Asteroid Impacts: Laboratory Experiments and Scaling Laws

Total Page:16

File Type:pdf, Size:1020Kb

Asteroid Impacts: Laboratory Experiments and Scaling Laws Holsapple et al.: Asteroid Impacts: Experiments and Scaling Laws 443 Asteroid Impacts: Laboratory Experiments and Scaling Laws K. Holsapple University of Washington I. Giblin Planetary Science Institute K. Housen The Boeing Company A. Nakamura Kobe University E. Ryan New Mexico Highlands University The present states of the small bodies of the solar system are largely an outcome of colli- sional processes. A rocky main-belt asteroid has endured a multitude of small and large cratering impacts; for example, estimates here show that one starting with a radius of 1 km has been shattered about five times every 106 yr and one with a radius of 10 km has been shattered about every 107 yr, or perhaps even more frequently in the past when collision rates were higher than they are now. All solar system bodies bear the scars and imprints of those impacts. Much has been learned about these topics since publication of the Asteroids II book (Fujiwara et al., 1989). Here we briefly review the previous wisdom, but primarily address new experiments, calcula- tions, and scaling methods. 1. INTRODUCTION nation of nuclear bombs down to those involved in the stat- ics of ordinary soil and rock mechanics. The results of a An understanding of collisional processes and collisional given impact are therefore very difficult to predict, although evolution is required in order to interpret observations of much progress has been made over the last few decades. the solar system. Although laboratory experiments and com- The outcome of a collision depends largely on the ratio puter simulations have provided many insights into these of the kinetic energy of the impactor to the mass of the im- processes, our understanding of energetic impacts is still pacted body, a specific energy, commonly denoted as Q. relatively primitive. Each new view of asteroids provided Two threshold values of Q are often defined, although the by spacecraft brings new surprises. For example, the sub- literature is not consistent in terminology or notation. Im- stantial regolith on a small body like Gaspra, the huge pacts with small values of Q form craters, but leave the tar- closely packed craters on Mathilde, and the block-strewn get body largely intact. Larger values of Q can shatter a surface of Eros were entirely unexpected. Nevertheless, body into numerous pieces. The specific energy to shatter, * experiments and modeling, guided by observations of as- QS, is defined as the threshold value for which the largest teroids, will allow us to deduce much about the collision remaining intact piece immediately following a collision has history of these bodies, including crater sizes and frequency, one-half the mass of the original body. We refer to it as the crater morphology, ejecta block distributions, regolith de- shattering energy. The shattered pieces may reaccumulate velopment, and the formation of asteroid families. or not, depending on their velocity relative to the escape * Impact processes are very complex and involve extreme velocity. A higher threshold QD is the specific energy such ranges of conditions. The initial coupling of energy from a that the largest object following reaccumulation is one-half high-speed impactor into another body can occur in micro- the mass of the original body. This is called the dispersion seconds, with the extreme pressures and temperatures suffi- energy. The term disruption energy is sometimes used in cient to melt and vaporize the target and projectile material. the literature for either of these thresholds, often in a ge- On large bodies, the latter stages of these processes can neric way for any significant breaking and/or dispersion. continue for hours and involve very low pressures. These Numerous unsolved problems remain for collisions in conditions range from those encountered in the initial deto- all three regimes. Important questions about cratering in- 443 444 Asteroids III clude the crater size; the shape; the amount of compaction; tioned above. The variety of physical material response is and the amount, velocity, and fate of ejected material. For enormous, and we have at best a very rough understanding shattering impacts, the distributions of velocity, size, shape, of relevant physical models. One must model the material and spin of the pieces, and the ultimate fate of those pieces, behavior during shock propagation; crushing of voids in the are still largely unknown. How many fragments remain in material; and failure, flow, and fracture. Important features place, how many are lofted and reaccumulate, and what is such as compaction, strain softening, nonlinearity, and hys- the structure of that modified body? What conditions de- teresis are seldom included. We have only a crude under- termine whether a body is shattered but basically intact, as standing of even the nature of these responses; even when Eros might be, or completely turned to rubble? Finally, for complicated mathematical models are hypothesized and * energy above QD, when the body is shattered and scattered, constructed, there is seldom enough data to calibrate them, significant questions remain about the size distribution of especially for three-dimensional states. Tests of sensitivi- the fragments, the largest piece, and their ultimate fate. ties to inputs are rarely made. As a result, code calculations There are three interrelated and complementary ap- must always be questioned, and even more so when few proaches to the study of these processes. All three approaches attempts are made to calibrate them against known experi- suffer from our lack of detailed knowledge about the ma- mental results. terials and structure of solar system bodies and asteroids. The third major approach uses scaling methods. Scaling In addition, each approach also has its own shortcomings. theories are developed to predict how collisional processes The first approach is to conduct laboratory experiments. will depend on the parameters of the problem, including the Laboratory methods use guns to launch a projectile into a size, impact velocity, gravity, and material type. They are target at speeds up to ~7 km/s, or explosive charges to simu- developed from considerations of similarity analysis applied late an impact. While experiments allow the study of actual to experimental results, from code calculations themselves, geological materials, their primary shortcoming is the in- and from observations of asteroids. However, scaling laws ability to use targets and projectiles of the size of interest. are based on assumptions about the importance of various Laboratory experiments are limited to samples of centimeter parameters. They always require some tie to experiments or size, while the asteroids range to many hundreds of kilo- calculations to determine unknown constants and can lead to meters in size. The response of a small target to impact is erroneous conclusions if important parameters are neglected dominated by its material strength, while that of a large as- or results are extrapolated into regimes of new physics. teroid is dominated by gravitational forces. For the predomi- Since the last contributions in Asteroids II, it has become nantly unidirectional gravity field that governs surface cra- clear that there are at least four major issues about the tering, the lack of sufficient gravity for the experimental mechanics of small-body impacts that have not been suffi- small targets can sometimes be overcome by performing ciently addressed. The first is the effect of substantial poros- experiments at high artificial gravity using a geotechnical ity. Twelve years ago there was conjecture about the exis- centrifuge, but that tool is of little use for the three-dimen- tence of rubble-pile asteroids [the term “rubble piles” was sional gravity fields dominating catastrophic disruptions. first introduced by Davis et al. (1977)], but no knowledge of Additional uncertainties are introduced by an inability to the effects of the implied porosity on the shock processes. perform experiments at velocities of several tens of kilome- There were neither analysis nor code calculations for the ters per second. Features that are important at low velocities, cratering and disruption of porous asteroids. Now the sci- such as projectile material and shape, probably are not sig- entific community seems to have reached consensus that nificant at high velocities. As a consequence of these limita- many and maybe even most large asteroids are reaccumu- tions, laboratory experiments can only probe a small part of lated rubble piles with possibly large porosity. The dis- the parameter space of interest. covery of low densities in C-type asteroids such as Mathilde The second approach is to use computer calculations and Eugenia strongly indicate high porosity. For example, based on the underlying physical principles. These meth- Mathilde has a bulk density of about 1.3 g/cm3, implying ods continue to evolve. Finite-difference, finite-element and, a porosity of 50%. Rocky asteroids are estimated to have over the last decade, smooth-particle-hydrodynamics (SPH) been shattered many times over the lifetime of the solar sys- methods have been particularly useful, giving efficient ways tem and may reaccumulate into a low-density state. Comets to study impact processes. As computer power grows in are also thought to be very low-density conglomerates of leaps and bounds, we can now calculate many more cases ice and dirt. in much less time. However, these methods are also lim- Porosity may be the dominant physical property
Recommended publications
  • Planetary Geology (Part of Chapter 9): General Processes Affecting the Terrestrial Planets (And the Moon)
    Planetary Geology (part of Chapter 9): General Processes Affecting the Terrestrial Planets (and the Moon) Many geological features on planetary surfaces are shaped by processes within the planet’s interior. The interior of a terrestrial world is divided into three layers of differing densities and chemical compositions: core of high-density metal, mantle of moderate- density rock, and crust of low-density rock. Although we see molten rock (lava) coming out of the Earth, only a thin layer near the top of the mantle is partially molten. However, the solid rock within planets can flow like a liquid over periods of millions of years at speeds of around 1 cm per year. The crust and very top part of the mantle do not deform or flow easily, they are called the lithosphere. The thickness of a planet’s lithosphere affects how easily it can be fractured and rearranged into mountains and valleys, and how easily lava can be erupted onto the surface. Interior heat causes geological activity. Terrestrial worlds were heated during their formation due to accretion and differentiation, and are still heated today by radioactive decay. They are slowly cooling down, with heat moving up through the mantle by convection, up through the crust by conduction, and radiating out to space. Larger planets retain heat for longer than smaller planets, so larger planets are more geologically active. If a rapidly-rotating planet contains a layer of electrically conducting fluid, such as a liquid metal core, then it will have a magnetic field. This magnetic field can protect its atmosphere from the solar wind.
    [Show full text]
  • Planetary Geology GEOLOGY 307 Spring 2018 Tuesday & Thursday 9:30 -10:50 A.M
    Planetary Geology GEOLOGY 307 Spring 2018 Tuesday & Thursday 9:30 -10:50 a.m. C. M. Bailey Office- McStreet Hall 215 x12445 [email protected] Preamble Space, the Final Frontier! Although the Earth provides a rich tapestry for geologists, other planetary bodies in our Solar System are equally worthy of study. Many of the same processes that operate on Earth modify these worlds, but each planet is unique in many respects. Planetary bodies also contain a record of the solar system’s history. The goals of this course include a better understanding of the processes that operate on distant worlds, gaining insight into how the Solar System has changed through time, and thinking about the future opportunties in planetary science. This class will not simply be a tour of the planets, nor will it attempt to answer all the questions normally dealt with in Astronomy and Cosmology courses. We will start from observations and use a judicious amount of mathematics, physics, and chemistry to achieve our goals. At semester’s end we hope you will have developed an understanding of the Solar System, a sense for the new and exciting discoveries in planetary science, as well as an appreciation of the important questions still to be answered. Week Dates Topic Readings 1 Jan. 18 Planetary Geology Introduced WHOOPS! Ch. 1 2 Jan. 23, 25 Planetary Geology Introduced Ch. 1 The Universe: matter, stars, planets, and life- oh my! 3 Jan. 30, Feb. 1 Celestial Mechanics Ch. 2 Ch. 5, pg. 64-67 4 Feb. 6, 8 Solar System Formation Meteorites are Mighty Important 5 Feb.
    [Show full text]
  • Mars Field Geology, Biology, and Paleontology Workshop, Summary
    MARS FIELD GEOLOGY, BIOLOGY, AND PALEONTOLOGY WORKSHOP: SUMMARY AND RECOMMENDATIONS November 18–19, 1998 Space Center Houston, Houston, Texas LPI Contribution No. 968 MARS FIELD GEOLOGY, BIOLOGY, AND PALEONTOLOGY WORKSHOP: SUMMARY AND RECOMMENDATIONS November 18–19, 1998 Space Center Houston Edited by Nancy Ann Budden Lunar and Planetary Institute Sponsored by Lunar and Planetary Institute National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 968 Compiled in 1999 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautcis and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This volume may be cited as Budden N. A., ed. (1999) Mars Field Geology, Biology, and Paleontology Workshop: Summary and Recommendations. LPI Contribution No. 968, Lunar and Planetary Institute, Houston. 80 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling. _________________ Cover: Mars test suit subject and field geologist Dean Eppler overlooking Meteor Crater, Arizona, in Mark III Mars EVA suit. PREFACE In November 1998 the Lunar and Planetary Institute, under the sponsorship of the NASA/HEDS (Human Exploration and Development of Space) Enterprise, held a workshop to explore the objectives, desired capabilities, and operational requirements for the first human exploration of Mars.
    [Show full text]
  • Burlington House Fire Safety Information
    William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping Contents Page 2 Acknowledgements Page 3 Conference Programme Page 5 Speaker Biographies and Abstracts Page 29 Poster Abstracts Page 40 Burlington House Fire Safety Information Page 41 Ground Floor Plan of the Geological Society, Burlington House @geolsoc #wsmith15 #williamsmith200 Page 1 William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping WELCOME FROM THE CONVENORS In 1815 William Smith published the first edition of his Geological Map of England and Wales. Smith’s map made a seminal contribution to the understanding of the ground beneath our feet and, by showing the location of coal, iron ore, clays and other raw materials, helped fuel the industrial revolution. Two hundred years on, the demands for spatial knowledge about our geological environment and its resources and hazards have become ever more diverse and pressing. Nevertheless, many of the motivators, approaches and principles pioneered by William Smith survive in the geological maps, models and information systems of today. The History of Geology Group and the British Geological Survey have worked together to convene two William Smith meetings at the Geological Society in 2015 to celebrate this landmark anniversary. The first, very successful meeting in April 2015, convened by HOGG, chronicled the history and development of the geological map from its earliest beginnings to the digital maps of today. This second meeting, convened by the BGS, looks to the future of geological mapping, and to the grand challenges for geoscience that will motivate the ‘William Smiths’ of tomorrow.
    [Show full text]
  • Earth, Environmental and Planetary Sciences 1
    Earth, Environmental and Planetary Sciences 1 MATH 0090 Introductory Calculus, Part I (or higher) Earth, Environmental PHYS 0050 Foundations of Mechanics (or higher) Nine Concentration courses and Planetary Sciences EEPS 0220 Earth Processes 1 EEPS 0230 Geochemistry: Earth and Planetary 1 Materials and Processes Chair EEPS 0240 Earth: Evolution of a Habitable Planet 1 Greg Hirth Select three of the following: 3 Students in Earth, Environmental, and Planetary Sciences develop a EEPS 1240 Stratigraphy and Sedimentation comprehensive grasp of principles as well as an ability to think critically EEPS 1410 Mineralogy and creatively. Formal instruction places an emphasis on fundamental EEPS 1420 Petrology principles, processes, and recent developments, using lecture, seminar, EEPS 1450 Structural Geology laboratory, colloquium, and field trip formats. Undergraduates as well as graduate students have opportunities to carry out research in current fields Two additional upper level EEPS courses or an approved 2 of interest. substitute such as a field course One additional upper level science or math course with approval 1 The principal research fields of the department are geochemistry, from the concentration advisor. mineral physics, igneous petrology; geophysics, structural geology, tectonophysics; environmental science, hydrology; paleoceanography, Total Credits 13 paleoclimatology, sedimentology; and planetary geosciences. Emphasis in these different areas varies, but includes experimental, theoretical, and Standard program for the Sc.B. degree observational approaches as well as applications to field problems. Field This program is recommended for students interested in graduate study studies of specific problems are encouraged rather than field mapping for and careers in the geosciences and related fields. its own sake. Interdisciplinary study with other departments and divisions is encouraged.
    [Show full text]
  • GEOLOGY THEME STUDY Page 1
    NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.
    [Show full text]
  • Chapter 9 Planetary Geology: Agenda Ad Hoc Rover Update
    Chapter 9 Planetary Geology: Agenda Earth and the Other Terrestrial Worlds • Announce: – Part 2 of Projects due – Read Ch. 11 for Tuesday • Ad hoc, ex post facto • Rover Update • Ch. 9—Planetary Geology • Lab: Parallax or Waves on a String Rover Update Ad Hoc • More than 1000 Martian days • From Wikipedia: – Ad hoc is a Latin phrase which means "for this [purpose]." It generally signifies a solution that has been designed for a specific problem, is non-generalizable and can not be adapted to other purposes. – Ex post facto : from the Latin for "from something done afterward" 1 9.1 Connecting Planetary Interiors and What are terrestrial planets like Surfaces on the inside? • Our goals for learning • What are terrestrial planets like on the inside? • What causes geological activity? • Why do some planetary interiors create magnetic fields? Seismic Waves Earth’s Interior • Vibrations • Core: Highest that travel density; nickel through and iron Earth’s • Mantle: Moderate interior tell us density; silicon, what Earth is oxygen, etc. like on the • Crust: Lowest inside density; granite, basalt, etc. Terrestrial Planet Interiors Differentiation • Gravity pulls high-density material to center • Lower-density material rises to surface • Material ends up • Applying what we have learned about Earth’s separated by interior to other planets tells us what their interiors density are probably like 2 Lithosphere Strength of Rock • A planet’s outer • Rock stretches when layer of cool, rigid pulled slowly but rock is called the breaks when pulled lithosphere
    [Show full text]
  • Planetary Geology: Goals, Future Directions, and Recommendations
    NASA Conference Publication 3005 Planetary Geology: Goals, Future Directions, and Recommendations Proceedings of a workshop held at Arizona State University Tempe, Arizona January 1987 NASA Conference Publication 3005 Planetary Geology: Goals, Future Directions, and Recommendations NASA Office of Space Science and Applications Washington, D. C. Proceedings of a workshop held at Arizona State University Tempe, Arizona January 1987 National Aeronautics and Space Administration Scientific and Technical Information Division Preface This report gives results of a workshop on planetary geology held in January, 1987, at Arizona State University at the request of Dr. David Scott, Discipline Scientist, Planetary Geology and Geophysics, NASA. In addition to reviews by the workshop members, it was reviewed by the Planetary Geology and Geophysics Working Group and incorporated comments from Dr. James Underwood, current Discipline Scientist for the program. R. Greeley, January 1988 TABLE OF CONTENTS Page 1.0 Executive Summary ............................................................................... 1 2.0 Introduction ........................................................................................ 3 3.0 Workshop Conclusions ........................................................................... 5 3.1 Planetary geology studies are in transition from a descriptive phase to prcxess-oriented research .................................................. 5 3.2 Quantitative techniques can be applied to existing data. but there is a need for
    [Show full text]
  • NASA Planetary Glossary.Pdf
    Glossary of Terms Aeolian: Pertaining to wind. Albedo: The ratio of the radiation reflected by a body to the amount incident upon it, often expressed as a percentage, as, the albedo of the Earth is 34%. Angle of illumination: The angle that a ray of electromagnetic energy makes with the plane of a surface (light from directly overhead is at 90¡). Atmosphere: The body of gases surrounding or comprising any planet or other celestial body, held there by gravity. Caldera: Large, circular to subcircular depression associated with a volcanic vent. Calderas result from col- lapse, explosion, or erosion. Cinder cone: A volcanic, conical hill formed by the accumulation of cinders and other pyroclastic materials; slopes are usually greater than 10¡. Contact: A plane or irregular surface between two types or ages of rock. Coriolis effect: The acceleration which a body in motion experiences when observed in a rotating frame. This force acts at right angles to the direction of the angular velocity. Corona: Elliptical, tectonically deformed terrains found on Venus and Miranda. Crater: Circular depression on a surface. Cyclonic storm: Atmospheric disturbance with circulation of winds in a counterclockwise direction in the northern hemisphere and in a clockwise direction in the southern hemisphere. Datum plane: A surface of widespread extent used as a reference for stratigraphic determinations. Density: Measure of the concentration of matter in a substance; mass per unit volume. Deposition: The accumulation of material by physical or chemical sedimentation. Dip: The angle that a surface makes with the horizontal (measured perpendicular to the strike of the surface). Dune: Mound of fine-grained material formed by wind or water Eddy: A temporary current, usually formed at a point at which a current passes some obstruction, or between two adjacent currents flowing in opposite directions, or at the edge of a permanent current.
    [Show full text]
  • ANNUAL REPORT 2009 PLANETARY SCIENCE INSTITUTE Th E Planetary Science Institute Is a Private, Nonprofi T 501(C)(3) Corporation Dedicated to Solar System Exploration
    Painting by William K. Hartmann showing a view from the surface of Europa, a moon of Jupiter. Planetary Science Institute ANNUAL REPORT 2009 PLANETARY SCIENCE INSTITUTE Th e Planetary Science Institute is a private, nonprofi t 501(c)(3) corporation dedicated to solar system exploration. It is headquartered in Tucson, Arizona, where it was founded in 1972. PSI scientists are involved in numerous NASA and international missions, the study of Mars and other planets, the moon, asteroids, comets, interplanetary dust, impact physics, the origin of the solar system, extra-solar planet formation, dynamics, the rise of life, and other areas of research. Th ey conduct fi eldwork in North America, South America, Australia, Asia and Africa. Th ey also are actively involved in science education and public outreach through school programs, teacher workshops, children’s books, popular science books and art. PSI scientists are based in 16 states, the United Kingdom, France, Switzerland, Russia and Australia with affi liates in China and Japan. Th e Planetary Science Institute corporate headquarters is located at 1700 E. Fort Lowell Road, Suite 106, Tucson, Arizona, 85719-2395. Th e main offi ce phone number is 520.622.6300, fax is 520.622.8060 and the Web address is www.psi.edu. PSI BOARD OF TRUSTEES Tim Hunter, M.D., Chair Brent A. Archinal, Ph.D. David H. Levy, Ph.D. University of Arizona Medical Center U.S. Geological Survey Jarnac Observatory Candace P. Kohl, Ph. D., Vice Chair Donald R. Davis, Ph.D. Benjamin W. Smith, J.D. Independent Consultant Planetary Science Institute Attorney at Law John L.
    [Show full text]
  • Principles of Structural Geology on Rocky Planets1 Christian Klimczak, Paul K
    1437 ARTICLE Principles of structural geology on rocky planets1 Christian Klimczak, Paul K. Byrne, A.M. Celâl S¸engör, and Sean C. Solomon Abstract: Although Earth is the only known planet on which plate tectonics operates, many small- and large-scale tectonic landforms indicate that deformational processes also occur on the other rocky planets. Although the mechanisms of deforma- tion differ on Mercury, Venus, and Mars, the surface manifestations of their tectonics are frequently very similar to those found on Earth. Furthermore, tectonic processes invoked to explain deformation on Earth before the recognition of horizontal mobility of tectonic plates remain relevant for the other rocky planets. These connections highlight the importance of drawing analogies between the rocky planets for characterizing deformation of their lithospheres and for describing, applying appro- priate nomenclature, and understanding the formation of their resulting tectonic structures. Here we characterize and compare the lithospheres of the rocky planets, describe structures of interest and where we study them, provide examples of how historic views on geology are applicable to planetary tectonics, and then apply these concepts to Mercury, Venus, and Mars. Key words: planetary tectonics, planetary geology, Mercury, Venus, Mars. Résumé : Bien que la Terre soit la seule planète connue sur laquelle il y a une tectonique des plaques, de nombreuses formes de relief tectoniques de petite et grande envergure indiquent que des processus de déformation se produisent également sur d’autres planètes rocheuses. Si les mécanismes de déformation sur Mercure, Vénus et Mars diffèrent, les manifestations en surface de leurs tectoniques respectives sont souvent très semblables à celles observées sur la Terre.
    [Show full text]
  • The Planetary Geology Division of the Geological Society of America
    The Planetary Geology Division of the Geological Society of America Volume 27, Number 1 March 2009 Message from the Chair on the latest MESSENGER mission results from Mercury and an impact cratering session to honor this year’s Gilbert award winner, the Louise M. Prockter indefatigable Bob Strom. The abstract deadline Applied Physics Laboratory, for the annual meeting will be August 11, and Johns Hopkins University we encourage you to consider submitting a paper. Abstract submittals will begin in April, but you can view the topical sessions now at As this year’s Chair it is my turn to thank you http://www.geosociety.org/meetings/2009/sessi all for your continued support of our Division, ons/topical.asp. whether through your membership dues, service as a judge for the Dwornik student Student papers are especially welcome, and award, or supporting us at our booth during last their authors can apply for one of our new year’s GSA Annual Meeting in Houston. The student awards to help offset travel costs (after Houston meeting was well attended, and we the meeting registration opens, look for capitalized on the location and the ties to information on the PGD website at human exploration that abound there. The http://www.geosociety.org/meetings/2009/sessi Planetary Geology Division historically has a ons/topical.asp.) significant number of topical sessions at the annual meeting, and it is a great opportunity to Despite the current economic uncertainties, I mix with terrestrial geologists, many of whom am happy to be writing this at a time when we are fascinated by what we do.
    [Show full text]