Hydrodynamic Voltammetry As a Rapid and Simple Method for Evaluating Soil Enzyme Activities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Testing of a Computer-Controlled Square Wave Voltammetry Instrument
Rochester Institute of Technology RIT Scholar Works Theses 6-1-1987 Design and testing of a computer-controlled square wave voltammetry instrument Nancy L. Wengenack Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Wengenack, Nancy L., "Design and testing of a computer-controlled square wave voltammetry instrument" (1987). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. DESIGN AND TESTING OF A COMPUTER-CONTROLLED SQUARE WAVE VOLTAMMETRY INSTRUMENT by Nancy L. Wengenack J une , 1987 THESI S SUBM ITTED IN PARTIA L FULFI LLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE APPROVED: Paul Rosenberg Project Advisor G. A. Jakson Department Head Gate A. Gate Library Rochester Institute of Te chnology Rochester, New York 14623 Department of Chemistry Title of Thesis Design and Testing of a Computer- Controlled Square Wave Voltammetry Instrument I Nancy L. Wengenack hereby grant permission to the Wallace Memorial Library, of R.I.T., to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Date %/H/n To Tom ACKNOWLEDGEMENTS I would like to express my thanks to my research advisor, Dr. L. Paul Rosenberg, for his assistance with this work. I would also like to thank my graduate committee: Dr. B. Edward Cain; Dr. Christian Reinhardt; and especially Dr. Joseph Hornak; for their help and guidance. -
07 Chapter2.Pdf
22 METHODOLOGY 2.1 INTRODUCTION TO ELECTROCHEMICAL TECHNIQUES Electrochemical techniques of analysis involve the measurement of voltage or current. Such methods are concerned with the interplay between solution/electrode interfaces. The methods involve the changes of current, potential and charge as a function of chemical reactions. One or more of the four parameters i.e. potential, current, charge and time can be measured in these techniques and by plotting the graphs of these different parameters in various ways, one can get the desired information. Sensitivity, short analysis time, wide range of temperature, simplicity, use of many solvents are some of the advantages of these methods over the others which makes them useful in kinetic and thermodynamic studies1-3. In general, three electrodes viz., working electrode, the reference electrode, and the counter or auxiliary electrode are used for the measurement in electrochemical techniques. Depending on the combinations of parameters and types of electrodes there are various electrochemical techniques. These include potentiometry, polarography, voltammetry, cyclic voltammetry, chronopotentiometry, linear sweep techniques, amperometry, pulsed techniques etc. These techniques are mainly classified into static and dynamic methods. Static methods are those in which no current passes through the electrode-solution interface and the concentration of analyte species remains constant as in potentiometry. In dynamic methods, a current flows across the electrode-solution interface and the concentration of species changes such as in voltammetry and coulometry4. 2.2 VOLTAMMETRY The field of voltammetry was developed from polarography, which was invented by the Czechoslovakian Chemist Jaroslav Heyrovsky in the early 1920s5. Voltammetry is an electrochemical technique of analysis which includes the measurement of current as a function of applied potential under the conditions that promote polarization of working electrode6. -
Convergent Paired Electrochemical Synthesis of New Aminonaphthol Derivatives
www.nature.com/scientificreports OPEN New insights into the electrochemical behavior of acid orange 7: Convergent paired Received: 24 August 2016 Accepted: 29 December 2016 electrochemical synthesis of new Published: 06 February 2017 aminonaphthol derivatives Shima Momeni & Davood Nematollahi Electrochemical behavior of acid orange 7 has been exhaustively studied in aqueous solutions with different pH values, using cyclic voltammetry and constant current coulometry. This study has provided new insights into the mechanistic details, pH dependence and intermediate structure of both electrochemical oxidation and reduction of acid orange 7. Surprisingly, the results indicate that a same redox couple (1-iminonaphthalen-2(1H)-one/1-aminonaphthalen-2-ol) is formed from both oxidation and reduction of acid orange 7. Also, an additional purpose of this work is electrochemical synthesis of three new derivatives of 1-amino-4-(phenylsulfonyl)naphthalen-2-ol (3a–3c) under constant current electrolysis via electrochemical oxidation (and reduction) of acid orange 7 in the presence of arylsulfinic acids as nucleophiles. The results indicate that the electrogenerated 1-iminonaphthalen-2(1 H)-one participates in Michael addition reaction with arylsulfinic acids to form the 1-amino-3-(phenylsulfonyl) naphthalen-2-ol derivatives. The synthesis was carried out in an undivided cell equipped with carbon rods as an anode and cathode. 2-Naphthol orange (acid orange 7), C16H11N2NaO4S, is a mono-azo water-soluble dye that extensively used for dyeing paper, leather and textiles1,2. The structure of acid orange 7 involves a hydroxyl group in the ortho-position to the azo group. This resulted an azo-hydrazone tautomerism, and the formation of two tautomers, which each show an acid− base equilibrium3–12. -
Chapter 3: Experimental
Chapter 3: Experimental CHAPTER 3: EXPERIMENTAL 3.1 Basic concepts of the experimental techniques In this part of the chapter, a short overview of some phrases and theoretical aspects of the experimental techniques used in this work are given. Cyclic voltammetry (CV) is the most common technique to obtain preliminary information about an electrochemical process. It is sensitive to the mechanism of deposition and therefore provides informations on structural transitions, as well as interactions between the surface and the adlayer. Chronoamperometry is very powerful method for the quantitative analysis of a nucleation process. The scanning tunneling microscopy (STM) is based on the exponential dependence of the tunneling current, flowing from one electrode onto another one, depending on the distance between electrodes. Combination of the STM with an electrochemical cell allows in-situ study of metal electrochemical phase formation. XPS is also a very powerfull technique to investigate the chemical states of adsorbates. Theoretical background of these techniques will be given in the following pages. At an electrode surface, two fundamental electrochemical processes can be distinguished: 3.1.1 Capacitive process Capacitive processes are caused by the (dis-)charge of the electrode surface as a result of a potential variation, or by an adsorption process. Capacitive current, also called "non-faradaic" or "double-layer" current, does not involve any chemical reactions (charge transfer), it only causes accumulation (or removal) of electrical charges on the electrode and in the electrolyte solution near the electrode. There is always some capacitive current flowing when the potential of an electrode is changing. In contrast to faradaic current, capacitive current can also flow at constant 28 Chapter 3: Experimental potential if the capacitance of the electrode is changing for some reason, e.g., change of electrode area, adsorption or temperature. -
Effective and Novel Application of Hydrodynamic Voltammetry to the Study of Superoxide Radical Scavenging by Natural Phenolic Antioxidants
antioxidants Article Effective and Novel Application of Hydrodynamic Voltammetry to the Study of Superoxide Radical Scavenging by Natural Phenolic Antioxidants Stuart Belli 1,*, Miriam Rossi 1,*, Nora Molasky 1, Lauren Middleton 1, Charles Caldwell 1, Casey Bartow-McKenney 1, Michelle Duong 1, Jana Chiu 1, Elizabeth Gibbs 1, Allison Caldwell 1, Christopher Gahn 2 and Francesco Caruso 1 1 Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; [email protected] (N.M.); [email protected] (L.M.); [email protected] (C.C.); [email protected] (C.B.-M.); [email protected] (M.D.); [email protected] (J.C.); [email protected] (E.G.); [email protected] (A.C.); [email protected] (F.C.) 2 Computing & Information Services, Vassar College, Poughkeepsie, NY 12604, USA; [email protected] * Correspondence: [email protected] (S.B.); [email protected] (M.R.) Received: 18 November 2018; Accepted: 25 December 2018; Published: 4 January 2019 Abstract: The reactions of antioxidants with superoxide radical were studied by cyclic voltammetry (CV)—and hydrodynamic voltammetry at a rotating ring-disk electrode (RRDE). In both methods, the superoxide is generated in solution from dissolved oxygen and then measured after being allowed to react with the antioxidant being studied. Both methods detected and measured the radical scavenging but the RRDE was able to give detailed insight into the antioxidant behavior. Three flavonoids, chrysin, quercetin and eriodictyol, were studied, their scavenging activity of superoxide was assessed and the molecular structure of each flavonoid was related to its scavenging capability. From our improved and novel RRDE method, we determine the ability of these 3 antioxidants to react with superoxide radical in a more quantitative manner than the classical CV. -
Reaction Mechanism of Electrochemical Oxidation of Coo/Co(OH)2 William Prusinski Valparaiso University
Valparaiso University ValpoScholar Chemistry Honors Papers Department of Chemistry Spring 2016 Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2 William Prusinski Valparaiso University Follow this and additional works at: http://scholar.valpo.edu/chem_honors Part of the Physical Sciences and Mathematics Commons Recommended Citation Prusinski, William, "Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2" (2016). Chemistry Honors Papers. 1. http://scholar.valpo.edu/chem_honors/1 This Departmental Honors Paper/Project is brought to you for free and open access by the Department of Chemistry at ValpoScholar. It has been accepted for inclusion in Chemistry Honors Papers by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. William Prusinski Honors Candidacy in Chemistry: Final Report CHEM 498 Advised by Dr. Jonathan Schoer Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2 College of Arts and Sciences Valparaiso University Spring 2016 Prusinski 1 Abstract A modified water electrolysis process has been developed to produce H2. The electrolysis cell oxidizes CoO to CoOOH and Co3O4 at the anode to decrease the amount of electric work needed to reduce water to H2. The reaction mechanism through which CoO becomes oxidized was investigated, and it was observed that the electron transfer occurred through both a species present in solution and a species adsorbed to the electrode surface. A preliminary mathematical model was established based only on the electron transfer to species in solution, and several kinetic parameters of the reaction were calculated. -
Linear Sweep Voltammetric Determination of Free Chlorine in Waters Using Graphite Working Electrodes
J.Natn.Sci.FoundationLinear sweep voltammetric Sri Lanka determination 2008 36 (1):of free 25-31 chlorine 25 RESEARCH ARTICLE Linear sweep voltammetric determination of free chlorine in waters using graphite working electrodes K.A.S. Pathiratne*, S.S. Skandaraja and E.M.C.M. Jayasena Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya. Revised: 16 June 2007 ; Accepted: 23 July 2007 Abstract: Applicability of linear sweep voltammetry using and stored. During disinfecting processes, it is added graphite working electrodes for determination of free chlorine in to potable waters and it undergoes hydrolysis in water waters was demonstrated. Influence of the nature of supporting forming hypochlorous acid and hypochlorous ions. electrolyte, its concentrations, pH and rate of potential variation of working electrode on voltammetric responses corresponding - NaOCl + H O HOCl + NaOH (1) to the oxidation of ClO were examined. It was found that, any 2 of the salt solutions KNO , K SO or Na SO at the optimum 3 2 4 2 4 Kd concentration of 0.1 mol dm-3 could be used as a supporting HOCl ClO- + H+ (2) electrolyte for the above determination. The study also revealed (Dissociation Constant, K = 2.9 x 10-8 mol dm-3) that, any pH in the range of 8.5 to 11 could yield satisfactory d results. The anodic peak current at the working electrode potential of +1.030 V vs Ag/AgCl reference electrode was found As shown by equation (2), hypochlorous acid to linearly increase with concentration of free chlorine up to undergoes further dissociation and depending on the pH, 300 mg dm-3 (R2 = 0.9996). -
Linear Sweep Anodic Stripping Voltammetry: Determination of Chromium (VI) Using Synthesized Gold Nanoparticles Modified Screen-Printed Electrode
J. Chem. Sci. Vol. 127, No. 6, June 2015, pp. 1075–1081. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0864-4 Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode SALAMATU ALIYU TUKURa,b, NOR AZAH YUSOFa,c,∗ and REZA HAJIANc,∗ aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia bDepartment of Chemistry, Faculty of Science, Kaduna State University, Kaduna, Nigeria cInstitute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia e-mail: [email protected]; [email protected] MS received 16 October 2014; revised 17 February 2015; accepted 19 February 2015 Abstract. A highly sensitive electrochemical sensor has been constructed for determination of Cr(VI) with the lowest limit of detection (LOD) reported to date using gold nanoparticles (AuNPs) modified screen-printed electrode (SPE). The modification of SPE by casting pure AuNPs increases the sensitivity for detection of Cr(VI) ion using anodic stripping voltammetry. Cr(VI) ions are reduced to chromium metal on SPE-AuNPs by applying deposition potential of –1.1 V for 180 s. Afterwards, the oxidation peak current of chromium is obtained by linear sweep voltammetry in the range of −1.0 V to 0.2 V. Under the optimized conditions (HClO4, 0.06 mol L−1; deposition potential, –1.1 V; deposition time, 180s; scan rate, 0.1 V s−1), the limit of detection (LOD) was 1.6 pg mL−1. The fabricated electrode was successfully used for detection of Cr(VI) in tap and seawater. -
Using Chronoamperometry to Rapidly Measure and Quantitatively Analyse Rate- Performance in Battery Electrodes
Using chronoamperometry to rapidly measure and quantitatively analyse rate- performance in battery electrodes Ruiyuan Tian,1,2 Paul J. King,3 Joao Coelho,2,4 Sang-Hoon Park,2,4 Dominik V Horvath,1,2 Valeria Nicolosi,2,4 Colm O’Dwyer,2,5 Jonathan N Coleman1,2* 1School of Physics, Trinity College Dublin, Dublin 2, Ireland 2AMBER Research Center, Trinity College Dublin, Dublin 2, Ireland 3Efficient Energy Transfer Department, Bell Labs Research, Nokia, Blanchardstown Business & Technology Park, Snugborough Road, Fingal, Dublin 15, Ireland 4School of Chemistry, Trinity College Dublin, Dublin 2, Ireland 5 School of Chemistry, University College Cork, Tyndall National Institute, and Environmental Research Institute, Cork T12 YN60, Ireland *[email protected] (Jonathan N. Coleman); Tel: +353 (0) 1 8963859. ABSTRACT: For battery electrodes, measured capacity decays as charge/discharge current is increased. Such rate-performance is important from a practical perspective and is usually characterised via galvanostatic charge-discharge measurements. However, such measurements are very slow, limiting the number of rate experiments which are practical in a given project. This is a particular problem during mechanistic studies where many rate measurements are needed. Here, building on work by Heubner at al., we demonstrate chronoamperometry (CA) as a relatively fast method for measuring capacity-rate curves with hundreds of data points down to C-rates below 0.01C. While Heubner et al. reported equations to convert current transients to capacity vs. C-rate curves, we modify these equations to give capacity as a function of charge/discharge rate, R. We show that such expressions can be combined with a basic model to obtain simple equations which can fit data for both capacity vs. -
Modelling of the Rotating Disk Electrode in Ionic Liquids: Difference Between Water Based and Ionic Liquids Electrolytes
Modelling of the rotating disk electrode in Ionic liquids: difference between water based and ionic liquids electrolytes A. Giaccherini1, A. Lavacchi2 1INSTM, Firenze, Italy, 2ICCOM - CNR, Firenze, Italy *Corresponding author: via Lastruccia 3-13 50019, Sesto Fiorentino (FI), [email protected] Abstract: The last few years experienced a The former allows to validate the model by rapid growth in the application of Ionic means of comparison with the experimental Liquids (IL’s) to electrodeposition. ILs voltammograms, the last allows to offer a variety of advantages over aqueous rationalize the peculiar mass transport electrolytes. In general ILs show large properties of the Ils. In particular, thanks to chemical and thermal stability, high ionic the comparison of the concentration profiles conductivity and an electrochemical window and fluxes at the steady and quasi-steady much larger than water. These properties states of the potential scan for both systems, together with their negligible vapor pressure we clarified the nature of the unexpected enabling their use at different temperatures peaks show by the experimental without any risk of generating harmful voltammograms. vapors and joined to the absence of hydrogen discharge interfering with Keywords: Levich equation, Ionic Liquids, electrodeposition processes, as they are Transport proprieties, RDE, essentially hydrophobic, make them the best electroanalytical, CFD. candidates to be used for the obtainment of homogeneous electrodeposited thin films. 1. Introduction This study focuses on the silver electrodeposition from a silver Research on electrodeposition has recently tetrafluoroborate solution in 1-butyl-3- focused on the quest for new electrolytes methyltetrafluoroborate BMImBF4. We alternative to water. This was mainly driven notice that practical deposition rate at even by the need to develop new and green concentrations were much lower in ionic electrodeposition processes. -
Stationary Electrode Voltammetry and Chronoamperometry in an Alkali Metal Carbonate-Borate Melt
AN ABSTRACT OF THE THESIS OF DARRELL GEORGE PETCOFF for the Doctor of Philosophy (Name of student) (Degree) in Analytical Chemistry presented onC (O,/97 (Major) (Date) Title: STATIONARY ELECTRODE VOLTAMMETRY AND CHRONOAMPEROMETRY IN AN ALKALI METAL CARBONATE - BORATE. MFT T Abstract approved: Redacted for Privacy- Drir. reund The electrochemistry of the lithium-potassium-sodium carbonate-borate melt was explored by voltammetry and chrono- amperometry. In support of this, a controlled-potential polarograph and associated hardware was constructed.Several different types of reference electrodes were tried before choosing a porcelain mem- brane electrode containing a silver wire immersed in a silver sulfate melt.The special porcelain compounded was used also to construct a planar gold disk electrode.The theory of stationary electrode polarography was summarized and denormalized to provide an over- all view. A new approach to the theory of the cyclic background current was also advanced. A computer program was written to facilitate data processing.In addition to providing peak potentials, currents, and n-values, the program also resolves overlapping peaks and furnishes plots of both processed and unprocessed data. Rapid-scan voltammetry was employed to explore the electro- chemical behavior of Zn, Co, Fe, Tl, Sb, As, Ni, Sn, Cd, Te, Bi, Cr, Pb, Cu, and U in the carbonate-borate melt. Most substances gave reasonably well-defined peaks with characteristic peak potentials and n-values.Metal deposition was commonly accompanied by adsorp- tion prepeaks indicative of strong adsorption, and there was also evi- dence of a preceding chemical reaction for several elements, sug- gesting decomplexation before reduction. -
Assessment of an Ultramicroelectrode Array (UMEA) Sensor for The
Assessmentofanultramicroelectrodearray(UMEA)sensorfor thedeterminationoftraceconcentrationsofheavymetalsinwater ZurErlangungdesakademischenGradeseines DoktorsderNaturwissenschaften anderFakultätfürBauingenieur-,Geo-undUmweltwissenschaften der UniversitätKarlsruhe genehmigte DISSERTATION von XudongXie ausVRChina 2004 TagdermündlichenPrüfung:02.06.2004 Referentin:Prof.Dr.DorisStüben Korreferent:Prof.Dr.Rolf-DieterWilken Abstract Abstract Rapid development in silicon technology and microelectronics has nowadays enabled the mass fabrication of microelectrode arrays with well-defined and reproduciblegeometriesonmicronscalesbyusingthin-filmtechnology.Comparedto conventional macroelectrodes, microelectrodes possess several attractive features, suchashighmasstransport,reducedchargingcurrent,immunitytoohmicdrop,high signal-to-noiseratio,etc.,whichareveryadvantageousfordevelopingdecentralised analyticalequipmentsintracemetalanalysis. A novel iridium-based ultramicroelectrode array chip (Ir-UMEAs) was recently designed and fabricated by means of microlithographic techniques by one of the partners (Fraunhofer Institute of Silicon Technology, ISIT, Germany) of this joint research project. The Ir-UMEA chip is made up of 4048 individual ultramicroelectrodes (working electrodes) arranged in four separate arrays. Each arrayconsistsof46x22=1012discshapedmicroelectrodeswithadiameterof1.8 µmeach,givingatotalelectrodeareaof2575µm².Theelectrodesarerecessedby 0.2µmandarespacedwithaninterelectrodedistanceof25µm. Thisstudyismainlyaimedat(i)investigatingtheelectrochemicalbehaviorandthe