Assessment of an Ultramicroelectrode Array (UMEA) Sensor for The
Total Page:16
File Type:pdf, Size:1020Kb
Assessmentofanultramicroelectrodearray(UMEA)sensorfor thedeterminationoftraceconcentrationsofheavymetalsinwater ZurErlangungdesakademischenGradeseines DoktorsderNaturwissenschaften anderFakultätfürBauingenieur-,Geo-undUmweltwissenschaften der UniversitätKarlsruhe genehmigte DISSERTATION von XudongXie ausVRChina 2004 TagdermündlichenPrüfung:02.06.2004 Referentin:Prof.Dr.DorisStüben Korreferent:Prof.Dr.Rolf-DieterWilken Abstract Abstract Rapid development in silicon technology and microelectronics has nowadays enabled the mass fabrication of microelectrode arrays with well-defined and reproduciblegeometriesonmicronscalesbyusingthin-filmtechnology.Comparedto conventional macroelectrodes, microelectrodes possess several attractive features, suchashighmasstransport,reducedchargingcurrent,immunitytoohmicdrop,high signal-to-noiseratio,etc.,whichareveryadvantageousfordevelopingdecentralised analyticalequipmentsintracemetalanalysis. A novel iridium-based ultramicroelectrode array chip (Ir-UMEAs) was recently designed and fabricated by means of microlithographic techniques by one of the partners (Fraunhofer Institute of Silicon Technology, ISIT, Germany) of this joint research project. The Ir-UMEA chip is made up of 4048 individual ultramicroelectrodes (working electrodes) arranged in four separate arrays. Each arrayconsistsof46x22=1012discshapedmicroelectrodeswithadiameterof1.8 µmeach,givingatotalelectrodeareaof2575µm².Theelectrodesarerecessedby 0.2µmandarespacedwithaninterelectrodedistanceof25µm. Thisstudyismainlyaimedat(i)investigatingtheelectrochemicalbehaviorandthe analytical performance of the Ir-UMEAs, (ii) assessing the analytical parameters of square-wave stripping voltammetric measurements (SWASV) using the Ir-UMEAs, and(iii)estimatingthepotentialoftheIr-UMEAsforthedevelopmentofananalytical instrument to determine trace metal concentrations in natural waters. Surface analyticaltechniques(SEM,ESEM,andAFM)showedthattheIr-UMEAchipsareof high quality, without evident defects in manufacture. Cyclic voltammetric and chronoamperometricexperimentsprovedthattheelectrochemicalbehavioroftheIr- UMEAs is dominated by features characteristic for microelectrodes (sigmoidal voltammograms, steady-state current response, etc.). The quality of the Hg-film proved to be crucial in achieving a high analytical performance. Chronocoulometry wasfoundtobethemostsuitablemethodingeneratingaHg-filmofgoodquality.An Ir-UMEA chip could be plated at least ten times without obvious loss in analytical performance, corresponding to approximately 500 measurements of trace metal i Abstract concentrationsinsyntheticaqueoussolutions.UsingSWASV,detectionlimitsof<0,1 µg/lcouldbeobtainedforthemetalsinvestigated (Cu, Pb, Cd, Zn). Precision and accuracywerefoundtobesatisfactory(about±10%ofRSD).Thoughfoulingofthe arrays with time may become a problem, an ultrasonic bath proved to be very efficient in cleaning the surface of the electrodes in laboratory. Instrumental parameters, experimental conditions, and possible interferences were investigated and optimised. Interferences due to dissolved organic matter and/or intermetallic compoundsweresignificantlyreducedbymeansofmediumexchangeandstandard addition.TheresultsobtainedwiththeIr-UMEAsensorshowedareasonablygood agreementwithhighresolutionICP-MSanalyses,indicatingthatthecombinationof microelectrodearrayswithSWASVhasagreatpotentialindevelopingamarketable fieldanalyticalsystemforthedeterminationofheavymetalconcentrationsinnatural waters. However, for in situ and on-site measurements, the protection of the UMEAs from fouling(e.g.,theintegratingofthearraysinananti-foulingmembrane)seemstobe inevitable.Inordertoavoidtheshieldeffectcausedbytheoverlappingofdiffusion layers of the individual electrodes and thus to achieve a pure microelectrode behavior with the Ir-UMEAs, increasing the ratio of interelectrode distance to electrodediameterisrecommendedforfurtherdevelopments. ii Acknowledgments Acknowledgments IwouldliketothankProf.Dr.DorisStübenforgivingmetheopportunitytomakemy PhDstudyattheInstituteofMineralogyandGeochemistry(IMG).Withoutherhelp the completion of this dissertation would not have been possible and my stay in Germanywouldnotbesofruitful.IwouldalsoliketoexpressmythankstoProf.Dr. Rolf-DieterWilkenfortakingontheroleofKorreferat. ManythanksgotoDr.ZsoltBernerforhisunselfishsupportduringthecourseofthis work.Hisvaluablesuggestion,criticalreviewofthethesis,andkindlyencouragement areveryhelpful. SpecialthanksgotoDr.StefanNorraforhishelpinusingGeographicInformation System(GIS,ArcView)andMapInfoprogrammes;Ms.ClaudiaMößnerforhereffort in ICP-MS analysis; Mr. Peter Schaup for his various technical assistance; Dr. Gerhard Ott for solving computer problems; and Ms. Gesine Preuß for the preparationoflaboratorywork. Iamgratefultothefollowingcolleaguesfortheirvarioushelps:Prof.Heinz-Günter Stosch,PD.Dr.ThomasNeumann,PD.Dr.Jörg-DetlefEckhardt,AndreaStögbauer, Ms. Rosemarie Bender, Dr. Utz Kramar, Ms. Nytz Halina, Ms. Maria Tannhäuser, HassanAboughalma,andMichaelLaueretc.. In a word, I thank all the peoples who have provided me helps during the past several years. Because of their helps, I have spent a very special and nice time. Theirhospitabilitywillstayinmymemoryforever. Finally,Iwishtoexpressmygratitudetomyfamily:myparents,YunXie&Yuzhen Zang; my wife, Cuiling; and my son, Kaibo, who have given me a lot of love, encouragement,understandings,andenergies. Thankstoallofyou iii TableofContents TableofContents Abstract........................................................................................................................ i Acknowledgments.......................................................................................................iii Contents..................................................................................................................... iv ListofFigures ............................................................................................................vii ListofTables.............................................................................................................. ix ListofAppendices...................................................................................................... ix Abbreviations .............................................................................................................iix 1.Introduction .......................................................................................................... 1 2.Reviewofresearch ...............................................................................................3 2.1Developmentofmicroelectrodes ....................................................................... 3 2.2Applicationsofmicroelectrodesinthedeterminationoftracemetals ................6 2.2.1Voltammetricsensor ................................................................................... 7 2.2.2Potentiometricsensor ................................................................................. 8 2.2.3Insitusensor...............................................................................................9 3.Theory..................................................................................................................12 3.1Electrochemicalmethods ................................................................................ 12 3.1.1Electrochemicalcell .................................................................................. 12 3.1.2Strippinganalysis......................................................................................13 3.1.2.1Anodicstrippingvoltammetry(ASV)...................................................13 3.1.2.2Potentiometricstrippinganalysis(PSA) .............................................15 3.1.3Cyclicvoltammetry(CV) ........................................................................... 16 3.1.4Chronoamperometry(CA).........................................................................18 3.1.5Squarewavetechnique ............................................................................ 18 3.2Theoryofmicroelectrodes ............................................................................... 20 3.2.1Definitionofmicroelectrodes..................................................................... 20 3.2.2Microelectrodetypes................................................................................. 21 3.2.3Advantageouspropertiesofmicroelectrodes............................................22 3.2.3.1Masstransport.................................................................................... 22 3.2.3.2Reducedchargingcurrent ..................................................................25 3.2.3.3Ohmiceffect ....................................................................................... 26 iv TableofContents 4.Fabricationofultramicroelectrodearrays ........................................................27 4.1Introduction......................................................................................................27 4.2.FabricationofUMEAs.....................................................................................28 4.2.1Design.......................................................................................................28 4.2.2Processing ................................................................................................29 4.2.3Assemblyandpackaging .......................................................................... 31 5.Characterizationofultramicroelectrodearrays................................................31