The Enigma of the Muon and Tau Solved by Emergent Quantum Mechanics?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas. -
Decays of the Tau Lepton*
SLAC - 292 UC - 34D (E) DECAYS OF THE TAU LEPTON* Patricia R. Burchat Stanford Linear Accelerator Center Stanford University Stanford, California 94305 February 1986 Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Techni- cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Price: Printed Copy A07, Microfiche AOl. JC Ph.D. Dissertation. Abstract Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb-l of data accumulated with the Mark II detector at the PEP e+e- storage ring. The sample is selected using the decay products of one member of the r+~- pair produced in e+e- annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources. -
Unification of the Maxwell- Einstein-Dirac Correspondence
Unification of the Maxwell- Einstein-Dirac Correspondence The Origin of Mass, Electric Charge and Magnetic Spin Author: Wim Vegt Country: The Netherlands Website: http://wimvegt.topworld.center Email: [email protected] Calculations: All Calculations in Mathematica 11.0 have been printed in a PDF File Index 1 “Unified 4-Dimensional Hyperspace 5 Equilibrium” beyond Einstein 4-Dimensional, Kaluza-Klein 5-Dimensional and Superstring 10- and 11 Dimensional Curved Hyperspaces 1.2 The 4th term in the Unified 4-Dimensional 12 Hyperspace Equilibrium Equation 1.3 The Impact of Gravity on Light 15 2.1 EM Radiation within a Cartesian Coordinate 23 System in the absence of Gravity 2.1.1 Laser Beam with a Gaussian division in the x-y 25 plane within a Cartesian Coordinate System in the absence of Gravity 2.2 EM Radiation within a Cartesian Coordinate 27 System under the influence of a Longitudinal Gravitational Field g 2.3 The Real Light Intensity of the Sun, measured in 31 our Solar System, including Electromagnetic Gravitational Conversion (EMGC) 2.4 The Boundaries of our Universe 35 2.5 The Origin of Dark Matter 37 3 Electromagnetic Radiation within a Spherical 40 Coordinate System 4 Confined Electromagnetic Radiation within a 42 Spherical Coordinate System through Electromagnetic-Gravitational Interaction 5 The fundamental conflict between Causality and 48 Probability 6 Confined Electromagnetic Radiation within a 51 Toroidal Coordinate System 7 Confined Electromagnetic Radiation within a 54 Toroidal Coordinate System through Electromagnetic-Gravitational -
Muon Decay 1
Muon Decay 1 LIFETIME OF THE MUON Introduction Muons are unstable particles; otherwise, they are rather like electrons but with much higher masses, approximately 105 MeV. Radioactive nuclear decays do not release enough energy to produce them; however, they are readily available in the laboratory as the dominant component of the cosmic ray flux at the earth’s surface. There are two types of muons, with opposite charge, and they decay into electrons or positrons and two neutrinos according to the rules + + µ → e νe ν¯µ − − µ → e ν¯e νµ . The muon decay is a radioactiveprocess which follows the usual exponential law for the probability of survival for a given time t. Be sure that you understand the basis for this law. The goal of the experiment is to measure the muon lifetime which is roughly 2 µs. With care you can make the measurement with an accuracy of a few percent or better. In order to achieve this goal in a conceptually simple way, we look only at those muons that happen to come to rest inside our detector. That is, we first capture a muon and then measure the elapsed time until it decays. Muons are rather penetrating particles, they can easily go through meters of concrete. Nevertheless, a small fraction of the muons will be slowed down and stopped in the detector. As shown in Figure 1, the apparatus consists of two types of detectors. There is a tank filled with liquid scintillator (a big metal box) viewed by two photomultiplier tubes (Left and Right) and two plastic scintillation counters (flat panels wrapped in black tape), each viewed by a photomul- tiplier tube (Top and Bottom). -
Charged Particle Radiotherapy
Corporate Medical Policy Charged Particle Radiotherapy File Name: charged_particle_radiotherapy Origination: 3/12/96 Last CAP Review: 5/2021 Next CAP Review: 5/2022 Last Review: 5/2021 Description of Procedure or Service Cha rged-particle beams consisting of protons or helium ions or carbon ions are a type of particulate ra dia tion therapy (RT). They contrast with conventional electromagnetic (i.e., photon) ra diation therapy due to several unique properties including minimal scatter as particulate beams pass through tissue, and deposition of ionizing energy at precise depths (i.e., the Bragg peak). Thus, radiation exposure of surrounding normal tissues is minimized. The theoretical advantages of protons and other charged-particle beams may improve outcomes when the following conditions a pply: • Conventional treatment modalities do not provide adequate local tumor control; • Evidence shows that local tumor response depends on the dose of radiation delivered; and • Delivery of adequate radiation doses to the tumor is limited by the proximity of vital ra diosensitive tissues or structures. The use of proton or helium ion radiation therapy has been investigated in two general categories of tumors/abnormalities. However, advances in photon-based radiation therapy (RT) such as 3-D conformal RT, intensity-modulated RT (IMRT), a nd stereotactic body ra diotherapy (SBRT) a llow improved targeting of conventional therapy. 1. Tumors located near vital structures, such as intracranial lesions or lesions a long the a xial skeleton, such that complete surgical excision or adequate doses of conventional radiation therapy are impossible. These tumors/lesions include uveal melanomas, chordomas, and chondrosarcomas at the base of the skull and a long the axial skeleton. -
Muon Neutrino Mass Without Oscillations
The Distant Possibility of Using a High-Luminosity Muon Source to Measure the Mass of the Neutrino Independent of Flavor Oscillations By John Michael Williams [email protected] Markanix Co. P. O. Box 2697 Redwood City, CA 94064 2001 February 19 (v. 1.02) Abstract: Short-baseline calculations reveal that if the neutrino were massive, it would show a beautifully structured spectrum in the energy difference between storage ring and detector; however, this spectrum seems beyond current experimental reach. An interval-timing paradigm would not seem feasible in a short-baseline experiment; however, interval timing on an Earth-Moon long baseline experiment might be able to improve current upper limits on the neutrino mass. Introduction After the Kamiokande and IMB proton-decay detectors unexpectedly recorded neutrinos (probably electron antineutrinos) arriving from the 1987A supernova, a plethora of papers issued on how to use this happy event to estimate the mass of the neutrino. Many of the estimates based on these data put an upper limit on the mass of the electron neutrino of perhaps 10 eV c2 [1]. When Super-Kamiokande and other instruments confirmed the apparent deficit in electron neutrinos from the Sun, and when a deficit in atmospheric muon- neutrinos likewise was observed, this prompted the extension of the kaon-oscillation theory to neutrinos, culminating in a flavor-oscillation theory based by analogy on the CKM quark mixing matrix. The oscillation theory was sensitive enough to provide evidence of a neutrino mass, even given the low statistics available at the largest instruments. J. M. Williams Neutrino Mass Without Oscillations (2001-02-19) 2 However, there is reason to doubt that the CKM analysis validly can be applied physically over the long, nonvirtual propagation distances of neutrinos [2]. -
J = Τ MASS Page 1
Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) J 1 τ = 2 + + τ discovery paper was PERL 75. e e− → τ τ− cross-section threshold behavior and magnitude are consistent with pointlike spin- 1/2 Dirac particle. BRANDELIK 78 ruled out pointlike spin-0 or spin-1 particle. FELDMAN 78 ruled out J = 3/2. KIRKBY 79 also ruled out J=integer, J = 3/2. τ MASS VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 1776..86 0..12 OUR AVERAGE ± +0.10 1776.91 0.12 1171 1 ABLIKIM 14D BES3 23.3 pb 1, Eee = ± 0.13 − cm − 3.54–3.60 GeV 1776.68 0.12 0.41 682k 2 AUBERT 09AK BABR 423 fb 1, Eee =10.6 GeV ± ± − cm 1776.81+0.25 0.15 81 ANASHIN 07 KEDR 6.7 pb 1, Eee = 0.23 ± − cm − 3.54–3.78 GeV 1776.61 0.13 0.35 2 BELOUS 07 BELL 414 fb 1 Eee =10.6 GeV ± ± − cm 1775.1 1.6 1.0 13.3k 3 ABBIENDI 00A OPAL 1990–1995 LEP runs ± ± 1778.2 0.8 1.2 ANASTASSOV 97 CLEO Eee = 10.6 GeV ± ± cm . +0.18 +0.25 4 Eee . 1776 96 0.21 0.17 65 BAI 96 BES cm= 3 54–3 57 GeV − − 1776.3 2.4 1.4 11k 5 ALBRECHT 92M ARG Eee = 9.4–10.6 GeV ± ± cm +3 6 Eee 1783 4 692 BACINO 78B DLCO cm= 3.1–7.4 GeV − We do not use the following data for averages, fits, limits, etc. -
The Basic Interactions Between Photons and Charged Particles With
Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No -
Muons: Particles of the Moment
FEATURES Measurements of the anomalous magnetic moment of the muon provide strong hints that the Standard Model of particle physics might be incomplete Muons: particles of the moment David W Hertzog WHEN asked what the most important strange, bottom and top; and six leptons, issue in particle physics is today, my ABORATORY namely the electron, muon and tau- colleagues offer three burning ques- L lepton plus their associated neutrinos. ATIONAL tions: What is the origin of mass? Why N A different set of particles is respon- is the universe made of matter and not sible for the interactions between these equal parts of matter and antimatter? ROOKHAVEN matter particles in the model. The elec- And is there any physics beyond the B tromagnetic interaction that binds elec- Standard Model? trons to nuclei results from the exchange The first question is being addressed of photons, whereas the strong force by a feverish quest to find the Higgs that binds quarks together inside neut- boson, which is believed to be respon- rons, protons and other hadrons is car- sible for the mass of fundamental par- ried by particles called gluons. The ticles. The Tevatron at Fermilab, which third force in the Standard Model – the is currently running, or the Large Had- weak nuclear interaction, which is re- ron Collider at CERN, which is due sponsible for radioactive decay – is car- to start experiments in 2007, should OWMAN ried by the W and Z bosons. B IPP eventually provide the answer to this R Physicists love the Standard Model, question by detecting the Higgs and but they do not like it. -
Charged Current Anti-Neutrino Interactions in the Nd280 Detector
CHARGED CURRENT ANTI-NEUTRINO INTERACTIONS IN THE ND280 DETECTOR BRYAN E. BARNHART HIGH ENERGY PHYSICS UNIVERSITY OF COLORADO AT BOULDER ADVISOR: ALYSIA MARINO Abstract. For the neutrino beamline oscillation experiment Tokai to Kamioka, the beam is clas- sified before oscillation by the near detector complex. The detector is used to measure the flux of different particles through the detector, and compare them to Monte Carlo Simulations. For this work, theν ¯µ background of the detector was isolated by examining the Monte Carlo simulation and determining cuts which removed unwanted particles. Then, a selection of the data from the near detector complex underwent the same cuts, and compared to the Monte Carlo to determine if the Monte Carlo represented the data distribution accurately. The data was found to be consistent with the Monte Carlo Simulation. Date: November 11, 2013. 1 Bryan E. Barnhart University of Colorado at Boulder Advisor: Alysia Marino Contents 1. The Standard Model and Neutrinos 4 1.1. Bosons 4 1.2. Fermions 5 1.3. Quarks and the Strong Force 5 1.4. Leptons and the Weak Force 6 1.5. Neutrino Oscillations 7 1.6. The Relative Neutrino Mass Scale 8 1.7. Neutrino Helicity and Anti-Neutrinos 9 2. The Tokai to Kamioka Experiment 9 2.1. Japan Proton Accelerator Research Complex 10 2.2. The Near Detector Complex 12 2.3. The Super-Kamiokande Detector 17 3. Isolation of the Anti-Neutrino Component of Neutrino Beam 19 3.1. Experiment details 19 3.2. Selection Cuts 20 4. Cut Descriptions 20 4.1. Beam Data Quality 20 4.2. -
Chapter 3. Fundamentals of Dosimetry
Chapter 3. Fundamentals of Dosimetry Slide series of 44 slides based on the Chapter authored by E. Yoshimura of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize students with quantities and units used for describing the interaction of ionizing radiation with matter Slide set prepared by E.Okuno (S. Paulo, Brazil, Institute of Physics of S. Paulo University) IAEA International Atomic Energy Agency Chapter 3. TABLE OF CONTENTS 3.1. Introduction 3.2. Quantities and units used for describing the interaction of ionizing radiation with matter 3.3. Charged particle equilibrium in dosimetry 3.4. Cavity theory 3.5. Practical dosimetry with ion chambers IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 3, 2 3.1. INTRODUCTION Subject of dosimetry : determination of the energy imparted by radiation to matter. This energy is responsible for the effects that radiation causes in matter, for instance: • a rise in temperature • chemical or physical changes in the material properties • biological modifications Several of the changes produced in matter by radiation are proportional to absorbed dose , giving rise to the possibility of using the material as the sensitive part of a dosimeter There are simple relations between dosimetric and field description quantities IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 3, 3 3.2. QUANTITIES AND UNITS USED FOR DESCRIBING THE INTERACTION OF IONIZING RADIATION