Information to Users
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CONODONTS of the MOJCZA LIMESTONE -.: Palaeontologia Polonica
CONODONTS OF THE MOJCZA LIMESTONE JERZY DZIK Dzik, J. 1994. Conodonts of the M6jcza Limestone. -In: J. Dzik, E. Olemp ska, and A. Pisera 1994. Ordovician carbonate platform ecosystem of the Holy Cross Moun tains. Palaeontologia Polonica 53, 43-128. The Ordovician organodetrital limestones and marls studied in outcrops at M6jcza and Miedzygorz, Holy Cross Mts, Poland, contains a record of the evolution of local conodont faunas from the latest Arenig (Early Kundan, Lenodus variabilis Zone) to the Ashgill (Amorphognathus ordovicicus Zone), with a single larger hiatus corre sponding to the subzones from Eop/acognathus pseudop/anu s to E. reclinatu s. The conodont fauna is Baltic in general appearance but cold water genera , like Sagitto dontina, Scabbardella, and Hamarodus, as well as those of Welsh or Chinese af finities, like Comp/exodus, Phragmodus, and Rhodesognathu s are dominant in par ticular parts of the section while others common in the Baltic region, like Periodon , Eop/acognathus, and Sca/pellodus are extremely rare. Most of the lineages continue to occur throughout most of the section enabling quantitative studies on their phyletic evolut ion. Apparatuses of sixty seven species of thirty six genera are described and illustrated. Phyletic evolution of Ba/toniodus, Amorphognathu s, Comp/exodus, and Pygodus is biometrically documented. Element s of apparatu ses are homolog ized and the standard notation system is applied to all of them. Acodontidae fam. n., Drepa nodus kie/censis sp. n., and D. santacrucensis sp. n. are proposed . Ke y w o r d s: conodonts, Ordovici an, evolut ion, taxonomy. Jerzy Dzik, Instytut Paleobiologii PAN, A/eja Zwirk i i Wigury 93, 02-089 Warszawa , Poland. -
GEOLOGICAL SURVEY RESEARCH 1972 Chapter B
GEOLOGICAL SURVEY RESEARCH 1972 Chapter B GEOLOGICAL SURVEY PROFESSIONAL PAPER 800-8 Scientific notes and summaries of investigations in geology, hydrology, and related fields UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director For sale by the Superintendent of Documents, U.S. Qovernment Printing Office, Washington, D.C., 20402 - Price $2.26 CONTENTS GEOLOGIC STUDIES Marine geology Page Structural features of the continental margin, northeastern Gulf of Mexico, by R. G. Martin, Jr. Marine geology of Yakutat Bay, Alaska, by F. F. Wright . Paleontology and stratigraphy Leiosphaeridio (Acritarcha) in the Mesozoic oil shales of northern Alaska, by R. F. Boneham and I. L. Tailleur . Quartzsand-bearing zone and Early Silurian age of upper part of the Hanson Creek Formation in Eureka County, Nev., by T. E. MullensandF.G.Poole ................................................................................... Trend-surface analysis of the thickness of the High Bridge Group (Middle Ordovician) of central Kentucky and its bearing on the nature of the post-Knox unconformity, by D. E. Wolcott, E. R. Cressman, and J. J. Connor . Glacial geology The Ingraham esker, Chazy, N.Y ., by C. S. Denny . Economic geology High-purity veins of soda-niter, NaN03, and associated saline minerals in the Chilean nitrate deposits, by G. E. Ericksen and M. E. Mrose ................................................................................................. Thorium distribution in a ganite stock near Bull Canyon, Lemhi County, Idaho, by M. H. Staatz, C. M. Bunker, and C. A. Bush . White clay deposits of Centre, Blair, Huntingdon, and Bedford Counties, Pa., by J. W. Hosterman . Reconnaissance geology and mineral potential of Thomas, Keg, and Desert calderas, central Juab County, Utah, by D. -
Catalog of Type Specimens of Invertebrate Fossils: Cono- Donta
% {I V 0> % rF h y Catalog of Type Specimens Compiled Frederick J. Collier of Invertebrate Fossils: Conodonta SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 9 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. -
Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian -
STRATIGRAPHY and STRUCTURE of the SOUTHERN SULPHUR SPRING RANGE, EUREKA COUNTY, NEVADA Redacted for Privacy Abstract Approved: U G
AN ABSTRACT OF THE THESES OF Joseph T. Lipka IC for the degree ofMaster of Sciencein Geology presented on April 17, 1987 Title:STRATIGRAPHY AND STRUCTURE OF THE SOUTHERN SULPHUR SPRING RANGE, EUREKA COUNTY, NEVADA Redacted for Privacy Abstract approved: U G. Johnson Early Paleozoic limestones and dolomites of the shallow shelf transitional facies belt were mapped in the southern Sulphur Spring Range, Eureka County, Nevada.The four youngest units in the map area are in fault contact with the Lower Devonian rocks and wereprobably transported westward, along a low-angle normal fault. The minoirlal dolomites of the Hanson Creek Formation, dated as latest Ordovician in the map area, were deposited in a low-energy lagoon.Overlying the Hanson Creek Formation, with a gradational contact, is the lower member ofthe Lone Mountain Dolomite, a probable reef complex.The exposed thickness of the lower Lone Mountain Dolomite is estimated to be 250 feet.The Lower Devonian Old Whalen Member of the Lone Mountain Dolomite is composed of well-bedded, alternating brown and gray dolomites.The repetition of rock types in the Old Whalen Member indicates recurring shallow marine environments on a broad carbonate platform.The Old Whalen is estimated to be 1400 feet thick.Directly overlying the Old Whalen Member, is the Kobeh Member of the Mc Colley Canyon Formation.Rocks of the Mc Colley Canyon Formation were deposited on a shallow shelf under normal marine conditions.The mid-Lower Devonian Kobeh Member is sparsely to abundantly fosciliferous and varies from a peloidal wackestone to a peloidal sandy wackestone to a sandy peloidal packstone.The thickness is 276 feet.Overlying the Kobeh Member are the abundantly fossiliferous beds of the lower part of the Bartine. -
A Chemostratigraphic Investigation of the Late Ordovician Greenhouse to Icehouse Transition: Oceanographic, Climatic, and Tectonic Implications
A CHEMOSTRATIGRAPHIC INVESTIGATION OF THE LATE ORDOVICIAN GREENHOUSE TO ICEHOUSE TRANSITION: OCEANOGRAPHIC, CLIMATIC, AND TECTONIC IMPLICATIONS DISSERTATION Presented in Partial Fulfillment of the Requirements For the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Seth Allen Young, M.S. ***** The Ohio State University 2008 Dissertation Committee: Dr. Matthew R. Saltzman, Adviser Dr. Kenneth A. Foland Dr. William I. Ausich Dr. Andrea G. Grottoli ABSTRACT The latest Ordovician (444 million years ago) was a critical period in Earth history. This was a time of significant climatic global change with large-scale continental glaciation. Moreover, the end-Ordovician mass extinction is recognized as the second- most devastating mass extinction to have affected the Earth. The anomalous Late Ordovician icehouse period has perplexed many researchers because all previous model and proxy climate evidence suggest high levels of atmospheric CO2 during the Late Ordovician glaciation. Also associated with this period is a large positive carbon isotope (δ13C) excursion (up to +7‰) that represents a global perturbation of the carbon cycle. Additionally, a large decrease (0.001) in seawater 87Sr/86Sr occurs several million years prior (~460 million years ago); this could reflect an increase in atmospheric CO2 uptake due to weathering of volcanic rocks involved in uplift of the early Appalachian Mountains. To address these Ordovician anomalies, well-studied, thick, and continuous Late Ordovician limestone sequences from eastern West Virginia, south-central Oklahoma, central Nevada, Quebec (Canada), Estonia, and China have been sampled. Carbon and strontium isotopic ratios have been measured on samples from these localities of which Estonian and Chinese sample sites represent separate paleocontinents (Baltica and South ii China) and are compared with other data sets from North America. -
PLEISTOCENE STRATIGRAPHIC UNITS of Wisconsin
MISCELLANEOUS PAPER 84-1 PLEISTOCENE STRATIGRAPHIC UNITS OF WISCONSiN by David M. Mickelson, Lee Clayton, Robert W. Baker, William N. Mode and Allan F. Schneider available from Geological and Natural History Survey University of Wisconsin-Extension 1815 University Avenue Madison, Wisconsin 53705 MISCELLANEOUS PAPER 84-1 PLEISTOCENE STRATIGRAPHIC UNITS OF WISCONSIN by David M. Mickelson, Lee Clayton, Robert W. Baker, William N. Mode and Allan F. Schneider available from Geological and Natural History Survey University of Wisconsin�Extension 1815 University Avenue Madison, Wisconsin 53705 JUL 1984 CONTENTS Acknowledgements ..................... ..............It ................................................It .................. iv Abstract ............................................................................................................................ I Introduction It .. .. ........ .. .... .. ................ .. ........ .. .. .. ........ .. .. .. .. .. .... ........ .. .... .. .. ............ .. ........ I Principles of Lithostratigraphic Classification in Wisconsin •• •••••••• 2 Summary of Lithostratigraphic Units Defined in this Paper ••••••••••••• 5 Units of Probable Pre-Wisconsinan and Early Wisconsinan Age •••••••• 5 Units of Late Wisconsinan Age ............................................................................ 7 References Cited ............................................................................................................ 12 Appendix 1. Walworth Formation .. ................ ......It .... ....It -
Exceptionally Preserved Conodont Apparatuses with Giant Elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA
Journal of Paleontology, 91(3), 2017, p. 493–511 Copyright © 2017, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.155 Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA Huaibao P. Liu,1 Stig M. Bergström,2 Brian J. Witzke,3 Derek E. G. Briggs,4 Robert M. McKay,1 and Annalisa Ferretti5 1Iowa Geological Survey, IIHR-Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA 52242, USA 〈[email protected]〉; 〈[email protected]〉 2School of Earth Sciences, Division of Earth History, The Ohio State University, 125 S. Oval Mall, Columbus, Ohio 43210, USA 〈[email protected]〉 3Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, IA 52242, USA 〈[email protected]〉 4Department of Geology and Geophysics, and Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA 〈[email protected]〉 5Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via Campi 103, I-41125 Modena, Italy 〈[email protected]〉 Abstract.—Considerable numbers of exceptionally preserved conodont apparatuses with hyaline elements are present in the middle-upper Darriwilian (Middle Ordovician, Whiterockian) Winneshiek Konservat-Lagerstätte in northeastern Iowa. These fossils, which are associated with a restricted biota including other conodonts, occur in fine-grained clastic sediments deposited in a meteorite impact crater. Among these conodont apparatuses, the com- mon ones are identified as Archeognathus primus Cullison, 1938 and Iowagnathus grandis new genus new species. The 6-element apparatus of A. -
X Congreso Argentino De Paleontología Y Bioestratigrafía VII Congreso Latinoamericano De Paleontología La Plata, Argentina - Septiembre De 2010
X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 Financian Auspician 1 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 2 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 3 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología Resúmenes/coordinado por Sara Ballent ; Analia Artabe ; Franco Tortello. 1a ed. - La Plata: Museo de la Plata; Museo de la Plata, 2010. 238 p. + CD-ROM; 28x20 cm. ISBN 978-987-95849-7-2 1. Paleontología. 2. Bioestratigrafía. I. Ballent, Sara , coord. II. Artabe, Analia, coord. III. Tortello, Franco, coord. CDD 560 Fecha de catalogación: 27/08/2010 4 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Declarado de Interés Municipal, La Plata (Decreto N° 1158) 5 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 6 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Prólogo Una vez más el Congreso Argentino de Paleontología y Bioestratigrafía y el Congreso Latino- americano de Paleontología se realizan de manera conjunta. -
The Stratigraphic Section in the Vicinity of Eureka, Nevada
The Stratigraphic Section in the Vicinity of Eureka, Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 276 The Stratigraphic Section in the Vicinity of Eureka, Nevada By T. B. NOLAN, C. W. MERRIAM, and J. S. WILLIAMS GEOLOGICAL SURVEY PROFESSIONAL PAPER 276 Revision of the pre- Tertiary stratigraphy of east-central Nevada UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1956 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.00 (paper cover) CONTENTS Page Page Abstract_ _____________________ 1 Silurian system.___________________________ 36 Introduction. _--___-______--___- 2 Roberts Mountains formation.__________ 36 Acknowledgments- --.-_---___-_-. 3 Lone Mountain dolomite__________... 37 Structural setting._______________ 3 Devonian system.__________-_-_-__--_____. 40 Economic significance. _-__._. 5 Nevada formation_________--______--. 40 Cambrian system.________________ 5 Beacon Peak dolomite member. 42 Prospect Mountain quartzite.. 6 Oxyoke Canyon sandstone member... 43 Pioche shale_______--_-_-_.__. 7 Sentinel Mountain dolomite member. 43 Eldorado dolomite___________ 9 Woodpecker limestone member. 44 Geddes limestone.___________ 11 Bay State dolomite member.--...--. 45 Secret Canyon shale._________ 12 Devils Gate limestone._________________ 48 Lower shale member. .... 13 Meister member.__________________ 49 Hayes Canyon member.____________ 49 Clarks Spring member.._ 14 Devonian and Mississippian systems. ________ 52 Hamburg dolomite.___-_.____ 16 Pilot shale________-__-_-___--__---_-_. 52 Dunderberg shale.___________ 18 Carboniferous systems_.____-__-______-__- 54 Windfall formation.__________ 19 Mississippian system._________--,___-_- 54 Catlin member._________ 20 Joana limestone,___________________ 54 Bullwhacker member. -
Carpenter, R.M., Pandolfi, J.M., P.M. Sheehan. 1986. the Late Ordovian and Silurian of the Eastern Great
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 69 August 1, 1986 The Late Ordovician and Silurian of the Eastern Great Basin, Part 6: The Upper Ordovician Carbonate Ramp Roger M. Carpenter John M. Pandolfi Peter M. Sheehan MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 69 August 1, 1986 The Late Ordovician and Silurian of the Eastern Great Basin, Part 6: The Upper Ordovician Carbonate Ramp Roger M. Carpenter, Department of Geology, Conoco Inc., 202 Rue Iberville, Lafayette, LA 70508; John M. Pandolfi, Department of Geology, University of California, Davis, California, 95616; Peter M. Sheehan, Department of Geology, Milwaukee Public Museum, 800W. Wells St., Milwaukee, Wisconsin 53233 ISBN 0-89326-122-X © 1986 Milwaukee Public Museum Abstract Two east-west transects examined in western Utah and eastern Nevada preserve Upper Ordovician-Lower Silurian lithofacies along a carbonate ramp transitional between a shelf and basin. Previous investigators have reconstructed this margin as a classic carbonate shelf with an abrupt, linear margin between shelf and slope. However, lithofacies change gradually between shelf and slope and are better explained by a carbonate ramp model. Intertidal and shallow subtidal dolomites are present to the east, with progressively deeper water limestones with increasing fine grained terrigenous content toward the west. Shelf edge reefs or shallow water carbonate margin buildups are absent. Latest Ordovician glacio-eustatic decline in sea level produced a period ofsubaerial exposure in the shallow eastern region. However, deposition continued deeper on the ramp, where shallow-water, cross laminated, massive dolomites were deposited during the glacio-eustatic regression. The carbonate ramp pattern was disrupted in the Middle or early part of the Late Llandovery, when an abrupt margin was established by listric growth faulting. -
Conodonts from El Paso Group
Contents ABSTRACT 5 GENUS DREPANOISTODUS 25 D. suberectus, subsp. A, n. subsp. 25 INTRODUCTION 5 GENUS HISTIODELLA 25 OBJECTIVES 5 H. donnae, n. sp. 25 PROCEDURES 5 GENUS JUANOGNATHUS 26 FIGURED SPECIMENS 6 J. hayesi, n. sp. 26 COMMENTS ON TAXONOMY 6 J. jaanussoni 26 PREVIOUS WORK 7 J. variabilis 27 FAUNAL EVALUATION 8 CORRELATION 9 J.? n. sp. 1 27 GENUS LOXODUS 27 SYSTEMATIC PALEONTOLOGY 10 L. bransoni s.f. 27 GENUS ACANTHODUS 10 GENUS MACERODUS 28 A. lineatus s.f. 10 dianae 28 A. uncinatus s.f. 10 GENUS MICROZARKODINA 28 A. sp. s.f. 10 M. ? cf. M. marathonensis 28 GENUS ACODUS 10 GENUS OELANDODUS 29 A. delicatus 10 O.cf. O.costatus 29 A. deltatus deltatus 12 O.cf. O.elongatus 29 A. oneotensis s.f. 12 GENUS OEPIKODUS 30 A.? russoi 13 O. communis 30 A. triangularis 13 O.? n. sp. 31 GENUS A. sp. A s.f. 14 OISTODUS 31 A. sp. indet. 14 O. forceps s.f. 31 GENUS ACONTIODUS 14 O. gracilis s.f. 32 A. iowensis s.f. 14 A. propinquus s.f. 14 O.cf. 0. inaequalis s.f. 32 O. n. sp. 32 A. aff. A. propinquus s.f. 14 A. staufferi s.f. 15 O. cf. 0. lanceolatus 33 GENUS CLAVOHAMULUS 15 O. ? lecheguillensis, n. sp. 33 C. densus s.f. 15 O. mehli s.f. 33 C. lemonei, n. sp. 15 O. cf. O. multicorrugatus 35 C. n. sp. A 16 O. cf. O. parallelus s.f. 35 O. cf. O. pseudoramis s.f. 35 GENUS CORDYLODUS 16 O.