Planetary Geology Earth and Other Terrestrial Worlds

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Geology Earth and Other Terrestrial Worlds Planetary Geology Earth and other terrestrial worlds Chapter 9 Planetary Geology • Geology is the science that deal with Earth’s physical structure, it history and processes that act on it. • An extension of this science is Planetary geology, the extension of the study to other solid bodies in the solar system What are the terrestrial planets like inside? Most of the terrestrial planet interiors are divided into three layers: • Core Mainly consist of high density material such as iron and nickel • Mantle This is the layer that surrounds the core. It is rocky material that consist of mineral that contains silicon, oxygen and other elements • Crust This is the outer most layer. It is lowest-density rocky material such as granite and basalt ( a common form of volcanic rock) The interior of the planets are layered because the material was melted. The heavier material sank towards the interior. Gravity was the force that drag the heavy material and left the lighter material to remain at the top. This process is called differentiation All the terrestrial planets went trough the process of differentiation The Earth’s metallic core consist of two distinctive regions: A solid inner core and a molten (liquid) outer core Interior structure of the terrestrial planets Why is the Earth Differentiated? • Begins by accretion 1,500 K – 4.6 Billion years ago (age of Sun) • Differentiation - The Earth melts – 4.5 Billion years ago • Crustal Formation – 3.7 Billion years ago 2,000 – 2,500 K Melt iron 1/3 mass of Earth falls to the center in the form of molten iron 5000 K (molten Earth) What causes differentiation and geological activity • Heat of accretion As planetesimals collide and form a planet, the kinetic energy from the collision is transformed in heat which add to the thermal energy of the planet • Heat from differentiation In the process of differentiation, the dense material sink and the lighter material rises. The gravitational potential energy is transformed into thermal energy by friction • Heat from radioactive decay The material that built the planets contain radioactive isotopes of elements such as uranium, potassium and thorium. These elements decay into lighter elements releasing energetic subatomic particles that collide with the material heating it. Heating mechanisms for a terrestrial planet Cooling mechanisms for the interior of a terrestrial planet Convection. Hot material expands and rises while cooler material contract and falls Conduction. Transfer of heat from hot material to cooler material through contact Radiation. A planet will lose heat to space through thermal radiation. A planet acts like a black body and emit radiation (light) . Because of their low temperature, planets radiate primarily in IR How do we know what is inside a planet? The only planet for which we have information about the interior is the Earth. But the information does not come from direct sampling of the interior of the Earth Earth’s radius is 6,378 km. Drilling only can go not more than a few km (16 km). It is possible to sample only a small upper layer of the crust! For Earth, much of the information about the interior comes from seismic waves (waves generated during an earthquake) Seismic waves have been used to study the interior of the Moon using monitoring stations left by the Apollo astronauts on the surface Seeing inside the Earth • Drill a hole – Petroleum geologists usually drill to ~ 6 km – Deepest hole: Kola Super deep borehole (~ 12 km) – Deepest we can go ~16 km P (pressure) and S (shear) Wave analogy How do we know anything about the interior of the Earth? Seismology! • Earth’s interior structure is probed by studying how seismic waves travel through it (we can only drill so far! – 16 km). • Earthquakes generate seismic waves. •P waves (pressure) can travel through the liquid core but they are deflected by the core •S waves (shear) travel in the mantle but not through the core • Waves are reflected and refracted by different materials and travel through these materials at different speeds (higher density material →faster speed). The Earth interior Using seismic wave and computer models it is possible to model the interior Earth radius = 6,378 km • Mantle - 3000 km thick (80% of planet volume). • Crust - 15 km thick (8 km under ocean - 20-50 km under continents. • Density and temperature increase with depth. • High central density suggests the core is mostly nickel and iron. • There is a “jump” in density between the mantle and the core caused by different materials. • No jump in density between inner and outer core because material is the same and just goes from liquid to solid. • The temperature in the core is about 5,000K and the density about 12 g/cm^3 •(Reference: Density of water is 1 g/cm^3 or 1000 kg/m^3) The surface area-to-volume ratio Mathematical Insight 9.1 For a spherical object (planet), r is the radius of the sphere: Surface area = 4 π r² Volume = 4/3 π r³ Surface area-to-volume ratio = Surface area/ volume = (4 π r²) / (4/3 π r³) = 3/r The radius appears in the denominator. Larger bodies have a lower surface area- to-volume ratios. If two objects start with the same internal temperature, the larger body cool off slower than the smaller body Parameters that affect the geological history of a planet Shaping the planetary surface Process that shape a planetary surface: • Impact cratering Creation of bowl-shape impact craters by asteroids and comets striking the surface • Volcanism Molten rocks or lava coming from the plantet’s interior in an eruption • Tectonics The disruption of the planet’s surface by the internals stresses • Erosion Wearing down or building up of features by effect of wind, rain, water and ice Shaping the crust: Impacts on Earth Barringer meteor Crater Located near Winslow, Arizona The best preserved impact crater Diameter 1.2 km Age ~ 50,000 yr Estimated impactor size 30-50 m Estimated speed of impactor ~ 26,000 miles/hr Shaping the crust: Volcanoes Mt. St Helen before and after 1980 eruption Mauna Loa – 1984 Length ~ 75 miles Covers ~ half Big Island of Hawaii 33 eruptions since 1850s Shaping the crust: Cordon Caulle Volcano (Chile). June, 2011 Shaping the crust: Cordon Caulle volcano (Chile). June 2011 Shaping the Crust: Tectonics • The ocean floors are continually moving, spreading from the center, sinking at the edges, and being regenerated. • Convection currents beneath the plates move the crustal plates in different directions. • The source of heat driving the convection currents is radioactivity deep in the Earths mantle Shaping the Crust: Erosion and Deposition • Erosion (breaking down) and deposition (building up) require the presence of a fluid (gas or liquid) • Water, rain, wind cause erosion Deposition from the Mississippi River erosion created the river created Louisiana Grand Canyon wetlands. Geology of the Moon and Mercury Mercury’s Surface • Surface similar to the moon, large number of impact craters! •Old surface •No indication of plate tectonics •Craters have a flat bottom and have thinner ejecta rims than lunar craters due to higher gravity on Mercury than the moon •Craters not as dense as on the moon - filled by volcanic activity • Not dark features like the “maria” on the Moon • Caloris Basin, evidence of a large impact crater. It is the largest crater on the Mariner 10 image (Flyby in 1974- 1975) planet, about 1/2 Mercury radius Mercury, an image of half of Caloris Basin Image taken by Mariner 10 Mercury’s Surface • Cliffs are seen on the surface •This features are not seen on the moon •They appear to be about 4 billion years old •They are not the result of plate tectonics •Probably the result of the surface cooling, shrinking and splitting at this time •Some are several hundred km long and has high as 3 km high •Cliffs may have formed when tectonic forces compressed the crust Mercury A recent image (false colors) taken by the Messenger spacecraft The Messenger spacecraft is at the present in orbit around Mercury. It went into orbit in 2011 It is the first and only spacecraft to orbit this planet A high resolution image of Mercury taken by the Messenger mission A detailed view of craters in high resolution image of Mercury taken by the Messenger mission Lunar Geological History Moon surface Energy from the formation caused at least the outer few kilometers to melt (deep ocean of molten rock) This took place about 3-4 billions years ago. Molten rocks flooded the largest impact craters. Maria (singular mare) are large impact craters flooded by lava. The dark color comes from dense, iron rich basalt that rose from the lunar mantle Lunar Surface , large scale features Lack of atmosphere and water preserves surface features Maria, singular Mare (younger) – Highlands (older) – crust material mantle material (maria means • Elevated many km above maria “seas’) • Aluminum rich, low density (2,9 • Maria - darker areas resulting g/cm3). from earlier lava flow • Basaltic, relatively iron rich, high density (3,3 g/cm3). Lunar Highlands Highlands - light, rough, heavily cratered Older areas compared to maria Heavy cratered compared with maria Lunar Lowlands Lowlands – dark, smooth Maria Basalt – fine grained dark igneous rock rich in iron and magnesium (stuff that sank in magma ocean) Few hundred meters thick Younger than the high lands Less craters compared with highlands The formation of Mare Humorum Lunar maria and mountain ranges Caucasus Mountain ↓ ← Mare Serenitatis ← Apollo 11 Mare Tranquillitatis Moon Volcanism: Maria (Dark Areas) Mare Imbrium SW Mare Imbrium The volcanism took placeafter the impacts – most 3 – 1 billion years ago Rilles Aristarchus Plateau Marius Hills Mountains Montes Tenerife Montes Appeninus (Mons Huygens 5.5 km) Montes Alpes- Mons Blanc 3.6 km The Alpine valley is the long feature to the left of the image Lunar Erosion Lunar Craters - caused by meteoroid impacts • Pressure to the lunar surface heats the rock and deforms the ground.
Recommended publications
  • Planetary Geology (Part of Chapter 9): General Processes Affecting the Terrestrial Planets (And the Moon)
    Planetary Geology (part of Chapter 9): General Processes Affecting the Terrestrial Planets (and the Moon) Many geological features on planetary surfaces are shaped by processes within the planet’s interior. The interior of a terrestrial world is divided into three layers of differing densities and chemical compositions: core of high-density metal, mantle of moderate- density rock, and crust of low-density rock. Although we see molten rock (lava) coming out of the Earth, only a thin layer near the top of the mantle is partially molten. However, the solid rock within planets can flow like a liquid over periods of millions of years at speeds of around 1 cm per year. The crust and very top part of the mantle do not deform or flow easily, they are called the lithosphere. The thickness of a planet’s lithosphere affects how easily it can be fractured and rearranged into mountains and valleys, and how easily lava can be erupted onto the surface. Interior heat causes geological activity. Terrestrial worlds were heated during their formation due to accretion and differentiation, and are still heated today by radioactive decay. They are slowly cooling down, with heat moving up through the mantle by convection, up through the crust by conduction, and radiating out to space. Larger planets retain heat for longer than smaller planets, so larger planets are more geologically active. If a rapidly-rotating planet contains a layer of electrically conducting fluid, such as a liquid metal core, then it will have a magnetic field. This magnetic field can protect its atmosphere from the solar wind.
    [Show full text]
  • Happy New Year! MEMBERSHIP? IT’S NEVER TOO LATE to JOIN!
    Vol. 42, No. 1 January 2011 Great Work at Sleaford Renovations to the Sleaford Observatory warm-up shelter progressed rapidly last fall with Rick Huziak and Darrell Chatfield spending many days and evenings there. A wall was removed to the cold storage area to make more room, which meant extensive rewiring, insulating and refinishing. Other volunteers came to cut grass, paint, clean, do repairs, and provide food. Thank you to every one who helped to make Sleaford a more usable and pleasant site. Photo by Jeff Swick In This Issue: Membership Information / Bottle Drive / Officers of the Centre 2 U of S Observatory Hours / Light Pollution Abatement Website 2 Calendar of Events / Meeting Announcement 3 Solstice Eclipse – Tenho Tuomi, Norma Jensen plus others 4 ‘Tis the Night Before… 5 President’s Message – Jeff Swick 5 GOTO Telescopes are not for Beginners – Tenho Tuomi 6 Ask AstroNut 7 Saskatoon Centre Observers Group Notes – Larry Scott, Jeff Swick 8 The Royal Astronomical Society of Canada The Planets This Month – Murray Paulson 9 P.O. Box 317, RPO University The Messier, H-400 & H-400-II, FNGC, Bino, Lunar & EtU Club 10 Saskatoon, SK S7N 4J8 Editor’s Corner – Tenho Tuomi 10 WEBSITE: http://www.rasc.ca/saskatoon To view Saskatoon Skies in colour, see our Website: E •MAIL: [email protected] http://homepage.usask.ca/~ges125/rasc/newsletters.html TELEPHONE: (306) 373-3902 Happy New Year! MEMBERSHIP? IT’S NEVER TOO LATE TO JOIN! Regular: $80.00 /year Youth: $41.00 /year Associate: $33 /year The Saskatoon Centre operates on a one-year revolving membership.
    [Show full text]
  • Lunar & Planetary Surface Power Management & Distribution
    NASA SBIR 2020 Phase I Solicitation Z1.05 Lunar & Planetary Surface Power Management & Distribution Lead Center: GRC Participating Center(s): GSFC, JSC Technology Area: TA3 Space Power and Energy Storage Scope Title Innovative ways to transmit high power for lunar & Mars surface missions Scope Description The Global Exploration Roadmap (January 2018) and the Space Policy Directive (December 2017) detail NASA’s plans for future human-rated space missions. A major factor in this involves establishing bases on the lunar surface and eventually Mars. Surface power for bases is envisioned to be located remotely from the habitat modules and must be efficiently transferred over significant distances. The International Space Station (ISS) has the highest power (100kW), and largest space power distribution system with eight interleaved micro-grids providing power functions similar to a terrestrial power utility. Planetary bases will be similar to the ISS with expectations of multiple power sources, storage, science, and habitation modules, but at higher power levels and with longer distribution networks providing interconnection. In order to enable high power (>100kW) and longer distribution systems on the surface of the moon or Mars, NASA is in need of innovative technologies in the areas of lower mass/higher efficiency power electronic regulators, switchgear, cabling, connectors, wireless sensors, power beaming, power scavenging, and power management control. The technologies of interest would need to operate in extreme temperature environments, including lunar night, and could experience temperature changes from -153C to 123C for lunar applications, and -125C to 80C for Mars bases. In addition to temperature extremes, technologies would need to withstand (have minimal degradation from) lunar dust/regolith, Mars dust storms, and space radiation levels.
    [Show full text]
  • Climate Histories of Mars and Venus, and the Habitability of Planets
    CLIMATE HISTORIES OF MARS AND VENUS, AND THE HABITABILITY OF PLANETS In the temporal sequence that Part III of the book has ¡NTRODUCT¡ON 15.1 been following, we stand near the end of the Archean eon. Earth at the close of the Archean,2.5 billion years ago, By this point in time, the evolution of Venus and its atmo- was a world in which life had arisen and plate tectonics sphere almost certainly had diverged from that of Earth, dominated, the evolution of the crust and the recycling of and Mars was on its way to being a cold, dry world, if volatiles. Yet oxygen (Oz) still was not prevalent in the it had not already become one. This is the appropriate atmosphere, which was richer in COz than at present. In moment in geologic time, then, to consider how Earth's this last respect, Earth's atmosphere was somewhat like neighboring planets diverged so greatly in climate, and to that of its neighbors, Mars and Venus, which today retain ponder the implications for habitable planets throughout this more primitive kind of atmosphere. the cosmos. In the following chapter, we consider why Speculations on the nature of Mars and Venus were, Earth became dominated by plate tectonics, but Venus prior to the space program, heavily influenced by Earth- and Mars did not. Understanding this is part of the key centered biases and the poor quality of telescopic observa- to understanding Earth's clement climate as discussed in tions (figure 15.1). Thirty years of U.S. and Soviet robotic chapter 1.4.
    [Show full text]
  • Planetary Geology GEOLOGY 307 Spring 2018 Tuesday & Thursday 9:30 -10:50 A.M
    Planetary Geology GEOLOGY 307 Spring 2018 Tuesday & Thursday 9:30 -10:50 a.m. C. M. Bailey Office- McStreet Hall 215 x12445 [email protected] Preamble Space, the Final Frontier! Although the Earth provides a rich tapestry for geologists, other planetary bodies in our Solar System are equally worthy of study. Many of the same processes that operate on Earth modify these worlds, but each planet is unique in many respects. Planetary bodies also contain a record of the solar system’s history. The goals of this course include a better understanding of the processes that operate on distant worlds, gaining insight into how the Solar System has changed through time, and thinking about the future opportunties in planetary science. This class will not simply be a tour of the planets, nor will it attempt to answer all the questions normally dealt with in Astronomy and Cosmology courses. We will start from observations and use a judicious amount of mathematics, physics, and chemistry to achieve our goals. At semester’s end we hope you will have developed an understanding of the Solar System, a sense for the new and exciting discoveries in planetary science, as well as an appreciation of the important questions still to be answered. Week Dates Topic Readings 1 Jan. 18 Planetary Geology Introduced WHOOPS! Ch. 1 2 Jan. 23, 25 Planetary Geology Introduced Ch. 1 The Universe: matter, stars, planets, and life- oh my! 3 Jan. 30, Feb. 1 Celestial Mechanics Ch. 2 Ch. 5, pg. 64-67 4 Feb. 6, 8 Solar System Formation Meteorites are Mighty Important 5 Feb.
    [Show full text]
  • A New Model of the Crustal Magnetic Field of Mars Using MGS and MAVEN
    RESEARCH ARTICLE A New Model of the Crustal Magnetic Field of Mars Using 10.1029/2018JE005854 MGS and MAVEN Key Points: 1 1 2 3 • MGS and MAVEN magnetic field Benoit Langlais , Erwan Thébault , Aymeric Houliez , Michael E. Purucker , 4 measurements are combined into a and Robert J. Lillis high-resolution magnetic field model • The new model extends up to SH 1Laboratoire de Planétologie et Géodynamique, Université de Nantes, Université d'Angers, CNRS, UMR 6112, Nantes, degree 134, corresponding to 160-km France, 2Observatoire Royal de Belgique, Uccle, Belgium, 3Planetary Magnetospheres Laboratory, NASA Goddard horizontal resolution at the Martian Space Flight Center, Greenbelt, MD, USA, 4Space Science Laboratory, University of California, Berkeley, CA, USA surface • It enables local studies, where geologic and magnetic features can be compared Abstract While devoid of an active magnetic dynamo field today, Mars possesses a remanent magnetic field that may reach several thousand nanoteslas locally. The exact origin and the events that have shaped the crustal magnetization remain largely enigmatic. Three magnetic field data sets from two spacecraft Supporting Information: • Supporting Information S1 collected over 13 cumulative years have sampled the Martian magnetic field over a range of altitudes •TableS1 from 90 up to 6,000 km: (a) Mars Global Surveyor (MGS) magnetometer (1997–2006), (b) MGS Electron Reflectometer (1999–2006), and (c) Mars Atmosphere and Volatile EvolutioN (MAVEN) magnetometer Correspondence to: (2014 to today). In this paper we combine these complementary data sets for the first time to build a new B. Langlais, model of the Martian internal magnetic field. This new model improves upon previous ones in several [email protected] aspects: comprehensive data coverage, refined data selection scheme, modified modeling scheme, discrete-to-continuous transformation of the model, and increased model resolution.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Impact Melt Emplacement on Mercury
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-24-2018 2:00 PM Impact Melt Emplacement on Mercury Jeffrey Daniels The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jeffrey Daniels 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Daniels, Jeffrey, "Impact Melt Emplacement on Mercury" (2018). Electronic Thesis and Dissertation Repository. 5657. https://ir.lib.uwo.ca/etd/5657 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact cratering is an abrupt, spectacular process that occurs on any world with a solid surface. On Earth, these craters are easily eroded or destroyed through endogenic processes. The Moon and Mercury, however, lack a significant atmosphere, meaning craters on these worlds remain intact longer, geologically. In this thesis, remote-sensing techniques were used to investigate impact melt emplacement about Mercury’s fresh, complex craters. For complex lunar craters, impact melt is preferentially ejected from the lowest rim elevation, implying topographic control. On Venus, impact melt is preferentially ejected downrange from the impact site, implying impactor-direction control. Mercury, despite its heavily-cratered surface, trends more like Venus than like the Moon.
    [Show full text]
  • The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is.
    [Show full text]
  • Mars Field Geology, Biology, and Paleontology Workshop, Summary
    MARS FIELD GEOLOGY, BIOLOGY, AND PALEONTOLOGY WORKSHOP: SUMMARY AND RECOMMENDATIONS November 18–19, 1998 Space Center Houston, Houston, Texas LPI Contribution No. 968 MARS FIELD GEOLOGY, BIOLOGY, AND PALEONTOLOGY WORKSHOP: SUMMARY AND RECOMMENDATIONS November 18–19, 1998 Space Center Houston Edited by Nancy Ann Budden Lunar and Planetary Institute Sponsored by Lunar and Planetary Institute National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 968 Compiled in 1999 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautcis and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This volume may be cited as Budden N. A., ed. (1999) Mars Field Geology, Biology, and Paleontology Workshop: Summary and Recommendations. LPI Contribution No. 968, Lunar and Planetary Institute, Houston. 80 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling. _________________ Cover: Mars test suit subject and field geologist Dean Eppler overlooking Meteor Crater, Arizona, in Mark III Mars EVA suit. PREFACE In November 1998 the Lunar and Planetary Institute, under the sponsorship of the NASA/HEDS (Human Exploration and Development of Space) Enterprise, held a workshop to explore the objectives, desired capabilities, and operational requirements for the first human exploration of Mars.
    [Show full text]
  • Burlington House Fire Safety Information
    William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping Contents Page 2 Acknowledgements Page 3 Conference Programme Page 5 Speaker Biographies and Abstracts Page 29 Poster Abstracts Page 40 Burlington House Fire Safety Information Page 41 Ground Floor Plan of the Geological Society, Burlington House @geolsoc #wsmith15 #williamsmith200 Page 1 William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping WELCOME FROM THE CONVENORS In 1815 William Smith published the first edition of his Geological Map of England and Wales. Smith’s map made a seminal contribution to the understanding of the ground beneath our feet and, by showing the location of coal, iron ore, clays and other raw materials, helped fuel the industrial revolution. Two hundred years on, the demands for spatial knowledge about our geological environment and its resources and hazards have become ever more diverse and pressing. Nevertheless, many of the motivators, approaches and principles pioneered by William Smith survive in the geological maps, models and information systems of today. The History of Geology Group and the British Geological Survey have worked together to convene two William Smith meetings at the Geological Society in 2015 to celebrate this landmark anniversary. The first, very successful meeting in April 2015, convened by HOGG, chronicled the history and development of the geological map from its earliest beginnings to the digital maps of today. This second meeting, convened by the BGS, looks to the future of geological mapping, and to the grand challenges for geoscience that will motivate the ‘William Smiths’ of tomorrow.
    [Show full text]
  • Culpeper Astronomy Club Meeting February 26, 2018 Overview
    The Moon: Our Neighbor Culpeper Astronomy Club Meeting February 26, 2018 Overview • Introductions • Radio Astronomy: The Basics • The Moon • Constellations: Monoceros, Canis Major, Puppis • Observing Session (Tentative) Radio Astronomy • Stars, galaxies and gas clouds emit visible light as well as emissions from other parts of the electromagnetic spectrum • Includes radio waves, gamma rays, X- rays, and infrared radiation • Radio astronomy is the study of the universe through analysis of celestial objects' radio emission • the longest-wavelength, least energetic form of radiation on the electromagnetic spectrum • The first detection of radio waves from an astronomical object was in 1932 • Karl Jansky at Bell Telephone Laboratories observed radiation coming from the Milky Way Radio Astronomy • A radio telescope has three basic components: • One or more antennas pointed to the sky, to collect the radio waves • A receiver and amplifier to boost the very weak radio signal to a measurable level, and • A recorder to keep a record of the signal Radio Astronomy • Subsequent observations have identified a number of different sources of radio emission • Include stars and galaxies, as well as entirely new classes of objects, such as: • Radio galaxies: nuclei emit jets of high- velocity gas (near the speed of light) above and below the galaxy -- the jets interact with magnetic fields and emit radio signals • Quasars: distant objects powered by black holes a billion times as massive as our sun • Pulsars: the rapidly spinning remnants of supernova explosions
    [Show full text]