgs Bosons . 5 2.2 Neutrinos . 6 2.3 Quarks . 8 3 Overview of Particle Detection 9 3.1 Position Measurement: Hodoscopes and Telescopes . 9 3.2 Momentum and Energy Measurement . 9 3.2.1 Magnetic Spectrometry . 9 3.2.2 Calorimeters . 10 3.3 Particle Identification . 10 3.3.1 Calorimetric Electron (and Photon) Identification . 10 3.3.2 Muon Identification . 11 3.3.3 Time of Flight and Ionization . 11 3.3.4 Cherenkov Detectors . 11 3.3.5 Transition-Radiation Detectors . 12 3.4 Neutrino Detection . 12 3.4.1 Reactor Neutrinos . 12 3.4.2 Detection of High Energy Neutrinos . -
Neutrino Opacity I. Neutrino-Lepton Scattering*
PHYSICAL REVIEW VOLUME 136, NUMBER 4B 23 NOVEMBER 1964 Neutrino Opacity I. Neutrino-Lepton Scattering* JOHN N. BAHCALL California Institute of Technology, Pasadena, California (Received 24 June 1964) The contribution of neutrino-lepton scattering to the total neutrino opacity of matter is investigated; it is found that, contrary to previous beliefs, neutrino scattering dominates the neutrino opacity for many astro physically important conditions. The rates for neutrino-electron scattering and antineutrino-electron scatter ing are given for a variety of conditions, including both degenerate and nondegenerate gases; the rates for some related reactions are also presented. Formulas are given for the mean scattering angle and the mean energy loss in neutrino and antineutrino scattering. Applications are made to the following problems: (a) the detection of solar neutrinos; (b) the escape of neutrinos from stars; (c) neutrino scattering in cosmology; and (d) energy deposition in supernova explosions. I. INTRODUCTION only been discussed for the special situation of electrons 13 14 XPERIMENTS1·2 designed to detect solar neu initially at rest. · E trinos will soon provide crucial tests of the theory In this paper, we investigate the contribution of of stellar energy generation. Other neutrino experiments neutrino-lepton scattering to the total neutrino opacity have been suggested as a test3 of a possible mechanism of matter and show, contrary to previous beliefs, that for producing the high-energy electrons that are inferred neutrino-lepton scattering dominates the neutrino to exist in strong radio sources and as a means4 for opacity for many astrophysically important conditions. studying the high-energy neutrinos emitted in the decay Here, neutrino opacity is defined, analogously to photon of cosmic-ray secondaries. -
Review of Lepton Universality Tests in B Decays
January 4, 2019 Review of Lepton Universality tests in B decays Simone Bifani∗, S´ebastienDescotes-Genony, Antonio Romero Vidalz, Marie-H´el`ene Schunex Abstract Several measurements of tree- and loop-level b-hadron decays performed in the recent years hint at a possible violation of Lepton Universality. This article presents an experimental and theoretical overview of the current status of the field. arXiv:1809.06229v2 [hep-ex] 3 Jan 2019 Published in Journal of Physics G: Nuclear and Particle Physics, Volume 46, Number 2 ∗University of Birmingham, School of Physics and Astronomy Edgbaston, Birmingham B15 2TT, United Kingdom yLaboratoire de Physique Th´eorique(UMR 8627), CNRS, Universit´eParis-Sud, Universit´eParis-Saclay, 91405 Orsay, France zInstituto Galego de F´ısicade Altas Enerx´ıas(IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain xLaboratoire de l'Acc´el´erateurLin´eaire,CNRS/IN2P3, Universit´eParis-Sud, Universit´eParis-Saclay, 91440 Orsay, France Contents 1 Introduction 1 2 Lepton Universality in the Standard Model 2 3 Overview of Lepton Universality tests beyond the B sector 3 3.1 Electroweak sector . .4 3.2 Decays of pseudoscalar mesons . .5 3.3 Purely leptonic decays . .7 3.4 Quarkonia decays . .7 3.5 Summary . .7 4 Theoretical treatment of b-quark decays probing Lepton Universality 8 4.1 Effective Hamiltonian . .8 4.2 Hadronic quantities . 10 4.3 Lepton Universality observables . 13 5 Experiments at the B-factories and at the Large Hadron Collider 13 5.1 B-factories . 13 5.2 Large Hadron Collider . 16 5.3 Complementarity between the B-factories and the LHC . -
Charged Particle Radiotherapy
Corporate Medical Policy Charged Particle Radiotherapy File Name: charged_particle_radiotherapy Origination: 3/12/96 Last CAP Review: 5/2021 Next CAP Review: 5/2022 Last Review: 5/2021 Description of Procedure or Service Cha rged-particle beams consisting of protons or helium ions or carbon ions are a type of particulate ra dia tion therapy (RT). They contrast with conventional electromagnetic (i.e., photon) ra diation therapy due to several unique properties including minimal scatter as particulate beams pass through tissue, and deposition of ionizing energy at precise depths (i.e., the Bragg peak). Thus, radiation exposure of surrounding normal tissues is minimized. The theoretical advantages of protons and other charged-particle beams may improve outcomes when the following conditions a pply: • Conventional treatment modalities do not provide adequate local tumor control; • Evidence shows that local tumor response depends on the dose of radiation delivered; and • Delivery of adequate radiation doses to the tumor is limited by the proximity of vital ra diosensitive tissues or structures. The use of proton or helium ion radiation therapy has been investigated in two general categories of tumors/abnormalities. However, advances in photon-based radiation therapy (RT) such as 3-D conformal RT, intensity-modulated RT (IMRT), a nd stereotactic body ra diotherapy (SBRT) a llow improved targeting of conventional therapy. 1. Tumors located near vital structures, such as intracranial lesions or lesions a long the a xial skeleton, such that complete surgical excision or adequate doses of conventional radiation therapy are impossible. These tumors/lesions include uveal melanomas, chordomas, and chondrosarcomas at the base of the skull and a long the axial skeleton. -
Machine-Learning-Based Global Particle-Identification Algorithms At
Machine-Learning-based global particle-identification algorithms at the LHCb experiment Denis Derkach1;2, Mikhail Hushchyn1;2;3, Tatiana Likhomanenko2;4, Alex Rogozhnikov2, Nikita Kazeev1;2, Victoria Chekalina1;2, Radoslav Neychev1;2, Stanislav Kirillov2, Fedor Ratnikov1;2 on behalf of the LHCb collaboration 1 National Research University | Higher School of Economics, Moscow, Russia 2 Yandex School of Data Analysis, Moscow, Russia 3 Moscow Institute of Physics and Technology, Moscow, Russia 4 National Research Center Kurchatov Institute, Moscow, Russia E-mail: [email protected] Abstract. One of the most important aspects of data analysis at the LHC experiments is the particle identification (PID). In LHCb, several different sub-detectors provide PID information: two Ring Imaging Cherenkov (RICH) detectors, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, we have developed models based on deep learning and gradient boosting. The new approaches, tested on simulated samples, provide higher identification performances than the current solution for all charged particle types. It is also desirable to achieve a flat dependency of efficiencies from spectator variables such as particle momentum, in order to reduce systematic uncertainties in the physics results. For this purpose, models that improve the flatness property for efficiencies have also been developed. This paper presents this new approach and its performance. 1. Introduction Particle identification (PID) algorithms play a crucial part in any high-energy physics analysis. A higher performance algorithm leads to a better background rejection and thus more precise results. In addition, an algorithm is required to work with approximately the same efficiency in the full available phase space to provide good discrimination for various analyses. -
1 Drawing Feynman Diagrams
1 Drawing Feynman Diagrams 1. A fermion (quark, lepton, neutrino) is drawn by a straight line with an arrow pointing to the left: f f 2. An antifermion is drawn by a straight line with an arrow pointing to the right: f f 3. A photon or W ±, Z0 boson is drawn by a wavy line: γ W ±;Z0 4. A gluon is drawn by a curled line: g 5. The emission of a photon from a lepton or a quark doesn’t change the fermion: γ l; q l; q But a photon cannot be emitted from a neutrino: γ ν ν 6. The emission of a W ± from a fermion changes the flavour of the fermion in the following way: − − − 2 Q = −1 e µ τ u c t Q = + 3 1 Q = 0 νe νµ ντ d s b Q = − 3 But for quarks, we have an additional mixing between families: u c t d s b This means that when emitting a W ±, an u quark for example will mostly change into a d quark, but it has a small chance to change into a s quark instead, and an even smaller chance to change into a b quark. Similarly, a c will mostly change into a s quark, but has small chances of changing into an u or b. Note that there is no horizontal mixing, i.e. an u never changes into a c quark! In practice, we will limit ourselves to the light quarks (u; d; s): 1 DRAWING FEYNMAN DIAGRAMS 2 u d s Some examples for diagrams emitting a W ±: W − W + e− νe u d And using quark mixing: W + u s To know the sign of the W -boson, we use charge conservation: the sum of the charges at the left hand side must equal the sum of the charges at the right hand side. -
J = Τ MASS Page 1
Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) J 1 τ = 2 + + τ discovery paper was PERL 75. e e− → τ τ− cross-section threshold behavior and magnitude are consistent with pointlike spin- 1/2 Dirac particle. BRANDELIK 78 ruled out pointlike spin-0 or spin-1 particle. FELDMAN 78 ruled out J = 3/2. KIRKBY 79 also ruled out J=integer, J = 3/2. τ MASS VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 1776..86 0..12 OUR AVERAGE ± +0.10 1776.91 0.12 1171 1 ABLIKIM 14D BES3 23.3 pb 1, Eee = ± 0.13 − cm − 3.54–3.60 GeV 1776.68 0.12 0.41 682k 2 AUBERT 09AK BABR 423 fb 1, Eee =10.6 GeV ± ± − cm 1776.81+0.25 0.15 81 ANASHIN 07 KEDR 6.7 pb 1, Eee = 0.23 ± − cm − 3.54–3.78 GeV 1776.61 0.13 0.35 2 BELOUS 07 BELL 414 fb 1 Eee =10.6 GeV ± ± − cm 1775.1 1.6 1.0 13.3k 3 ABBIENDI 00A OPAL 1990–1995 LEP runs ± ± 1778.2 0.8 1.2 ANASTASSOV 97 CLEO Eee = 10.6 GeV ± ± cm . +0.18 +0.25 4 Eee . 1776 96 0.21 0.17 65 BAI 96 BES cm= 3 54–3 57 GeV − − 1776.3 2.4 1.4 11k 5 ALBRECHT 92M ARG Eee = 9.4–10.6 GeV ± ± cm +3 6 Eee 1783 4 692 BACINO 78B DLCO cm= 3.1–7.4 GeV − We do not use the following data for averages, fits, limits, etc. -
The Basic Interactions Between Photons and Charged Particles With
Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No -
Charged Current Anti-Neutrino Interactions in the Nd280 Detector
CHARGED CURRENT ANTI-NEUTRINO INTERACTIONS IN THE ND280 DETECTOR BRYAN E. BARNHART HIGH ENERGY PHYSICS UNIVERSITY OF COLORADO AT BOULDER ADVISOR: ALYSIA MARINO Abstract. For the neutrino beamline oscillation experiment Tokai to Kamioka, the beam is clas- sified before oscillation by the near detector complex. The detector is used to measure the flux of different particles through the detector, and compare them to Monte Carlo Simulations. For this work, theν ¯µ background of the detector was isolated by examining the Monte Carlo simulation and determining cuts which removed unwanted particles. Then, a selection of the data from the near detector complex underwent the same cuts, and compared to the Monte Carlo to determine if the Monte Carlo represented the data distribution accurately. The data was found to be consistent with the Monte Carlo Simulation. Date: November 11, 2013. 1 Bryan E. Barnhart University of Colorado at Boulder Advisor: Alysia Marino Contents 1. The Standard Model and Neutrinos 4 1.1. Bosons 4 1.2. Fermions 5 1.3. Quarks and the Strong Force 5 1.4. Leptons and the Weak Force 6 1.5. Neutrino Oscillations 7 1.6. The Relative Neutrino Mass Scale 8 1.7. Neutrino Helicity and Anti-Neutrinos 9 2. The Tokai to Kamioka Experiment 9 2.1. Japan Proton Accelerator Research Complex 10 2.2. The Near Detector Complex 12 2.3. The Super-Kamiokande Detector 17 3. Isolation of the Anti-Neutrino Component of Neutrino Beam 19 3.1. Experiment details 19 3.2. Selection Cuts 20 4. Cut Descriptions 20 4.1. Beam Data Quality 20 4.2.