UCLA UCLA Electronic Theses and Dissertations

Title Young and Planet Formation

Permalink https://escholarship.org/uc/item/4304p827

Author Haney, Laura

Publication Date 2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles

Young Stars and Planet Formation

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Astronomy

by

Laura Vican Haney

2016 c Copyright by Laura Vican Haney 2016 Abstract of the Dissertation Young Stars and Planet Formation

by

Laura Vican Haney Doctor of Philosophy in Astronomy University of California, Los Angeles, 2016 Professor Benjamin M. Zuckerman, Chair

Young stars represent important laboratories for studying stellar and planet formation. Fur- thermore, low-mass stars are not only the most common product of formation, but also provide appealing conditions for the direct imaging of exoplanets. Determining youth in solar-type stars and low-mass stars can be challenging. I have examined young stars and the planet formation processes that occur around them from several different perspectives. First, I examined one of the most commonly-used age determination methods for solar-type stars - chromospheric activity. I compiled a large (∼2,800 star) sample of stars with known chromospheric activity levels, calculated their ages, and searched for evidence of an infrared excess (indicative of a circumstellar debris disk) using data from the Wide Field Infrared Survey Explorer (WISE). I found that, while the distribution of stars with a strong infrared excess peaks at young ages, there are a significant number of debris disks occurring at much later ages. I present 74 newly discovered debris disks. Following this work, I examined dust production mechanisms in debris disks by performing an in-depth analysis of 24 stars observed with the Herschel Space Observatory. I present 7 newly resolved stars, and char- acterize the dust formation mechanisms in 15 stars with confirmed infrared excesses. In addition, I identify four stars as potential targets for follow-up observations to search for previously unseen planets. Finally, I analyzed over 450 optical spectra of low-mass stars to identify young, nearby stars as targets for direct imaging observations. As a part of this project, I also identify 60 stars as bonafide members of nearby moving groups, 39 of which are presented for the first time. I also identify 41 stars with signatures of youth, but that ii do not appear to belong to any one particular moving group. I discovered 36 spectroscopic binaries, 30 of which are newly presented here. I used the UCAC4 catalog to search for wide binary companions to stars in my sample, and discovered 35 stars in common pairs, 32 of which are presented here for the first time. I also used my measurements of Li to re-calculate lithium depletion boundary ages for three nearby moving groups (β Pic, Tuc Hor, and AB Dor). In an effort to characterize youth indicators in low-mass stars, I investigated the magnetic activity of stars in my sample using NUV, X-Ray, and Hα emis- sion. I identify a new late-type (M4.9) debris disk host that shows some signatures of active accretion. This newly discovered debris disk host joins a very small population of late-type stars with dusty debris disks.

iii The dissertation of Laura Vican Haney is approved.

Kevin D. McKeegan

Michael P. Fitzgerald

Ian S. McLean

Benjamin M. Zuckerman, Committee Chair

University of California, Los Angeles

2016

iv To my students...... who taught me to never stop learning.

v Table of Contents

1 Introduction ...... 1

1.1 Planetary Formation Processes Around Stars Near the Sun ...... 1

1.1.1 The Evolution of Debris Disks ...... 1

1.1.2 Debris Disks ...... 2

1.2 Young, Low-Mass Stars ...... 3

2 The Evolution of Dusty Debris Disks Around Solar Type Stars ..... 4

2.1 Introduction ...... 4

2.2 IR Excesses ...... 5

2.3 Stellar Sample ...... 9

2.3.1 Chromospheric Activity as an Age Indicator ...... 9

2.3.2 Pace 2013 ...... 10

2.3.3 Jenkins et al. 2011 ...... 11

2.3.4 Isaacson & Fischer 2010 ...... 11

2.3.5 Wright et al. 2004 ...... 11

2.4 Discussion ...... 12

2.4.1 Comparison to Protoplanetary Disks ...... 12

2.4.2 Models of Dust Production ...... 12

2.4.3 Models of Dust Removal ...... 13

2.4.4 Observations ...... 13

2.5 Stellar Characteristics ...... 37

2.5.1 Spectral Type ...... 37

2.5.2 Distance from Earth ...... 38

vi 2.5.3 ...... 38

2.5.4 Planet Hosts ...... 38

2.5.5 Lithium Abundances ...... 42

2.6 Issues and Warnings ...... 45

2.6.1 Chromospheric Activity Variations ...... 45

2.6.2 Issues with SED Fitting ...... 47

2.7 Conclusions ...... 49

3 Herschel Observations of Dusty Debris Disks ...... 50

3.1 Introduction ...... 50

3.2 Stellar Sample ...... 50

3.3 Observations ...... 51

3.3.1 Herschel Non-Detections ...... 53

3.3.2 Systems with No Detectable Dust ...... 55

3.4 Sources of Possible Contamination ...... 56

3.4.1 Extragalactic Background ...... 56

3.4.2 IR Cirrus ...... 58

3.5 Spectral Energy Distributions ...... 58

3.5.1 Stellar Parameters ...... 62

3.5.2 Dust Parameters ...... 62

3.6 Resolved Disks ...... 63

3.6.1 Disk Radii ...... 64

3.7 Dust Production and Planet Formation ...... 67

3.7.1 Distinguishing Transient from Steady-State Events ...... 69

3.7.2 Steady-State Collisions - Stirring Mechanisms ...... 73

vii 3.7.3 Star-Grazing Comets ...... 76

3.7.4 Giant Impacts and Catastrophic Collisions ...... 77

3.8 Two-Temperature Systems ...... 78

3.9 Comparison with Previous Studies ...... 79

3.9.1 HD 15407 ...... 79

3.9.2 HD 23514 ...... 81

3.9.3 HD 35650 ...... 81

3.9.4 HD 43989 ...... 82

3.9.5 HD 54341 ...... 82

3.9.6 HD 76543 ...... 83

3.9.7 HD 76582 ...... 83

3.9.8 HD 84870 ...... 84

3.9.9 HD 85672 ...... 84

3.9.10 HD 99945 ...... 84

3.9.11 HD 113766 ...... 85

3.9.12 HD 121191 and HD 131488 ...... 85

3.9.13 HD 124718 ...... 86

3.9.14 BD+20 307 ...... 86

3.10 Conclusions ...... 87

3.11 Acknowledgements ...... 88

4 Spectroscopic Observations of Nearby Low Mass Stars in the GALNYSS Survey ...... 89

4.1 Introduction ...... 89

4.2 Stellar Sample ...... 91

viii 4.3 Observations ...... 92

4.4 Results ...... 93

4.4.1 Signatures of Youth ...... 93

4.4.2 Space Motions ...... 103

4.4.3 Spectral Indices ...... 104

4.5 Discussion ...... 107

4.5.1 Moving Group Membership ...... 107

4.5.2 Lithium Depletion Boundary Ages ...... 116

4.5.3 Binary Systems ...... 120

4.5.4 Signatures of Magnetic Activity ...... 122

4.6 Conclusions ...... 126

ix List of Figures

2.1 SED of HIP 14809 ...... 7

0 2.2 Distribution of logR HK ...... 29

2.3 Distribution of Debris Disk Hosts in Stellar Sample ...... 30

2.4 Evolution of Debris Disks ...... 31

2.5 Distribution of Disk Semi-major Axes ...... 32

2.6 Debris Disk Visualization ...... 33

2.7 Cont’d ...... 34

2.8 Cont’d ...... 35

2.9 Distribution of Distances ...... 39

2.10 Distribution of [Fe/H ...... 40

2.11 Planet Hosts ...... 43

2.12 Li Evolution ...... 46

2.13 Blackbody Degeneracy - HIP 90593 ...... 48

3.1 Spectral energy distributions (SEDs) of OT1 and OT2 stars ...... 59

3.1 Cont’d ...... 60

3.1 Cont’d ...... 61

3.2 Radial Profiles of Resolved Systems ...... 64

3.3 Images of Resolved Disks ...... 65

3.3 Cont’d ...... 66

3.4 Comparison Between RBB and Rimg ...... 68

3.5 Maximum IR ...... 71

3.6 Disk Radius vs. Stellar Age ...... 75

3.7 Characteristic Temperatures of Debris Disks ...... 77 x 3.8 Temperature Ratios of Two Component Disks ...... 80

4.1 Spectral Types of Observed Stars ...... 91

4.2 Example spectrum of J0441-1947 ...... 92

4.3 Hα Emission and 10% Widths ...... 95

4.4 J1026-4105 Spectrum ...... 96

4.5 Hα Profile of a Giant Star ...... 97

4.6 Stars with Detectable Li ...... 98

4.7 Metal Emission from Accreting Stars ...... 99

4.8 IR Excesses ...... 101

4.9 Spectral Energy Distribution (SED) of J2051-1548 ...... 102

4.10 Example Spectrum Used for Spectral Typing ...... 104

4.11 Photometric vs. TiO5 Spectral Types ...... 105

4.12 Spectral Indices ...... 106

4.13 Isochrones of Nearby Moving Groups ...... 111

4.13 Isochrones of Nearby Moving Groups ...... 112

4.13 Isochrones of Nearby Moving Groups ...... 113

4.14 Lithium EWs for Stars in Moving Groups ...... 114

4.14 Lithium EWs for Stars in Moving Groups ...... 115

4.15 Lithium Depletion Boundaries of β Pic, Tu Hor, and AB Dor ...... 118

4.16 LDB Age of AB Dor ...... 120

4.17 Chromospheric vs. Coronal Emission ...... 123

4.18 Hα vs. NUV Emission ...... 125

4.19 Decay of Magnetic Activity with Age ...... 126

xi List of Tables

2.1 Supplementary Data for Stars with WISE Excesses ...... 6

2.2 Chromospheric Activity Targets with IR Excesses ...... 15

2.2 Chromospheric Activity Targets with IR Excesses ...... 16

2.2 Chromospheric Activity Targets with IR Excesses ...... 17

2.2 Chromospheric Activity Targets with IR Excesses ...... 18

2.2 Chromospheric Activity Targets with IR Excesses ...... 19

2.3 WISE Data for Stars with Excesses ...... 20

2.3 WISE Data for Stars with Excesses ...... 21

2.3 WISE Data for Stars with Excesses ...... 22

2.3 WISE Data for Stars with Excesses ...... 23

2.3 WISE Data for Stars with Excesses ...... 24

2.3 WISE Data for Stars with Excesses ...... 25

2.3 WISE Data for Stars with Excesses ...... 26

2.3 WISE Data for Stars with Excesses ...... 27

2.4 Detection Fraction by Spectral Type ...... 38

2.5 Lithium Data ...... 44

2.5 Lithium Data ...... 45

3.1 Stellar Parameters ...... 52

3.2 Herschel Observations ...... 54

3.3 Dust Parameters ...... 57

3.4 Disk Parameters from Herschel Imaging ...... 73

3.5 Summary of Results ...... 88

xii 4.1 Moving Groups ...... 107

4.2 Definition of Moving Group Terminology ...... 108

4.3 MG Membership Summary ...... 112

4.4 Observations ...... 128

4.5 Observations ...... 129

4.5 Observations ...... 130

4.5 Observations ...... 131

4.5 Observations ...... 132

4.5 Observations ...... 133

4.5 Observations ...... 134

4.5 Observations ...... 135

4.5 Observations ...... 136

4.5 Observations ...... 137

4.5 Observations ...... 138

4.5 Observations ...... 139

4.5 Observations ...... 140

4.5 Observations ...... 141

4.5 Observations ...... 142

4.5 Observations ...... 143

4.5 Observations ...... 144

4.6 Spectroscopic Properties ...... 144

4.6 Spectroscopic Properties ...... 145

4.6 Spectroscopic Properties ...... 146

4.6 Spectroscopic Properties ...... 147

4.6 Spectroscopic Properties ...... 148

xiii 4.6 Spectroscopic Properties ...... 149

4.6 Spectroscopic Properties ...... 150

4.6 Spectroscopic Properties ...... 151

4.6 Spectroscopic Properties ...... 152

4.6 Spectroscopic Properties ...... 153

4.6 Spectroscopic Properties ...... 154

4.6 Spectroscopic Properties ...... 155

4.6 Spectroscopic Properties ...... 156

4.6 Spectroscopic Properties ...... 157

4.7 Photometry ...... 158

4.7 Photometry ...... 159

4.7 Photometry ...... 160

4.7 Photometry ...... 161

4.7 Photometry ...... 162

4.7 Photometry ...... 163

4.7 Photometry ...... 164

4.7 Photometry ...... 165

4.7 Photometry ...... 166

4.7 Photometry ...... 167

4.7 Photometry ...... 168

4.7 Photometry ...... 169

4.7 Photometry ...... 170

4.7 Photometry ...... 171

4.7 Photometry ...... 172

4.7 Photometry ...... 173

xiv 4.7 Photometry ...... 174

4.7 Photometry ...... 175

4.7 Photometry ...... 176

4.7 Photometry ...... 177

4.8 Kinematics ...... 178

4.8 Kinematics ...... 179

4.8 Kinematics ...... 180

4.8 Kinematics ...... 181

4.8 Kinematics ...... 182

4.8 Kinematics ...... 183

4.8 Kinematics ...... 184

4.8 Kinematics ...... 185

4.8 Kinematics ...... 186

4.8 Kinematics ...... 187

4.8 Kinematics ...... 188

4.8 Kinematics ...... 189

4.8 Kinematics ...... 190

4.8 Kinematics ...... 191

4.8 Kinematics ...... 192

4.8 Kinematics ...... 193

4.8 Kinematics ...... 194

4.8 Kinematics ...... 195

4.8 Kinematics ...... 196

4.8 Kinematics ...... 197

4.9 Spectral Typing ...... 198

xv 4.9 Spectral Typing ...... 199

4.9 Spectral Typing ...... 200

4.9 Spectral Typing ...... 201

4.9 Spectral Typing ...... 202

4.9 Spectral Typing ...... 203

4.9 Spectral Typing ...... 204

4.9 Spectral Typing ...... 205

4.9 Spectral Typing ...... 206

4.9 Spectral Typing ...... 207

4.9 Spectral Typing ...... 208

4.9 Spectral Typing ...... 209

4.9 Spectral Typing ...... 210

4.9 Spectral Typing ...... 211

4.10 Probable Members of Nearby Moving Groups ...... 211

4.10 Probable Members of Nearby Moving Groups ...... 212

4.10 Probable Members of Nearby Moving Groups ...... 213

4.10 Probable Members of Nearby Moving Groups ...... 214

4.10 Probable Members of Nearby Moving Groups ...... 215

4.11 Possible Members of Nearby Moving Groups ...... 216

4.11 Possible Members of Nearby Moving Groups ...... 217

4.11 Possible Members of Nearby Moving Groups ...... 218

4.12 Field Dwarfs ...... 219

4.12 Field Dwarfs ...... 220

4.12 Field Dwarfs ...... 221

4.12 Field Dwarfs ...... 222

xvi 4.12 Field Dwarfs ...... 223

4.12 Field Dwarfs ...... 224

4.12 Field Dwarfs ...... 225

4.13 Spectroscopic Binaries ...... 226

4.14 Common Proper Motion Pairs ...... 227

4.15 Magnetic Activity of GALNYSS Stars ...... 228

4.15 Magnetic Activity of GALNYSS Stars ...... 229

4.15 Magnetic Activity of GALNYSS Stars ...... 230

4.15 Magnetic Activity of GALNYSS Stars ...... 231

4.15 Magnetic Activity of GALNYSS Stars ...... 232

4.15 Magnetic Activity of GALNYSS Stars ...... 233

4.15 Magnetic Activity of GALNYSS Stars ...... 234

4.15 Magnetic Activity of GALNYSS Stars ...... 235

4.15 Magnetic Activity of GALNYSS Stars ...... 236

4.15 Magnetic Activity of GALNYSS Stars ...... 237

4.15 Magnetic Activity of GALNYSS Stars ...... 238

4.15 Magnetic Activity of GALNYSS Stars ...... 239

4.15 Magnetic Activity of GALNYSS Stars ...... 240

xvii Acknowledgments

To my family, who have supported every (seemingly) crazy decision I have made in life that led me to this point, I thank you from the bottom of my heart. This thesis would never have come together without the many people who kept me on track, my family not being the least of those. Thank you for never pushing me in any one direction, but for supporting me in the direction I chose for my life. I was lucky enough to have gained a second family at the beginning of my graduate education through my husband, John. To my in-laws: your insatiable interest and curiosity in astronomy has helped me keep my love of the subject alive, even during tough times.

To the family I chose - the graduate students at UCLA, both past and present - you are, in all honesty, the best group of people I could have hoped to work with. The environment that UCLA has fostered among graduate students is one of collaboration, kindness, and mutual support. Whether you were helping me to solve a research question, inspiring me with your own love of science, or literally cooking me dinner, you helped me get through this program and made it fun along the way. Grad school is as much an emotional test as an academic one, and the support of friends like you is so crucial to success. I would especially like to thank all those who worked with the Astronomy Live! outreach group, the SciComm Hub, and Signal to Noise Magazine. Your dedication to the public understanding of science is inspirational, and community outreach is a facet of a UCLA graduate education that I feel enriched me both as a scientist and as a human being.

I’d also like to thank the Astronomy faculty. In one way or another, you all have played a role in helping me get to where I am today. Your thoughtful feedback, guidance, and advice have been instrumental in forming my graduate experience. In particular, I want to thank Michael Jura. Professor Jura was not only a teacher in the classroom, but always took the time to meet with me outside of class about anything from science to my career path. His constantly open door was just a symbol of his ability to keep an open mind and offer support to graduate students any time they needed him. It is something I will always try to emulate

xviii as a teacher in the future.

To Ben Zuckerman, my advisor: You have been so much more than an academic advisor throughout the five I worked with you. You’ve been a sounding board for almost every aspect of my life. You’ve stuck with me even when I made decisions you may not have agreed with. You’ve helped me in every way you could to move forward along my own path. Even though your own personal tragedies, you never gave up on me, or stopped being my advisor. Thank you for your guidance, understanding, and above all, your patience. I feel so lucky to have been able to work with you.

Finally, I would not have completed this dissertation without the constant support and love of my husband. John, you have been an emotional rock for me for the past five years. You listened to my rants, you proof-read my papers, and you put up with my general craziness. You always knew how to make me laugh when I most needed it. You are the best partner in life I could possibly ask for, and I’ll never be able to express my gratitude and love for you.

Chapter 2 of this dissertation is a version of a published paper (Vican & Schneider, 2014). I thank my coauthor on this paper, Adam Schneider. This paper makes use of the SIMBAD and Two-Micron All Sky Survey (2MASS) data bases, and the VIZIER search engine, operated by CDS in France. The Wide Field Infrared Survey Explorer (WISE) is a joint project between the University of California, Los Angeles, and the Jet Propulsion Laboratory, funded by NASA. This work was supported by a NASA grant to UCLA.

Chapter 3 is a version of a submitted paper (Vican et al., 2016, submitted). I thank my coauthors on this paper: Adam Schneider, Geoff Bryden, Carl Melis, Ben Zuckerman, Joseph Rhee, and Inseok Song. This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at exoplanets.org. Partial support for this work was supported by a NASA grant to UCLA.

Chapter 4 is a version of a soon-to-be-submitted paper (Vican et al. 2016, in prep). I thank my coauthors on this paper: Ben Zuckerman and David Rodriguez. I would especially like to acknowledge the contribution of David Rodriguez to this work. He was responsible xix for compiling the original GALNYSS catalog, without which this project would not have been possible. He was also responsible for taking all Southern Hemisphere observations for this project.

All of my thesis work was supported by an NSF Graduate Research Fellowship.

xx Vita

2011 B.A. (Astrophysics), Barnard College

2013 M.S. (Astronomy), UCLA

Publications

Vican, L., Rodriguez, D., Zuckerman, B., 2016, Spectroscopic Observations of Nearby, Young, Low-Mass Stars in the GALNYSS Survey, to be submitted May 2016

Vican, L., Schneider, A., Bryden, G., et al., 2016, Herschel Observations of Dusty Debris Disks, submitted to ApJ Jan 2016.

Vican, L. & Schneider, A., 2014, The Evolution of Dusty Debris Disks Around Solar Type Stars, ApJ, 780, 154.

Zuckerman, B., Vican, L., Rodriguez, D., 2014, Accretion and OH Photodissociation at a Nearby System in the Beta Pictoris Moving Group, ApJ, 788, 102.

Zuckerman, B., Vican, L., Song, I., Schneider, A., 2013, Young Stars Near Earth: The Octans-Near and Castor Moving Groups, ApJ, 778, 5.

Vican, L., 2012, Age Determination for 346 Nearby Stars in the Herschel DEBRIS Survey, AJ, 143, 135.

xxi Vican, L., 2011, Patterson, J., Allen, B., et al., 2011, A Thousand Hours of GW Librae: The Eruption and Aftermath, PASP, 123, 156.

xxii CHAPTER 1

Introduction

1.1 Planetary Formation Processes Around Stars Near the Sun

1.1.1 The Evolution of Debris Disks

While most of the geological evidence about the evolution of our solar system has been erased by cataclysmic events, we can study the evolution of stellar systems similar to our own by observing circumstellar debris disks around solar-type (F, G, and K type) stars. Debris disks are signposts of formation and, as such, are crucial subjects for study when considering the evolution of a planetary system. Much work has been done to observe and characterize debris disks (e.g. Bryden et al. 2006), but it has been notoriously complicated to track the evolution of these disks. The root of the problem is the difficulty in determining stellar age. While the ages of clusters and associations can be determined by their bulk properties (e.g. HR diagrams), such techniques are not useful for isolated field stars.

Because of the difficulty of stellar age-dating, the study of debris disk evolution has been largely constrained to A-type stars (e.g. Su et al. 2006). Since A-type stars evolve quickly on the , their ages can be estimated from stellar isochrones. Su et al. (2006) found that dust around A-type stars declines with age as t0/t, where t0=150 Myr.

Isochrone dating is not adequate for solar type stars, however, since they evolve more slowly on the main sequence. It is important to extend the study of debris disk evolution to solar-type stars, since they offer the best evidence about the evolution of our own solar system. Fortunately, there are several other age determination methods to choose from.

1 Chromospheric activity dating, in particular, has a well-calibrated age relation, and carries smaller errors than isochrone dating (Mamajek & Hillenbrand, 2008). By compiling a large sample of stars with chromospheric activity ages, and searching for debris disks around them, we can examine the evolution of such disks as a function of time.

1.1.2 Debris Disks

Debris disks are typically identified via an excess infrared (IR) flux above the stellar photo- sphere. New debris disks have been discovered with five satellites, starting with the all-sky InfraRed Astronomical Satellite (IRAS) discovery of the first debris disk around Vega in 1984 (Aumann et al., 1984). In 1995, the Infrared Space Observatory (ISO; Boulade et al. 1995) imaged the sky at wavelengths ranging from 2.5 to 240 µm, providing low-resolution long wavelength photometry. Subsequently, the Spitzer Space Telescope (Werner et al., 2004) provided mid-IR spectroscopy with the Infrared Spectrograph (IRS; Houck et al. 2004), and photometry with the Multiband Imaging Photometer (MIPS; Rieke et al. 2004), leading to the detection of over 100 new debris disks (e.g. Zuckerman & Song 2004, Plavchan et al. 2009, Chen et al. 2009, Chen et al. 2014). The Wide Field Survey Explorer (WISE; Wright et al. 2010) imaged the sky at 3.4, 4.6, 11, and 22µm, and was also most sensitive to warm and hot debris disks that peak in the mid-IR. The advantage of using WISE to search for debris disks is that it is an all-sky survey, and can be used to find debris disks in large samples of stars.

In 2009, the Herschel Space Observatory (Pilbratt et al., 2010) began taking data, pro- viding far-IR photometry with the Photodetector Array Camera and Spectrometer (PACS; Poglitsch et al. 2008) and spectroscopy with the Spectral and Photometric Imaging Receiver (SPIRE; Griffin et al. 2008) and the Heterodyne Instrument for the Far Infrared (HIFI; de Graauw et al. 2008). Where Spitzer was uniquely able to detect warm (>100K) debris disks in the terrestrial planet zone, Herschel was sensitive to cooler disks (<100K) at larger radial separations from their host stars. Since Herschel is not an all-sky survey, it is better-suited to small surveys of stars.

2 1.2 Young, Low-Mass Stars

Young (<300 Myr), nearby stars have long been the subject of investigation for scientists looking to better understand the creation and evolution of planetary systems. In particular, dim, low-mass stars are attractive targets for direct imaging exoplanet surveys, due to the high contrast between star and planet that can be achieved. As with solar-type stars, the main challenge is to identify those low-mass (low-mass) stars that are young enough that any planets around them would still be bright enough to detect via direct imaging.

Most of the methods used to determine the age of solar-type stars are not applicable with low-mass stars. Most low-mass stars are magnetically active, so chromospheric or coronal emission alone is not enough to establish youth. Since low-mass stars are particularly efficient at burning lithium, the presence of lithium in the photospheres of these stars can be used to identify the youngest stars, but can miss some young stars that do not have any detectable levels of lithium. The best way to measure stellar age is to identify stars as members of nearby moving groups (e.g. Torres et al. 2008). Since nearly 3/4 of all stars are low-mass stars (Lada, 2006), nearby moving groups should be heavily populated with these low-mass, young stars.

3 CHAPTER 2

The Evolution of Dusty Debris Disks Around Solar Type Stars

2.1 Introduction

The Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010 offers a unique op- portunity to discover new circumstellar disks. WISE Band 4 (22 µm, hereafter W4) can trace infrared emission from the small (micron-sized) dust grains which dominate the emis- sion from debris disks. Not only is WISE sensitive to 6 mJy (5σ) at 22 µm (Wright et al., 2010), but it also has the potential to catch debris disks around stars toward which other infrared observatories such as the Spitzer Space Telescope and Herschel Space Observatory may not have pointed. By pairing new age determination techniques with the all-sky cover- age of WISE, we are able to provide new insight into the evolution of debris disks around solar-type stars.

Bryden et al. (2006) used Spitzer to search for IR excess emission around 127 F, G, and K type stars. They found seven stars with excess at 70 µm and only one star with excess at 24 µm. Trilling et al. (2008) followed by observing 184 F, G, and K type stars with Spitzer, finding seven with 24 µm excesses (an excess detection rate of 3.8%). Spangler et al. (2001) observed ∼150 pre-main-sequence and main-sequence stars (mostly in clusters) with the Infrared Space Observatory (ISO). These were mostly young (<1 Gyr) F and G type stars. Thus, their detection rate will be higher than in an unbiased survey. They found 33 stars with evidence of IR excess (a detection rate of 22 %). Koerner et al. (2010) used Spitzer to search for debris disks among 634 solar-type stars, finding a detection rate of 4.6% at 24 µm and 4.8% at 70 µm. In the present paper, we consider a sample of 2,820 stars with 4 activity-determined ages which we examined with WISE at 22 µm, finding definite excesses around 98 stars (detection rate of 3.5%).

In Section 2.2, we describe the process we used to determine whether or not an infrared excess was present. In Section 2.3, we elaborate on the age-determination method we used, and explain how we compiled our target list. In Section 2.4, we put our results in the context of current debris disk research. In Section 2.6, we describe any potential issues and errors associated with our findings.

2.2 IR Excesses

Since most debris disks cannot be resolved, we depend on spectral energy distributions (SEDs) to identify IR excesses. SEDs were created with a fully automated fitting technique using theoretical models from Hauschildt et al. (1999) to predict stellar photospheric fluxes. The SEDs were generated using available photometry from Hipparcos (Perryman et al., 1997), Tycho-2 (Høg et al., 2000), 2MASS (Cutri et al., 2003), WISE (Cutri & et al., 2012), and (when available) IRAS (Helou & Walker, 1988). Stellar radii and effective temperatures are treated as free parameters to fit the observed fluxes (B, V, J, H, and K) with a χ2 minimization method. We chose not to fit the photosphere to the W1, W2, or W3 points due to saturation limits in the WISE data and the possibility of an excess at W3.

To characterize the IR excess (or lack thereof) in WISE, we concentrated on the W4 data (22 µm)1. The WISE data release provides the W4 flux density in magnitude units. We converted these magnitudes to flux densities in Jy using published WISE zero points. Using the photospheric fluxes predicted by the χ2 fit, we defined a parameter SNR:

W 4[Jy] − W 4 [Jy] SNR = phot (2.1) N4[Jy]

where N4 is the noise (error) associated with each W4 measurement and W4phot is the predicted 22 µm photospheric value. We choose to define a candidate excess source as

1All candidate debris disks presented in this work show an excess at 22µm but not at 12µm

5 Table 2.1. Supplementary Data for Stars with WISE Excesses

HIP Mdust (MEarth) Instrument

544 4.38E-04 IRS, MIPS, IRAS 682 3.20E-03 IRS, MIPS, IRAS 1481 5.81E-04 IRS, MIPS, IRAS 6276 2.49E-04 IRS, MIPS, IRAS 7576 2.55E-04 IRS, MIPS, IRAS 7978 2.43E-02 IRS, MIPS, IRAS 9141 8.83E-04 IRS, MIPS 14684 6.78E-04 IRS, MIPS 17439 1.21E-02 IRS, MIPS, IRAS 22787 2.40E-04 IRS, MIPS, IRAS 30030 2.92E-04 IRS, MIPS, IRAS 33690 3.52E-03 IRS, MIPS, IRAS 36515 1.86E-04 IRS, MIPS, IRAS 36948 1.01E-01 IRS, MIPS, IRAS 44279 7.25E-04 IRAS 47135 7.40E-04 IRS, MIPS 48133 3.59E-04 MSX, IRAS 48423 8.65E-04 IRS, MIPS, IRAS 52462 7.24E-02 IRS, MIPS, IRAS 60074 7.02E-02 IRS, MIPS, IRAS 66765 2.72E-04 IRS, MIPS, IRAS 105388 3.66E-03 IRS, MIPS, IRAS 118319 2.27E-02 IRS, MIPS, IRAS

one for which SNR>5. This constitutes a 5σ detection. These candidate excess sources were double-checked visually to make sure that the calculated excess was not due to a bad photospheric fit.2 A blackbody was then fit to the apparent IR excess. When available, we used supplementary data from Spitzer and Herschel to better constrain the dust temperature and fractional IR luminosity. These data were downloaded from the NASA/IPAC Infrared Science Archive website (irsa.ipac.caltech.edu). Relevant data are found in Table 2.1. One SED representative of our sample is shown in Figure 2.1.

Zuckerman et al. (2011) found that Hauschildt photopsheric models underpredicted the

2Bad photospheric fits can occur due to stellar variability or to an overly coarse parameter spacing in the stellar photospheric models. 6 Figure 2.1 This is an SED for HIP 14809 - one of our debris disk candidates. Black dots represent data from Hipparcos and 2MASS catalogs (at B, V, J, H, and K bands). The blue dots represent WISE data in four bands (3.4, 4.6, 11 and 22 µm).This star represents the minimum amount of dust (amount of flux above the photosphere) which we felt comfortable characterizing as a debris disk.

7 flux at 22 µm by ∼3%. We used a subset of stars from Jenkins et al. (2011) - a sample of stars with known chromospheric activity - to test the Hauschildt models. Of the 868 stars in the Jenkins sample, we used 230 stars which had SNR between -1 and 1, and which had W2 fluxes <1 Jy (to avoid the saturation limit at 2 Jy). We used this sample of 230 stars to compare two different photosphere models - one from Hauschildt et al. (1999), and the second a linear fit to W1, W2, and W33. In the end, we chose to define SNR using the

“corrected” photospheric value (W4phot*1.03).

Finally, the data products from WISE were individually inspected to make sure that there were no contaminating sources which could be mimicking an excess (such as a binary companion or a background galaxy). The FWHM of the PSFs for the different WISE bands are: W1(3.4 µm): 6.0800 ; W2(4.6 µm): 6.8400 ; W3(11 µm): 7.3600 ; W4(22 µm): 11.9900. Since we are considering excess in the W4 band, we use the FWHM of the PSF in that band as the contamination radius; if a point-like secondary source were found within 24

00

(2×FWHMW 4) of the target, we considered that star to be “contaminated” and it was no longer considered to be a candidate excess source. We allowed more room for extended nearby sources such as background galaxies. In the case of a nearby extended source, we define a contamination radius to be from the center of the contaminating galaxy to the center of the target in question, and set that radius at 10. Furthermore, there were several cases in which an excess was seen at W4 in the SED, but no star is apparent in the WISE data product. These stars were considered non-detections.4 If none of the aforementioned issues were encountered, the data product is considered to be “clean.”

We also considered the possibility of an unseen background galaxy contaminating our W4 excess sources. Given that the WISE data products were checked for nearby sources, any remaining contaminating source would have to lie within the 600 beam of the W4 band.

3The Rayleigh Jeans tail of the stellar photosphere can be approximated by a linear fit if the temperature of a star is >3500 K. 4Usually, these were cases of galactic cirrus confusion.

8 Kennedy & Wyatt (2012) predict 0.06 spurious sources in their WISE 468 targets (a con- tamination rate of ∼0.01%). Therefore, for our 2,820 targets, we would expect 0.36 spurious detections due to contamination by unseen background galaxies.

2.3 Stellar Sample

2.3.1 Chromospheric Activity as an Age Indicator

Stars with a deep convective zone (CZ) experience differential rotation which heats the CZ and ionizes the material in it. As this ionized material rotates, it enhances pre-existing weak magnetic fields. The strengthened magnetic field magnetizes material in the stellar wind as it leaves the system. This causes the outflowing material to rotate, resulting in a net loss of angular momentum. Over time, the star will spin-down which, in turn, reduces its magnetic activity. Thus as a star ages, it will spin down and its magnetic activity will weaken in a predictable way (Skumanich 1972, Barnes 2003)

The magnetic activity can be measured by looking at the collisonally-dominated Ca II H&K absorption lines at ∼3900A.˚ In these lines, the photosphere of the star is suppressed by absorption, and we can see the emission cores due to magnetic heating of the chromosphere. Mamajek & Hillenbrand (2008) - hereafter MH08 - provide us with a cluster-calibrated relationship between chromospheric activity and age:

0 0 2 log(t) = −38.053 − 17.912(logRHK ) − 1.6675(logRHK ) (2.2)

0 where R HK is a parameter measuring the strength of the Ca II H&K emission core and t

0 is age in years. This relation is only valid (calibrated) if -5.1

In addition to an activity-age relation, MH08 suggests that an activity-rotation-age cal-

9 culation can be used which, when used to calculate the ages of stars in binaries and open clusters, resulted in lower errors. Also, the activity-rotation-age relation takes the mass of the star (parameterized by the (B-V) color) into account.This calculation requires that the chromospheric activity index is first used to calculate the Rossby number (Noyes et al., 1984), which can then be used to calculate a rotation period. This period is then fed into a cluster-calibrated rotation-age (“gyrochronology”) relation:

b n P (B − V, t) = a[B − V0 − c] t (2.3) where MH08 found that a=0.407, b=0.325, c=0.495, and n=0.556 for a rotation period P in days and age t in Myr ((B-V)0 is the de-reddened color). These constants were determined by fitting the rotation-age equation to clusters with known ages (up to the age of the Hyades

- 625 Myr). It is valid for stars with 0.495<(B-V)0<1.4. The combined activity-rotation-age relation was calibrated to clusters up to 625 Myr, field binaries up to ∼10 Gyr, and field stars up to ∼15 Gyr. By comparing the calculated ages of field binaries, MH08 were able to quote an average error of 15% in t. We present both the age calculated directly from the rotation-age relation of MH08 (AgeRHK ) and the age calculated by using the Rossby number and the rotation-age relation (AgeROT ). All of our statistics were calculated using the latter.

In total, we cataloged WISE data for 2,820 stars with known chromospheric activity ages from 4 sources (Pace 2013 (1,251 stars); Jenkins et al. 2011 (596 stars); Isaacson & Fischer 2010 (854 stars); Wright et al. 2004 (119 stars)). When we found an overlap between these four sources, we preferentially took chromospheric data from the most recent publication.

2.3.2 Pace 2013

Pace (2013) collected a sample of 1,741 field stars with ages derived from stellar isochrones from the Geneva Copenhagen survey of the solar neighborhood. The goal was to constrain the age range in which chromospheric activity is a reliable age-determination tool. Of the

0 1,741 stars in the Pace (2013) sample, 1,251 stars have log(R HK ) in the appropriate range

0 for the chromospheric activity relation from MH08 (-5.1

2.3.3 Jenkins et al. 2011

Jenkins et al. (2011) assembled a catalog of 890 stars with chromospheric emission measured with an echelle spectrograph. Their purpose was to calibrate their measured S-index to the

0 Mount Wilson S-index, thus allowing them to derive a value for log(R HK )for their sample. Of the 890 stars in the Jenkins et al. sample, 93 are also in the Pace (2013) sample5. Of the

0 797 remaining stars, 596 have R HK values in the appropriate range for our chromospheric activity relation. Of those 596, 33 have excesses in W4 and clean WISE data products. Of those, 30 are presented here for the first time.

2.3.4 Isaacson & Fischer 2010

Isaacson & Fischer (2010) collected spectral data for over 2,600 stars. Their goal was to de- termine if the “jitter” in their chromospheric activity measurements was due to the presence of a planetary system. Of the 2,647 stars in the Isaacson & Fischer (2010) sample, 420 are also either in the Pace (2013) sample or the Jenkins et al. (2011) sample. Of the remaining

0 2,227 stars, 854 are on the main sequence (according to SIMBAD) and have R HK values in the appropriate range. Of the 854 stars we examined, 20 have W4 excesses and clean WISE data products. Of that subsample, 14 have no previous mention in the literature.

2.3.5 Wright et al. 2004

Wright et al. (2004) constructed a sample of over 1,200 F, G, K, and M type stars with chromospheric activity measurements derived from 18,000 spectra from Lick and Keck Ob- servatories. Of the 1,204 stars in the Wright et al. (2004) sample, 119 are unique targets

0 with R HK in the appropriate range. Three stars have evidence of an IR excess at W4 and

5 0 We compared the R HK values for stars which appeared in both the Pace (2013) catalog and the Jenkins et al. (2011) catalog. We found that they agreed to within ∼1%.

11 clean data products. Of those 3 stars, all are presented here for the first time.

2.4 Discussion

2.4.1 Comparison to Protoplanetary Disks

The following discussion is taken largely from the Annual Review article by Wyatt (2008): The IR excess seen in debris disks differs significantly from that seen in protoplanetary disks. The most obvious difference is that protoplanetary disks consist largely of gas and sub-micron sized dust grains. These grains radiate very efficiently (due to their high surface area-volume ratio). Thus the fractional IR (τ) seen in protoplanetary disks are several orders of magnitude higher than those seen in debris disks and higher yet compared to the

−2 −5 −7 Sun’s Kuiper Belt (KB)(τ proto∼10 , τ debris∼10 , τ KB∼10 ). In addition to their higher IR luminosities, protoplanetary disks also have shorter lifetimes than debris disks. Most protoplanetary disks (excluding a few notable exceptions such as HD 21997) are completely dispersed ∼10 Myr after their formation due to mass loss and gas accretion onto the star (Wyatt, 2008). Thus the circumstellar disks we see around >10 Myr stars must be second generation (Zuckerman, 2001).

2.4.2 Models of Dust Production

The dust observed in debris disks is thought to have formed from a collisional cascade in the planetary disk. The generally accepted model of dust formation is as follows: Once the gas in the disk has been dispersed, rocky can begin growing. At first, the disk experiences runaway growth as larger objects grow at faster rates due to gravitational focusing. Once objects reach ∼1000 km in size, they undergo oligarchic growth (Wyatt, 2008). In this phase, a few large planetesimals clean out the small (<100 km) bodies in their neighborhood, and grow slowly into protoplanet-sized objects. At this stage, the large objects in the forming planetary system can dynamically stir the leftover small objects. These small objects will eventually be given enough of a velocity kick for the resulting collisions between

12 small bodies to be destructive. The cold dust that we see around stars with ages >10 Myr is likely the result of these collisions.

2.4.3 Models of Dust Removal

Dust can be removed from the system in several ways. The most effective mechanism is due to radiative forces from the star. Once collisions between intermediate (<100km) sized bodies begins, a collisional cascade is triggered. Two bodies collide to create a population of smaller bodies, which collide with each other to create even smaller bodies, and so on until the debris reaches the blow-out radius. At this point, the dust can be ejected from the system by radiative forces. Dust can also be destroyed by spiraling toward the star as a result of Poynting-Robertson drag and ultimately being vaporized. Small particles can also be carried out by a strong stellar wind. However, since the dust collision timescale for observed debris disks is much smaller than the timescale for Poynting-Robsertson drag, most dust loss is “collision dominated.” (Zuckerman, 2001).

2.4.4 Observations

We examined the WISE fluxes of 2,820 stars with chromospheric activity measurements. Of those, 98 have excesses at 22 µm (3.5%). This detection rate agrees with the rate reported by Trilling et al. (2008) for 24µm excesses around 184 FGK stars (3.8%)6. The ages of our debris disks range from 24 Myr to 9.1 Gyr, with an average of 2.7 Gyr. The debris disk parameters are found in Table 2.2, and the associated WISE data are found in Table 2.3. In Figure 2.2, we display the distribution of sample stars and debris disk stars as a function of chromospheric activity. We see the expected distribution of stars, with most of our sample

0 being inactive (log(R HK )<-4.8) and a hint of the Vaughan-Preston gap at intermediate activity levels (Vaughan & Preston, 1980). It is clear that, relative to the background sample, debris disks are found preferentially around active stars. This is expected, since

6The Trilling et al. (2008) sample of debris disks were measured by Spitzer at 24 µm. Since Spitzer at 24 µm was ∼10 times more sensitive than WISE at 22 µm, we expect our detection rate - after correction for the sensitivity difference - is actually somewhat higher than Trilling’s. In addition, Trilling et al. used a 3σ detection limit to define IR-excess, while we utilize a 5σ detection limit. 13 more active stars tend to also be younger. The distribution of the sample as a function of age is shown in Figure 2.3 and indeed, we see that debris disks are found preferentially around younger stars. By fitting a logarithmic decline to our histogram of debris disk ages,

t0/t we find that the number of debris disks declines as e where t0∼175 Myr (Figure 2.4). This is similar to the results from Su et al. (2006) who found that t0∼150 Myr.

re4

14 Table 2.2. Chromospheric Activity Targets with IR Excesses

0 HIP B-V SpT logR HK Ref AgeRHK AgeROT Pcalc Tstar Rstar LIR/Lbol Tdust Rdust d Disk ref (dex) (Myr) (Myr) (days) K R E-05 K AU pc 296 7.60E-01 G8V -4.5 P13 608 1023 13.32 5700 0.85 5.2a 200a 1.61a 40 none 544 7.50E-01 K0V -4.384 I10 266 337 7.02 5700 0.82 11.2 200 1.55 14 T08 682 6.30E-01 G2V -4.359 P13 219 147 3.57 6000 1.03 14.7 100 8.62 40 C09 1365 7.87E-01 G5 -5.029 I10 7144 7931 43.8 5400 3.93 9.6a 200a 6.66a 137 none 1481 5.40E-01 F8 -4.36 P13 221 98 1.98 6200 1.05 9.8 200 2.35 41 Z11 3391 7.30E-01 G5V -5.021 P13 6994 6855 37.57 5800 1.09 5.9a 200a 2.13a 44 none 5227 8.56E-01 G5V -4.016 I10 10 24 1.76 5000 4.61 13.1a 200a 6.70a 132 none 5373 8.50E-01 K0V -4.311 P13 150 211 5.99 5400 0.75 8.4a 200a 1.27a 35 none 15 5740 6.03E-01 G3V -5.01 J11 6787 3824 20.96 6000 0.86 8.2a 200a 1.80a 69 none 5881 6.71E-01 G5 -4.8 W04 3202 3051 21.63 5800 0.77 8.7a 200a 1.51a 59 none 6276 7.50E-01 G0 -4.284 I10 120 163 4.65 5600 0.75 7.2 200 1.37 35 Z11 6795 7.80E-01 K0V -4.507 I10 637 1117 14.34 5500 0.72 12.2a 200a 1.27a 41 none 6856 9.10E-01 K1V -4.324 P13 166 224 6.52 4900 0.76 12.1a 200a 1.06a 37 Z11* 7576 7.97E-01 G5 -4.41 J11 323 502 9.29 5500 0.77 7.5 200 1.35 24 P09 7978 5.30E-01 F8V -4.731 P13 2323 1285 7.82 6400 0.99 30.9 55 31.17 17 R07 8867 1.01E+00 G5 -4.654 P13 1556 2568 27.84 4900 0.69 9.4a 200a 0.96a 22 none 8920 5.10E-01 G0 -4.471 I10 499 394 3.03 6100 1.26 400 92 O12 9141 6.60E-01 G3 -4.202 P13 59 78 2.66 5900 0.91 10 145 3.5 42 Z11 10977 9.20E-01 K2 -4.821 P13 3505 4913 37.75 5200 0.73 10.4a 200a 1.15a 31 none 12198 6.20E-01 G5 -4.948 I10 5632 3612 21.28 5900 1.17 7.8a 200a 2.37a 75 none 14684 8.10E-01 G0 -4.4 J11 300 456 8.92 5600 0.77 9.4 140 2.86 40 Z11 14809 7.10E-01 G5 -4.377 I10 252 273 5.9 5900 0.97 6.9 200 1.96 49 Z11 17439 8.80E-01 K1V -4.496 P13 590 1121 15.85 5300 0.77 19.4 45 24.83 16 none 17903 8.17E-01 G8V -4.41 J11 323 514 9.62 5600 0.82 8.6a 200a 1.49a 46 none Table 2.2 (cont’d)

0 HIP B-V SpT logR HK Ref AgeRHK AgeROT Pcalc Tstar Rstar LIR/Lbol Tdust Rdust d Disk ref (dex) (Myr) (Myr) (days) K R E-05 K AU pc 18828 0.86 K0V -4.67 I10 1697 2863 26.47 5400 0.7 9.7a 200a 1.19a 43 none 19793 0.657 G3V -4.432 I10 379 412 6.78 5900 1.04 11a 195a 2.21a 46 none 20737 0.85 K0V -4.285 P13 121 188 5.62 5400 0.77 20.1a 200a 1.31a 39 none 21091 0.665 G0 -4.43 I10 374 419 6.96 6000 0.94 11.4a 200a 1.97a 67 none 22320 0.82 G8 -5.042 P13 7378 8509 47.19 5600 0.89 7.4a 200a 1.62a 55 none 22787 0.79 K0V -4.72 P13 2200 3275 26.64 5600 0.78 6.7 200 1.42 26 C09 23243 0.683 G3 -4.96 J11 5853 5031 29.33 5800 0.94 7.9a 200a 1.84a 70 none 26990 0.59 G0V -4.233 P13 78 64 1.99 6100 1.08 10a 200a 2.34a 52 none 27134 0.849 G5 -4.09 J11 21 55 2.81 5200 0.91 13a 200a 1.43a 50 none 16 27429 0.554 G0 -4.758 I10 2645 1471 10.02 6300 1.12 8.1a 200a 2.58a 94 none 29391 0.617 G1V -4.48 J11 531 506 6.95 6100 1.01 7.3a 200a 2.18a 73 none 29442 0.836 K0V -5.06 J11 7722 8982 49.43 5500 1.05 10.1a 200a 1.85a 76 none 29754 0.618 G2 -5.02 J11 6975 4247 23.21 6000 1.3 8.8a 200a 2.72a 99 none 30030 0.587 G0 -4.177 I10 47 46 1.63 6100 1.05 5.1 200 2.27 50 Z11 33690 0.806 K0IV-V -4.498 P13 598 1087 14.52 5600 0.82 20.6 94 6.77 18 R07 34147 0.705 G3V -5.07 J11 7905 7051 36.8 6000 1.17 9a 200a 2.45a 92 none 36129 0.845 G5 -5.003 I10 6656 7943 46.5 5500 0.81 9.7a 200a 1.42a 41 none 36312 0.54 F7V -4.46 J11 463 301 3.74 6300 1.11 13.9a 200a 2.56a 90 none 36515 0.639 G3V -4.385 P13 267 223 4.61 5900 0.91 4 200 1.84 22 P09 36948 0.74 G3 -4.317 P13 157 183 4.9 5700 0.8 271 64 14.75 35 R07 38072 0.628 G2V -4.51 J11 650 665 8.34 5900 0.98 13.8a 200a 1.98a 81 none 41351 0.851 G5 -4.59 J11 1077 1968 21.24 5300 0.7 10.2a 200a 1.14a 43 none 43371 0.772 G5 -4.47 J11 496 839 12.08 5700 0.89 37.6a 200a 1.68a 66 none 44279 0.77 G8IV -4.91 J11 4951 5745 35.79 5700 1 15.2 200 1.89 65 none Table 2.2 (cont’d)

0 HIP B-V SpT logR HK Ref AgeRHK AgeROT Pcalc Tstar Rstar LIR/Lbol Tdust Rdust d Disk ref (dex) (Myr) (Myr) (days) K R E-05 K AU pc 45621 0.869 K0 -4.45 W04 431 782 12.81 5400 1.09 7.8a 200a 1.85a 33 none 45749 0.83 K0V -4.755 P13 2608 3892 30.62 5300 0.84 10.3a 200a 1.37a 35 none 45950 0.581 G0 -4.544 I10 810 639 7.07 6200 1.15 6.7a 200a 2.57a 71 none 47135 0.588 G2V -4.34 J11 189 103 2.59 6100 1.09 7 150 4.19 63 S06 47990 0.663 K0 -4.64 J11 1439 1609 14.83 5900 1.15 10a 200a 2.33a 66 none 48133 0.894 K1V -4.91 J11 4951 6368 42.83 5200 0.87 10.4 200 1.37 26 none 48423 0.72 G5 -4.468 P13 489 724 10.38 5800 0.89 11.1 150 3.09 32 C09 50701 0.623 G3V -4.97 J11 6038 3876 22.32 5800 1.06 10.1a 200a 2.07a 67 none 50757 0.649 F7V -4.669 I10 1688 1708 14.92 6000 7.92 16a 200a 16.57a 283 none 17 51783 0.713 G5 -5.06 J11 7722 7092 37.37 5700 0.87 9.8a 200a 1.64a 62 none 51884 0.855 K0 -4.47 W04 496 920 13.86 5300 1.02 7a 200a 1.67a 34 none 52462 0.877 K1V -4.338 P13 186 237 6.56 5300 0.73 96.4 40 29.8 22 R07 52933 0.892 K0 -5.06 J11 7722 9136 52.44 5400 0.85 12.7a 200a 1.44a 52 none 54459 1.09 K0 -5.054 P13 7602 8292 56.64 4600 0.58 13.8a 190a 0.79a 26 none 59259 1.06 K2V -4.299 P13 135 188 6.53 5100 1.1 15.9a 200a 1.66a 51 none 59315 0.7 G5V -4.294 P13 130 146 4.08 5800 0.83 7.3a 200a 1.62a 38 none 60074 0.6 G2V -4.385 P13 268 182 3.71 6000 0.94 107 55 26.01 29 R07 66676 0.588 G0V -4.78 J11 2929 1868 13.31 6000 1.09 12.6a 200a 2.28a 59 none 66765 0.86 K1V -4.408 P13 317 515 10.03 5400 0.73 8.7 200 1.24 16 T08 67055 0.876 K1V -4.56 J11 896 1686 19.9 5400 0.72 13.1a 200a 1.22a 45 none 69129 0.875 G5 -4.99 J11 6412 7784 47.22 5300 0.83 10.5a 200a 1.36a 45 none 71640 0.652 G3V -4.71 J11 2092 2042 16.61 6000 1.05 7.1a 200a 2.20a 72 none 73061 0.783 G8V -4.98 J11 6224 7027 40.71 5500 2.01 6.22a 200a 3.53a 91 none 73869 0.75 G5 -4.948 P13 5632 6068 36.01 5700 0.91 4.6?a 200a 1.72a 44 H08 Table 2.2 (cont’d)

0 HIP B-V SpT logR HK Ref AgeRHK AgeROT Pcalc Tstar Rstar LIR/Lbol Tdust Rdust d Disk ref (dex) (Myr) (Myr) (days) K R E-05 K AU pc 75266 1 K3V -5.014 P13 6853 7913 52.29 5100 0.77 10.1a 200a 1.16a 25 none 76280 0.669 G5 -4.904 P13 4846 4102 25.48 5800 1 9.1a 200a 1.96a 41 none 76704 0.771 G5 -4.578 I10 1001 1684 17.9 5600 2.71 8.9a 200a 4.94a 113 none 76757 0.605 G5 -4.617 I10 1262 1075 10.28 6100 1.08 8.1a 200a 2.34a 73 none 77199 0.97 K2V -4.155 P13 38 90 4.08 4600 1.03 16.5a 200a 1.27a 41 none 77603 0.7 G2IV/V -5.059 P13 7703 6762 35.66 5900 2.46 7.1a 200a 4.98a 107 none 78466 0.63 G3V -4.874 P13 4337 3126 20.11 5800 1.11 9.3a 200a 2.17a 46 none 80129 0.795 G6IV -5 J11 6599 7509 42.84 5600 2.01 7.9a 200a 3.66a 92 none 87091 0.99 K2IV/V -4.548 P13 831 1521 20.44 5000 0.68 13.8a 200a 0.99a 31 none 18 87116 0.71 G6 -4.935 P13 5396 5225 31.3 5700 0.94 8.5a 200a 1.78a 27 none 90593 0.68 G5 -5.017 P13 6919 5694 31.29 6000 1.25 6.4a 200a 2.62a 65 none 92304 0.737 G8V -4.45 J11 431 655 10.05 5700 1.15 9.34a 200a 2.17a 76 none 96635 0.872 G8IV -4.18 J11 48 109 4.2 5200 0.67 12.3a 200a 1.05a 35 none 96854 0.7 G6IV/V -4.961 P13 5862 5380 31.33 5800 0.99 7.1a 200a 1.94a 42 none 98621 0.68 G5V -4.923 P13 5172 4517 27.45 5800 0.84 7.3a 200a 1.64a 38 none 100942 0.68 G2 -4.947 P13 5614 4810 28.44 6000 1.01 7.8a 200a 2.11a 83 none 101726 0.66 G3V -4.452 P13 436 499 7.61 5900 0.82 7.1a 200a 1.66a 37 none 105388 0.65 G5V -4.144 P13 35 51 2.06 5700 0.79 24.3 100 5.97 46 Z11 107457 0.727 G5 -4.46 I10 463 693 10.23 5900 0.87 8.6a 200a 1.76a 38 none 113010 0.875 K1 -4.99 J11 6412 7784 47.22 5100 0.81 17.8a 200a 1.22a 47 none 115527 0.71 G5 -4.394 P13 286 338 6.65 5800 0.84 7.2a 200a 1.64a 30 none 116376 0.702 G5V -4.57 J11 953 1333 14.28 5700 0.96 8.1a 200a 1.81a 71 none 117247 0.882 K1V -4.9 J11 4777 6199 41.76 5200 0.77 9.33a 200a 1.21a 36 none 117481 0.5 F6 -4.413 P13 330 375 2.05 6300 1.05 5.9a 200a 2.42a 36 none Table 2.2 (cont’d)

0 HIP B-V SpT logR HK Ref AgeRHK AgeROT Pcalc Tstar Rstar LIR/Lbol Tdust Rdust d Disk ref (dex) (Myr) (Myr) (days) K R E-05 K AU pc 117702 0.794 K1V -5.07 J11 7905 8775 46.73 5300 0.79 11.7a 200a 1.29a 48 none 118319 0.639 G2V -5.082 I10 8123 5435 28.09 6000 1.89 7.8 137 8.43 94 B09 19

Note. — P13=Pace (2013), J11=Jenkins et al. (2011), I10=Isaacson & Fischer (2010), W04=Wright et al. (2004), Z11=Zuckerman et al. (2011), B09=Bryden et al. (2009), H08=Hillenbrand et al. (2008), T08=Trilling et al. (2008), Rhee et al. (2007), C09=Carpenter et al. (2009), Plavchan et al. (2009). aThese stars have only one data point in excess. Thus, the dust blackbody was fit for the highest possible temperature (and consequently the lowest possible tau). *Zuckerman et al. (2011) did not find this star to have an IR excess. AgeRHK is the age calculated directly from the chromospheric activity, while AgeROT is the age calculated from the rotation period (Pcalc), which is in turn calculated from the chromospheric activity. Tstar and Rstar come from the Hauschildt et al. (1999) photosphere fits to the optical data points. LIR/Lbol,Tdust and Rdust come from the blackbody fit to the mid-IR data points. Mdust is calculated for those stars with a well-determined blackbody fits using the relation from Rhee et al. (2007). The distance from Earth (d) is calculated from the published Hipparcos parallaxes. Table 2.3. WISE Data for Stars with Excesses

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

296 P13 721.26 778.2 344.04 414.71 66.42 65.9 18.04 21.45 0.47 3.41 7.22 544 I10 5367.38 6156.72 2560.27 3457.17 494.26 499.93 134.28 184.78 1.7 50.49 29.7 682 P13 1110.77 1158.48 557.44 651.24 100.74 98.25 27.53 41.25 0.71 13.72 19.35 20 1365 I10 874.3 929.58 398.68 524.49 80.05 82.41 21.68 27.41 0.53 5.73 10.89 1481 P13 1040.67 1072.23 558.27 618.5 97.78 95.35 27.92 41.35 0.51 13.43 26.19 3391 P13 934.35 1009.92 450.45 543.18 85.82 83.89 23.33 28.07 0.48 4.74 9.81 5227 I10 2146.64 2423.89 958.58 1359.92 198.75 215.31 53.69 71.09 0.8 17.4 21.86 5373 P13 644.48 730.95 293.89 376.83 59.01 59.53 15.98 19.77 0.46 3.78 8.24 5740 J11 213.23 219.33 107.01 117.31 19.34 18.82 5.29 7.1 0.36 1.82 5.03 5881 W04 396.03 411.04 190.92 217.64 36.38 35.17 9.89 12.75 0.35 2.86 8.13 6276 I10 701.85 747.29 330.61 397.87 64.75 65.1 17.57 22.61 0.53 5.04 9.6 6795 I10 388.81 529.53 179.32 250.12 35.68 38.73 9.62 13.56 0.4 3.93 9.81 6856 P13 559.89 603.52 252.23 321.32 52.82 53.22 14.34 17.88 0.42 3.54 8.54 Table 2.3 (cont’d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

7576 J11 1484.76 1613.99 684.76 870.96 136.26 132.57 36.75 48.37 0.62 11.62 18.77 7978 P13 5290.07 6542.38 2851.54 3847.18 492.71 561.5 141.75 216.41 1.73 74.66 43.13 8867 P13 1182.05 1217.55 532.51 680.8 111.52 107.96 30.27 35.74 0.62 5.48 8.91

21 8920 I10 276.4 324.11 147.9 208.23 25.99 632.34 7.42 538.11 3.66 530.69 145.04 9141 P13 764.2 851.7 387.29 453.04 71.75 72.29 19.89 28.25 0.46 8.37 18.07 10977 P13 671.34 723.58 300.72 385.25 61.57 62.29 16.51 20.39 0.42 3.88 9.32 12198 I10 420.69 437.21 213.2 229.58 39.5 36.84 10.95 14.15 0.39 3.2 8.2 14684 J11 632.44 674.67 297.91 362.86 58.35 58.45 15.83 21.12 0.37 5.29 14.22 14809 I10 503.44 529.53 255.13 286.11 47.27 45.91 13.1 16.82 0.48 3.72 7.79 17439 P13 3193.48 3504.93 1437.64 1871.78 292.39 285.93 78.38 93.74 0.86 15.37 17.83 17903 J11 437.51 485.61 206.09 255.47 40.36 41.38 10.95 13.53 0.42 2.57 6.1 18828 I10 393 432.4 179.21 223.94 35.98 36.67 9.75 12.51 0.37 2.76 7.56 19793 I10 748.66 763.29 379.41 422.03 70.29 66.17 19.48 27.74 0.56 8.26 14.87 Table 2.3 (cont’d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

20737 P13 596.66 643.71 272.08 345.26 54.63 56.96 14.8 23.96 0.47 9.17 19.5 21091 I10 396.87 422.95 199.17 223.53 35.99 35.15 9.84 14.54 0.55 4.7 8.6 22320 P13 357.68 391.46 168.48 202.55 33 33.32 8.95 11 0.34 2.04 6.02

22 22787 P13 1427.91 1627.4 672.62 880.44 131.74 134.51 35.75 43.41 0.63 7.66 12.25 23243 J11 276.97 292.34 133.53 157.81 25.44 25.4 6.91 8.84 0.27 1.92 7.14 26990 P13 606.13 630.21 324.34 347.49 56.98 55.94 16.27 22.89 0.37 6.62 18.09 27134 J11 453.46 514.15 203.13 286.91 41.59 47.47 11.15 15.38 0.3 4.23 14.33 27429 I10 201.64 207.15 108.45 112.45 18.74 18.2 5.41 7.33 0.35 1.92 5.5 29391 J11 320.66 343.79 171.59 188.17 30.15 29.88 8.61 11.23 0.37 2.62 7.04 29442 J11 277.26 288.33 127.87 151.68 25.44 25.17 6.86 9.25 0.34 2.39 6.94 29754 J11 256.74 266.62 128.85 140.26 23.28 22.49 6.36 8.51 0.39 2.14 5.48 30030 I10 734.69 838.47 393.14 434.65 69.07 69.33 19.72 24.39 0.54 4.67 8.7 33690 P13 2994.1 3254.83 1410.38 1787.97 276.23 276.16 74.96 110.46 1.11 35.49 32.12 Table 2.3 (cont’d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

34147 J11 259.54 269.58 130.25 142.87 23.54 23.4 6.43 8.84 0.29 2.41 8.31 36129 I10 611.6 707.76 282.07 366.56 56.13 58.35 15.14 19.22 0.44 4.08 9.32 36312 J11 286.18 304.43 153.91 165.1 26.6 27.27 7.67 12.79 0.33 5.12 15.36

23 36515 P13 2686.2 3042.82 1361.33 1607.05 252.19 247.21 69.9 86.75 0.94 16.85 17.98 36948 P13 769.41 819.39 367.01 453.04 70.85 73.07 19.25 43.92 0.67 24.67 36.93 38072 J11 258.83 272.83 131.17 144.86 24.3 24.16 6.74 10.57 0.3 3.83 12.94 41351 J11 408.76 443.29 184.01 229.79 37.43 37.21 10.03 12.53 0.46 2.5 5.42 43371 J11 229.69 244.28 109.56 130.9 21.15 23.3 5.75 13.72 0.36 7.98 22.03 44279 J11 361.23 402.8 172.31 209.19 33.26 33.06 9.04 11.54 0.3 2.5 8.35 45621 W04 1469.2 1520.46 669.96 906.66 134.52 140.59 36.44 45.03 0.61 8.6 14.05 45749 P13 756.03 833.08 340.35 456.39 69.22 72.76 18.55 23.87 0.37 5.32 14.3 45950 I10 397.23 414.85 213.1 227.48 37.32 35.95 10.66 13.79 0.41 3.14 7.58 47135 J11 410.75 435.6 219.8 234.5 38.62 38.38 11.03 14.29 0.31 3.26 10.38 Table 2.3 (cont’d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

47990 J11 424.11 446.57 214.93 244.87 39.82 38.5 11.04 14.77 0.37 3.74 10.21 48133 J11 1528.79 1657.61 684.82 966.42 140.21 150.11 37.59 46.91 0.69 9.32 13.43 48423 P13 1126.01 1093.17 542.85 639.35 103.42 99.47 28.11 42.72 0.65 14.61 22.51

24 50701 J11 434.93 481.6 209.68 259.74 39.95 41.35 10.86 14.46 0.45 3.6 8.1 50757 I10 1253.79 1341.11 629.22 719.44 113.71 115.75 31.08 51.69 0.6 20.61 34.36 51783 J11 260.14 286.21 124.09 150.57 23.96 24.35 6.51 8.85 0.39 2.34 6.07 51884 W04 1241.11 1369.63 558.72 714.36 113.64 112.27 30.46 36.88 0.66 6.41 9.66 52462 P13 1645.64 1740.48 740.83 970.87 150.67 151.17 40.39 49.51 0.61 9.13 14.86 52933 J11 427.67 467.62 195.02 244.42 39.16 39.81 10.61 14.97 0.46 4.36 9.46 54459 P13 553.42 633.12 250.91 320.44 52.62 50.6 14.64 18.49 0.54 3.85 7.12 59259 P13 607.34 730.95 271.41 388.81 55.94 63.84 15.03 21.12 0.47 6.09 13.09 59315 P13 753.36 820.14 363.19 440.7 69.2 70.16 18.81 24.29 0.42 5.48 13.11 60074 P13 1858.5 1929.89 932.69 1091.14 168.55 164.1 46.07 68.9 0.83 22.83 27.61 Table 2.3 (cont’d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

66676 J11 538.09 639.57 270.04 337.71 48.8 55.15 13.34 21.39 0.72 8.05 11.2 66765 P13 3127.27 3518.11 1426.05 1848.43 286.33 290.51 77.56 103.45 1.04 25.89 25.02 67055 J11 385.85 414.85 175.95 216.84 35.33 34.9 9.57 12.96 0.38 3.39 8.84

25 69129 J11 393.61 429.62 177.2 224.36 36.04 37.97 9.66 12.48 0.37 2.82 7.73 71640 J11 331.21 346.97 166.22 185.76 30.04 29.08 8.21 10.73 0.42 2.52 6.06 73061 J11 791.61 867.54 365.09 455.55 72.65 72.45 19.59 23.93 0.52 4.34 8.39 73869 P13 788.33 844.67 376.04 442.73 72.59 69.33 19.72 22.92 0.43 3.2 7.42 75266 P13 1151.08 1215.31 514.4 671.34 106.02 105.75 28.49 34.86 0.49 6.37 13.05 76280 P13 842.04 882.85 405.94 485 77.34 75.46 21.02 27.35 0.46 6.33 13.76 76704 I10 804.07 838.47 378.76 452.63 74.18 72.84 20.13 25.63 0.35 5.5 15.76 76757 I10 377.36 400.21 201.93 214.06 35.48 34.15 10.13 13.2 0.29 3.07 10.58 77199 P13 759.08 847.01 344.15 473.96 72.17 77.73 20.09 27.05 0.5 6.96 13.98 77603 P13 784.36 823.93 397.5 446.83 73.64 70.9 20.41 25 0.53 4.58 8.65 Table 2.3 (cont’d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

78466 P13 869.66 891.84 419.26 500.43 79.88 78.8 21.71 28.46 0.55 6.75 12.36 80129 J11 823.48 936.46 387.9 480.99 75.97 75.92 20.62 26.28 0.57 5.66 9.97 87091 P13 647.02 699.34 288.93 362.19 59.9 59.63 16.18 21.31 0.45 5.13 11.35

26 87116 P13 1932.13 2015.57 921.64 1107.84 177.92 164.63 48.34 61.75 1.06 13.41 12.63 90593 P13 631.64 667.25 316.99 358.87 57.28 56.22 15.66 19.89 0.44 4.23 9.66 92304 J11 409.81 541.36 195.48 259.02 37.74 40.41 10.25 13.84 0.44 3.58 8.2 96635 J11 492.56 518.91 220.64 286.64 45.17 46.6 12.11 15.99 0.51 3.87 7.67 96854 P13 789.58 878.8 380.66 470.48 72.52 72.86 19.71 24.83 0.56 5.12 9.21 98621 P13 766.64 856.42 369.59 444.77 70.42 69.46 19.14 23.45 0.57 4.31 7.54 100942 P13 305.13 323.81 153.13 171.14 27.67 27.44 7.56 10.09 0.38 2.52 6.66 101726 P13 732.56 823.17 371.25 450.96 68.78 70 19.06 24.16 0.55 5.1 9.25 105388 P13 509.64 576.35 243.1 304.33 46.93 49.31 12.75 19.67 0.43 6.92 15.99 107457 I10 787.7 877.18 399.19 479.67 73.95 75.28 20.5 27.03 0.34 6.53 19.5 Table 2.3 (cont’d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) HIP Star Ref W1phot W1 W2phot W2 W3phot W3 W4phot W4 W4Err W4 Ex SNR mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy mJy

113010 J11 445.83 546.37 199.23 281.41 41.06 46.25 11.04 15.69 0.41 4.65 11.24 115527 P13 1200.58 1319.22 578.8 698.77 110.27 108.37 29.97 38.53 0.6 8.56 14.24 116376 J11 308.29 314.98 147.05 168.32 28.39 27.45 7.71 10.16 0.44 2.45 5.58 117247 J11 603.47 647.27 270.32 356.24 55.35 57.39 14.84 17.94 0.49 3.1 6.35

27 117481 P13 1565.57 1630.4 841.98 893.46 145.49 140.62 41.98 54.76 0.81 12.78 15.78 117702 J11 346.93 374.19 156.18 194.87 31.77 31.94 8.52 11.36 0.38 2.85 7.56 118319 I10 587.43 592.5 294.81 322.51 53.28 51.75 14.56 19.49 0.51 4.93 9.72

Note. — P13=Pace (2013), J11=Jenkins et al. (2011), I10=Isaacson & Fischer (2010), W04=Wright et al. (2004). Columns 3, 5, 7, and 9 represent the predicted photospheric values at the W1, W2, W3, and W4 wavelengths. Columns 4, 6, 8, and 10 represent the measured fluxes from WISE. Column 11 is the published WISE uncertainty at W4. Column 12 is excess flux above the photosphere at W4 (W4-W4phot). Column 13 is the signal to noise ratio of the W4 excess (discussed in Section 2). We examined the evolution of the infrared luminosity fraction τ (=LIR/Lbol) with age, where τ is determined from the following formula:

(νF ) τ = ν peak,dust (2.4) (νFν)peak,star

where Rstar and T star are determined by the best-fit photospheric SED, T dust is determined

7 by the best-fit blackbody to the IR excess, and Rdust is determined from the equation :

Rstar Tstar 2 Rdust = ( ) (2.5) 2 Tdust

A histogram of dust radii for those systems with several mid-IR observations is shown in Figure 2.5. Figures 2.6, 2.7, and 2.8 show a visualization of the dust radii compared with the Solar System’s Kuiper and Asteroid Belts.

7 This equation assumes that the dust is in a thin ring of inner radius Rdust. 28 Figure 2.2 The distribution of stars as a function of their chromospheric activity parameter. It is clear that as the background sample (which includes the debris disk stars) decreases toward higher values of logRHK (more active stars), the sample of debris disks does not. In fact, the distribution of debris disks appears to be somewhat bimodal.

29 Figure 2.3 The distribution of stars as a function of stellar age, as determined from their chromospheric activity. While the background sample (which includes debris disks stars) has a smooth distribution of ages, there is a clear peak in the distribution of debris disks at younger ages. Furthermore, it is clear that some debris disks persist around stars after the initial era of planet formation, as indicated by the long tail of detected debris disks at old ages.

30 Figure 2.4 This figure shows the evolution of debris disks over time. We used 100 Myr bins and fit a logarithmic profile to the decline of the number of debris disks as a function of age. −t0/t We find that the number of debris disks declines as e where t0∼175 Myr.

31 Figure 2.5 This figure shows a histogram of dust semi-major axes for systems with dust blackbodies fit to more than one mid-IR data point.

32 33

Figure 2.6 This figure is a visualization of debris disks in systems with well determined dust radii. Note that the thickness of the dust rings is artificially added. Two stars are previously known planet hosts (HIP 7978 and HIP 118319). 34

Figure 2.7 Same as Figure 2.6. 35

Figure 2.8 Same as Figure 2.6. The scale of the debris disk and planet orbit for HIP 118319 is multiplied by 5 for easier visualization. The mass of the dust can be derived given certain assumptions about the observed dust:

2 Fνd Mdust = (2.6) κνBν(Td)

where d is the distance from Earth and κ is the dust opacity, and (in the literature) is often assumed to be 1.7 cm2g−1 at 800 µm (Zuckerman & Becklin, 1993). At shorter wavelengths, the opacity rises to ∼5 cm2g−1 for a 200 K body (Pollack et al., 1994). The opacity curves from Pollack et al. (1994) employ assumptions about grain size and composition of the dust. However Rhee et al. (2007) provides a relation between the dust mass and the fractional IR

luminosity τ (=LIR/Lbol):

τ 1 ∝ 2 (2.7) Mdust ρaRdust

where a is the characteristic radius of the grains. This formula was confirmed empirically using stars with dust masses measured directly from the submillimeter flux, assuming that the dust is in an optically thin ring and that the radius and density of the grains do not change significantly from star to star (see their Figure 4). We similarly calculate dust masses for those stars in our sample with well defined values of τ (those stars whose IR excess could be fit with a unique blackbody curve8). These masses are listed in Table 2.1.

We expect the amount of dust (parameterized by the fractional infrared luminosity) to decline as a function of stellar age. Over time, there should be more collisions between planetestimals, leading to more debris being ground down to the blow-out size and ejected from the system by radiative forces. This decline in τ with age has been seen in A stars and solar-type stars (e.g. Su et al. 2006, Bryden et al. 2006, Rhee et al. 2007. We are able to reproduce this trend with our data; the dustiest debris disks are found around young stars (<2 Gyr).

8Many sources had single-channel excesses and could not be fit with a unique blackbody. Further mid-IR observations are needed to constrain the properties of these sources (see Section 2.6.2)

36 2.5 Stellar Characteristics

2.5.1 Spectral Type

A summary of our findings broken down by spectral type can be found in Table 4.9. We find that debris disks were detected predominantly around K-type stars with ∼2.5σ significance. This seems like a strange result. Since a typical WISE sensitivity limit is 6mJy, a detectable excess would have to be at least 6mJy above the photosphere. For stars at the same distance from Earth, this excess would constitute a higher percentage of the photosphere (a higher τ) for a dim K star than for a bright F star. In other words, a higher τ would be required to constitute a significant excess around a dim K star, while a lower τ would be necessary to be detectable at that same level around an F-type star. Thus we are sensitive to smaller τ in F stars than in K stars. Since our sensitivity is set by the flux of the photosphere at 22 µm (for a given distance), we should be able to quantify our sensitivity bias. The flux of the photosphere is defined by:

R F = πB ( )2 (2.8) ν ν d

where R is the radius of the star and d is the distance to Earth. Since our distance distri- bution shows no strong dependence on spectral type, we can assume that our F stars and K stars are essentially at the same distance. We also assume that all stars in Table 2.2 have reached the Rayleigh Jeans tail by 22 µm so that Bν∝T. Thus:

F T R ν,F = F ( F )2 (2.9) Fν,K TK RK

Using average values for our F and K stars (RF =1.05RJ, RK =0.84RJ, T F =6600K,

T K =4100K), we find that F ν,F /F ν,K = 2.5. Thus we are 2.5 times more sensitive to F stars than to K stars; Any discrepancy in the detection rate between F stars and K stars would only be magnified when this sensitivity is taken into account. Trilling et al. (2008) also found that K stars had a higher debris disk detection rate than G stars (albeit with a

37 Table 2.4. Detection Fraction by Spectral Type

Type Fraction

F Stars 5/433 (1.15±0.4%) G Stars 65/1904 (3.4±0.4%) K Stars 28/482 (5.8±1.0%)

smaller sample size).

2.5.2 Distance from Earth

If young stars are preferentially found closer to Earth, then we would be more sensitive to younger stars, and thus our sample would be biased. We examine this possibility in Figure 2.9. In Figure 2.9, we can see that there is no obvious correlation between distance and age9. Thus we do not believe that a parallax effect is biasing our data.

2.5.3 Metallicity

Since debris disks are found around the dustiest stars, it might be expected that they would also be preferentially found around stars with high . We gathered metallicity data for as many stars in our sample of 2,820 as possible (∼2,000 stars) from Anderson & Francis (2012), and examined the dependence of debris disk incidence on metallicity; no correlation is apparent (Figure 2.10). This result agrees with the findings of Greaves et al. (2006), who found no correlation between debris disk incidence and metallicity, even when there was a correlation between giant planet incidence and stellar metallicity.

2.5.4 Planet Hosts

Anderson & Francis (2012) provide data on known planet hosts; 136 of our 2,820 stars (∼5%) are known hosts to one or more substellar objects. Four stars out of 98 debris disks presented

9All distances were calculated from Hipparcos parallaxes (Perryman et al., 1997).

38 Figure 2.9 The distribution of debris disks as a function of distance relative to the background sample (which includes the debris disk stars). It is clear that the frequency of debris disk detection has no dependence on distance (inside of 150 pc). Detected debris disks are too few to tell if there is any dependence on distance past 150 pc.

39 Figure 2.10 ] This figure demonstrates the fact that debris disk incidence is not dependent on the metal- licity of the host star. A similar trend was noticed by Greaves et al. (2006). This histogram includes 2,110 stars with measured metallicities from Anderson & Francis (2012), 66 of which are debris disk hosts.

40 here (∼4%) are planet hosts, and all have only one known giant planet. This is a surprising result, since we believe that debris disks are signposts of planet formation. The existence of planets, especially giant planets, helps to dynamically stir the population of small bodies to the velocity necessary for a collisional cascade. One therefore might expect to see a high percentage of planet hosts in our debris disk sample. This non-correlation between planet hosts and debris disk hosts was also noted by Bryden et al. (2009).

HIP 3391 is host to a 1.56MJ planet with a semi-major axis of 1.28 AU (Tamuz et al., 2008). HIP 3391 also has a 22 µm excess, but without additional data points we can only provide an upper limit on the temperature (and a lower limit on the semi major axis of the dust). For a maximum dust temperature of 200 K, the inner semi major axis of the dust is at 2.1 AU. We can thus say that the dust is likely outside the orbit of the planet. We then refitted the dust blackbody, and found a minimum temperature of 45 K, corresponding to a maximum inner semi major axis of the dust of 42 AU.

HIP 7978 is orbited by a 0.9MJ planet at 2.022 AU (Butler et al., 2006) and a 55 K belt of dust 30 AU from the host star (this work). Additional data were taken from the IRS, IRAS and MIPs catalogs and corroborate the IR excess seen by WISE. Thus we are confident about the quoted dust temperature and radius.

HIP 90593 hosts a 0.67MJ planet orbiting 2.24 AU from its host star (Fischer et al., 2007). It also has a single-channel excess indicating a debris disk with temperature 47 K

K, corresponding to a range of inner radius 2.62 AU

HIP 118319 is host to a 0.71MJ which orbits its host star at 0.233 AU Johnson et al. (2006). It also has a 137 K debris disk (confirmed by a Spitzer 70 µm data point presented by Bryden et al. 2009) at a minimum radius of 8.43 AU, well outside the orbit of the planet.

The results are consistent with a dust location analogous to the Kuiper belt rather than the asteroid belt. Thus our results seem consistent with the physical picture of a debris disk (though we are working with small-number statistics and assuming that there are no undetected close-in planets). A visualization of the debris disks found around planet hosts

41 with ill-determined dust locations can be seen in Figure 2.11. Note that the dust radii in the top two panels of Figure 2.11 represent the minimum radii of the dust orbits (or the maximum temperature for the dust blackbody fits).

2.5.5 Lithium Abundances

The abundance of Li absorption at 6707.8 A˚ has been cited as a possible tracer of stellar age (e.g. Zuckerman & Song 2004). Twenty-eight stars in our debris disk sample have lithium abundances available in the literature. We were also able to measure lithium abundances for 8 stars in our debris disk sample using the Hamilton Echelle Spectograph on the 3 m Shane Telescope at Lick Observatory. We reached typical sensitivities of 10-15 mA˚. The relevant data are listed in Table 2.5. We compared the Li abundance with the age determined from the activity-rotation-age relation of MH08, and see that the Li abundance decreases as a function of age (see Figure 2.12). Four of our stars which appear to be old according to their low levels of chromospheric activity also have no detectable lithium. This correlation supports our use of chromospheric activity as an age indicator.

42 Figure 2.11 This figure is a visualization of the debris disks around known planet hosts with poorly-determined dust radii. The disks around HIP 3391 and HIP 90593 are located at the minimum possible radius for these systems (corresponding to the maximum possible dust temperature). For comparison, we include the “debris disks” of the solar system (the Asteroid and Kuiper Belts) with the orbit of Jupiter shown.

43 Table 2.5. Lithium Data

HIP B-V EW(Hα) EW(Li) Ref A˚ mA˚

682 0.630 2.34 122 W07 1481 0.540 130 T06 5227 0.856 74 T06 5373 0.850 50 T06 6276 0.750 160 T06 6856 0.910 168 T06 9141 0.660 2.52 195 W07 14684 0.810 1.76 178 W07 14809 0.710 145 D09 17439 0.870 0 T06 22787 0.800 2.15 11 W07 27134 0.850 0 40 T06 27429 0.554 2.342 81 this work 29442 0.836 1.598 <10 this work 29754 0.618 1.966 16 this work 30030 0.587 2.63 177 W07 33690 0.790 0 T06 36129 0.845 1.495 <5 this work 36515 0.640 81 T06 36948 0.740 2.32 176 W07 41351 0.851 1.477 <10 this work 47990 0.663 1.912 31 this work

44 Table 2.5 (cont’d)

HIP B-V EW(Hα) EW(Li) Ref A˚ mA˚

48423 0.720 2.63 62 W07 52462 0.877 138 T06 59259 1.060 0 T06 59315 0.710 152 T06 60074 0.600 2.79 123 W07 66765 0.860 10 T06 73869 0.750 2.14 166 W07 76757 0.605 1.924 87 this work 77199 0.970 420 T06 90593 0.680 1.825 <10 this work 96635 0.872 1.6 11 W07 101726 0.650 60 T06 105388 0.720 227 T06 115527 0.710 133 T06

Note. — T06=Torres et al. (2006), W07=White et al. (2007), D09=da Silva et al. (2009)

2.6 Issues and Warnings

2.6.1 Chromospheric Activity Variations

We know that our Sun undergoes variations in magnetic activity over a ∼ 11 year period. It is assumed (and in some cases, observed) that other solar-type stars experience similar short-term variations (Duncan et al., 1991). If snapshots of stellar activity are taken, there is no way to tell if the star is being observed during an active period, or a quiet period. Only by taking long (∼10 year) baseline observations can we be certain that we are measuring the average magnetic activity of that star. Few such surveys have been conducted (e.g. Wright et al. 2004, and future surveys will be limited by telescope availability (a spectral resolution of at least 1 A˚ is needed to observe the Ca II H & K emission cores which indicate magnetic activity) and the willingness of observers to spend decades on a single sample of stars. This

45 Figure 2.12 Comparing lithium abundances (measured by the equivalent width (EW) of the Li absorption line at 6707.8 A˚) with the ages derived using the activity-rotation-age relation of MH08, we see that there is an apparent decrease in Li as a function of age. We expect the rate of this evolution to be mass-dependent (e.g. Zuckerman & Song 2004); this figure conflates all F, G, and K-type stars.

46 systematic uncertainty introduces an extra source of error in the calculation of age from chromospheric activity. For the Sun, this variation amounts to a 20% uncertainty in age as calculated from the chromospheric activity during quiescence and during a period of high activity (see Vican 2012 for further discussion of this issue).

2.6.2 Issues with SED Fitting

For single band excesses, many different blackbodies could theoretically be fit to the same data point (see Figure 2.13). The excess we see could be from warm dust emission, or the Wein tail of a blackbody for cooler dust. In some cases, we were able to add data from previous studies (Spitzer, IRAS, etc.) to constrain a blackbody fit to the dust. For those stars for which we found only one data point in excess (i.e. W4), we fit the maximum temperature blackbody, which corresponds to a lower limit to τ (= LIR/Lbol). For these stars, it is difficult to say how relevant our calculations for Rdust and M dust may be, but we include these calculations in Table 2.1. Follow-up observations with mid-IR instruments such as those on SOFIA might help resolve these discrepancies by providing a second data point with which one could constrain a blackbody dust fit. Physical maps of the dust from ALMA would be the best way to determine the dust radius, since the blackbody radius often underestimates the true radius of the dust (Rodriguez & Zuckerman, 2012).

47 48

Figure 2.13 Here we present two possible dust blackbodies which could be fit to the same excess point for HIP 90593 (one of our planet hosts). Clearly there is a large discrepancy in both the temperature and τ values derived from a single data point excess. Further observations are needed to constrain dust characteristics. 2.7 Conclusions

We examined 2,820 solar type (F, G, and K type) stars using WISE to search for an infrared excess at 22 µm. We found 98 stars with a clear WISE excess at 22 µm (a detection rate of 3.5%), 74 of which are presented here for the first time.

An IR excess at 22 µm is indicative of either hot dust or the Wein tail of a cold dust component. For debris disks with only the 22 µm data point in excess, follow-up observations are necessary to constrain the properties of the dust. If the dust is truly hot (∼200 K), the drop-off in flux at long wavelengths will make detections with sub-mm instruments (e.g. ALMA, SCUBA-2) unlikely (although a non-detection could also help to constrain the dust temperature; see Bulger et al. 2013). Mid-IR instruments such as FORCAST on SOFIA could be used to confirm the presence of cold dust. It is important to understand the temperature evolution of the dust, especially for those stars which seem to be old (>2 Gyr). These old systems are either (1) the tail end of the steady-state evolution of solar type debris disks or (2) the result of cataclysmic collisions between two large rocky bodies (e.g. BD +20 307, Song et al. 2005). Observations in the mid-IR and sub-mm to determine the dust temperature will help distinguish between formation mechanisms.

49 CHAPTER 3

Herschel Observations of Dusty Debris Disks

3.1 Introduction

In this paper, we present Herschel observations of 24 stars initially identified with IRAS and/or Spitzer as definitely or possibly possessing a debris disk.

One goal of our project was to search for cold dust components that would peak near the Herschel PACS wavelengths (70, 100, and 160 µm). In the case that there is no separate cold dust component present, Herschel photometry helps to better characterize the Rayleigh- Jeans tail of thermal emission from warm dust.

Another goal was the identification of disks with double-belt debris systems; that is, systems containing an inner belt of warm or hot (>100K) dust and an outer belt of cold (<100 K) dust. Such systems would be a direct analog of our own Solar System, which hosts a Kuiper Belt that lies between 30-50 AU at ∼50 K and an Asteroid Belt at 3 AU and ∼175 K. A double-belt system may also be a signature of a planet (or planets) that lie in the gap between dust belts. Such systems have been discovered around HR 8799 (Marois et al. 2008, Marois et al. 2010, Matthews et al. 2010) and HD 95086 (Rameau et al. 2013, Su et al. 2015).

3.2 Stellar Sample

The sample used in this work is an amalgamation of stellar samples from three different Herschel proposals (bzuckerman-OT1, jolofsson-OT1, and bzuckerman-OT2). In the first OT1 proposal (PI: B. Zuckerman), we observed A-F stars with known, very luminous mid- IR emission. Since mid-IR emission is known to originate from the terrestrial planet region,

50 we wanted to use Herschel to search for accompanying cold dust in outer regions analogous to the Solar System’s Kuiper Belt. Four such stars were observed during this program. The second OT-1 proposal (PI: J. Olofsson) had very similar science goals, in that the authors were looking for cold dust components accompanying known warm debris disks. Six stars were observed for their program, of which we present two which fit into our initial selection criteria (luminous mid-IR emission).

The objective of the OT-2 proposal was to follow up on a subsample of stars (from Rhee et al. 2007 and Zuckerman et al. 2011) that had been observed in the mid-IR either with IRAS or Spitzer, and that had only one far-IR data point at 60 µm (IRAS) or 70 µm (Spitzer). Herschel observations were carried out to characterize the far-IR emission of the dust and, in the case of stars with apparent excess emission detected only at 60 µm with IRAS, to confirm or deny the existence of a dusty debris disk. IRAS is not only less sensitive than Herschel, but its large beam size made IRAS vulnerable to confusion by background sources (the Herschel PSF is 5.7500 at 70 µm, while the average detector element size for IRAS at 60 µm was 50 × 20). Eighteen stars were observed during this OT-2 program. We collected information from the literature on binarity, distance from Earth, and stellar age. Literature data for target stars can be found in Table 3.1.

3.3 Observations

We observed 24 stars in total with PACS; simultaneous observations were obtained at 160 µm and either 70 µm or 100 µm. Although some stars were not detected at 160 µm, a 3σ upper limit at that wavelength helped to constrain cold dust temperatures. The observations were taken with a scan speed of 2000/sec.

We used HIPE (Herschel Interactive Processing Environment, version 12.0; Ott 2010) to reduce the data and produce the final maps. We used a pixel scale of 100/pixel for 70 and 100 µm data and 200/pixel for the 160 µm data. A high pass filter was applied to remove instrumental noise. To achieve the highest signal to noise in the resulting maps, we used a high pass filter radius of 3000 for 70µm data and 7000 for 100 and 160µm data. The

51 Table 3.1. Stellar Parameters

1 HD HIP SpT d M∗ R∗ T∗ L∗ Age Age Age binary? 2 3 [pc] [M ] [R ] [K] [L ] [Myr] Method Ref Herschel Detections 15407 11696 F5 55 1.4 1.6 6500 4.0 80 a M10 Y 23514 F6 135 1.4 1.08 6300 1.6 100 b R08 Y 35650 25283 K6 18 0.8 0.63 4300 0.1 70 b Z11 43989 30030 G0 49 1.1 1.05 6100 1.3 30 b Z11 54341 34276 A0 93 2.4 1.83 9500 24.1 10 c R07 76543 43970 A5 49 1.9 1.83 8200 13.4 400 c R07 76582 44001 F0 49 1.7 1.68 7700 8.8 300 c R07 84870 48164 A3 90 1.6 1.63 7600 7.8 100 c R07 85672 48541 A0 93 1.7 1.51 8000 8.3 30 c R07 99945 56253 A2 60 1.8 1.79 7600 9.4 300 c R07 113766 F3 120 1.9 1.9 6100 4.4 15 b C05 Y 121191 A5 130 1.8 1.83 7700 10.4 10 b M13 N 124718 69682 G5 61 1 0.96 5900 0.99 >500 a S03 131488 A1 150 2.2 2.06 8700 21.4 10 b M13 N BD+20 307 8920 G0 92 1.9 1.26 6100 1.9 1000 a Z08 Y Herschel Non-Detections 60234 36906 G0 108 1.6 3.534 5900 13.3 600 d R07 70298 40938 F2 71 1.73 6500 4.7 >3000 d R07 72660 42028 A1 100 2.24 9500 36.1 200 c R07 132950 73512 K2 30 0.73 4800 0.25 3000 ... R07 203562 105570 A3 110 2.7 3.734 8800 6.5 600 c R07 Contaminated Fields 8558 6485 G6 50 0.9 0.94 5800 0.9 30 b Z11 13183 9892 G7 50 0.9 0.95 5700 0.8 30 b Z11 80425 45758 A5 98 2.544 7500 18.0 300 c R07 191692 99473 B9 88 3.34 6.40 10500 2680 500 c R07 Y

Note. — 1Stellar masses were taken from Chen et al. (2014), Casagrande et al. (2011), Zorec & Royer (2012), or Tetzlaff et al. (2011).). 2 Age methods: (a) Li abundance, (b) Association membership, (c) Location on an HR diagram, (d) Activity (X-ray luminosity). Note that these indicate the primary method used to identify stellar age, but supplementary methods may have been applied.3 Refs: M13=Melis et al. (2013), R08=Rhee et al. (2008), Z11= Zuckerman et al. (2011), R07=Rhee et al. (2007), S03=Song et al. (2003), C05=Chen et al. (2005), Z08=Zuckerman et al. (2008) 4These stars are likely not main-sequence, based on their radii.

52 larger radius filter was used for the longer wavelength data in order to be more aggressive in removing instrumental noise at those wavelengths while maintaining a high SNR. A mask was applied to avoid removing any flux within 15” of the target star.

Aperture photometry was carried out with an aperture radius of 500 for unresolved sources and 1000 for resolved sources, with a sky annulus extending from 20-4000. Aperture corrections were made to account for photospheric flux falling outside of the chosen aperture1. Errors on the photometric points are derived by placing apertures on empty regions of sky along the sky background annulus and measuring the r.m.s. of the background flux. Some targets presented flux at a significant offset from the stellar location. If the offset was larger than the pointing accuracy of Herschel (∼200), we excluded it from further analysis. This was the case for two stars in our target list (HD 60234 and HD 203562). These two stars were taken from Rhee et al. (2007), and were 60µm excesses only. Observed fluxes are found in Table 3.2. We discuss potential sources of contamination in Section 3.4.

3.3.1 Herschel Non-Detections

A non-detection with Herschel implies that any circumstellar dust would necessarily be <35K

−6 or else extremely tenuous (LIR/Lbol=τ<10 ), or both. The three stars mentioned in this section were not detected in any of the Herschel bands, and are not considered in the analysis in later sections.

3.3.1.1 HD 70298

This star was reported by Rhee et al. (2007) as a new debris disk candidate with a surprisingly substantial 60µm excess (τ=3.54E-04), given its old age (>3Gyr). The star was not observed by Spitzer, but a WISE excess was identified by McDonald et al. (2012) at 22 µm (τ=4.35E- 04). Close inspection of the WISE images shows that there is a nebulous IR source ∼1500 away from the target, which is inside the WISE contamination radius at 22 µm (2 × FWHM = 2400; Cutri & et al. 2012). We therefore consider the WISE and IRAS images to be

1All corrections were taken from Herschel Release Note PICC-ME-TN-037, Table 15.

53 Table 3.2. Herschel Observations

HD OT λ F [mJy] σ [Jy]

15407 OT1bzuckerm1 70 55.7 4.5 100 24.4 3.8 160 52.6 14.9 23514 OT1bzuckerm1 70 24.8 3.5 100 83.5 3.2 160 60.7 15.2 35650 OT2bzuckerm2 100 26.8 1.9 160 57.0 25.4 43989 OT2bzuckerm2 70 10.5 3.0 160 49.4 11.4 54341 OT2bzuckerm2 100 297 3.9 160 200 11 76543 OT2bzuckerm2 100 302 6.5 160 268 52 76582 OT2bzuckerm2 100 605 7.3 160 485 40.0 84870 OT2bzuckerm2 100 287 3.8 160 246.0 56.0 85672 OT2bzuckerm2 100 165 8.1 160 137 72 99945 OT2bzuckerm2 100 159 4.0 160 232 66 113766 OT1jolofsso1 70 322 9.7 100 201 6.0 160 79 8.0 121191 OT1bzuckerm1 70 246.6 4.7 160 37.8 25.2 124718 OT2bzuckerm2 100 4.2 5.2 160 2.4 17.7 131488 OT1bzuckerm1 100 336.6 5.8 160 191.3 24.0 BD+20 307 OT1jolofsso1 70 47 3.0 100 16 3.0 Herschel Non-Detections 70298 OT2bzuckerm2 100 < 10.2 160 < 23.1 72660 OT2bzuckerm2 100 < 13.2 160 < 38.7 132950 OT2bzuckerm2 100 < 11.1 160 < 39.6

54 contaminated. In the absence of any detectable flux at Herschel wavelengths, we report no IR excess around this star.

3.3.1.2 HD 72660

This star was reported by Rhee et al. (2007) as a new debris disk candidate based on an IRAS excess. The star was subsequently observed with Spitzer, and a mid-IR spectrum showed no IR excess consistent with the IRAS data point. WISE also saw no evidence of any warm excess in the near-IR. Even so, it remained possible that the IRAS photometry was catching the Wein tail of cold dust (<50 K), until our negative Herschel observations.

3.3.1.3 HD 132950

This star was reported by Rhee et al. (2007) as a new debris disk candidate with a large IR excess (τ=1.17E-03) and an old age (∼3 Gyr). A Spitzer IR spectrum shows no evidence of an IR excess consistent with the IRAS data point, and no warm excess was seen by WISE. In the absence of an IR excess seen with Herschel, we report no detectable dust around this star.

3.3.2 Systems with No Detectable Dust

In addition to stars with no detectable flux at Herschel wavelengths, there is one system (HD 191692) for which Herschel detected the photosphere of the star, but no evidence of an IR excess was seen. This star was reported by Rhee et al. (2007) to have a small (τ<10−5) IR excess seen at IRAS wavelengths, but unconfirmed by Spitzer. Their dust model fit to the IRAS photometry suggested the existence of dust at over 200 AU separation from the central star. Rodriguez & Zuckerman (2012) reported the star as a binary with a separation of <1 AU, meaning that the dust, if confirmed, would be circumbinary. McDonald et al. (2012) report a large IR excess (τ>10−3) seen at WISE wavelengths. A close inspection of the WISE images shows a source ∼1800 to the NE of the target star, which is within the contamination radius of the WISE beam at 22µm. Thus we consider both the IRAS and the 55 WISE images to be contaminated, and given that the Herschel images show no evidence of an IR excess, we report this star to have no detectable dust.

3.4 Sources of Possible Contamination

Of the remaining targets (those with detectable Herschel fluxes indicative of an IR excess), four (HD 8558, HD 13183, HD 80425, and HD 99945) have apparent cold dust disks with temperatures <40K (see Section 3.5). To ensure that we are really seeing evidence of cold debris belts, we investigated several alternative sources of the apparent IR excess.

3.4.1 Extragalactic Background

G´asp´ar& Rieke (2014) presented Herschel observations of cold debris disks and investigated the possibility of confusion with a background galaxy. A typical galaxy below the confusion limit of Herschel (∼2.5mJy at 160 µm) would lie between z=0.94 and 1.2 and its IR emission would correspond to an apparent dust temperature which would peak between 20 and 29 K (Magnelli et al., 2013). Of the four stars with Herschel emission at 160µm, only two

(HD 8558 and HD 80425) have F160 < 10 mJy and could be explained by confusion with a background galaxy at z∼1. In addition, the position of a third star (HD 13183) is 200 away from a galaxy detected with GALEX. Since the galaxy is within the confusion beam radius of PACS at 100µm (7.1900; G´asp´ar& Rieke 2014), we consider this target star to be contaminated, even though the source flux is 40mJy at 160 µm. These three stars are not included in Table 3.3.

56 Table 3.3. Dust Parameters

a a b HD Td1 Td2 RBB1 RBB2 τ1 τ2 τ1max f1 Md,min ablow (K) (K) (AU) (AU) (M⊕)(µm) 15407 334 ± 39 1022 ± 79 1.41 ± 0.2 0.1 ± 0.02 2.10E-03 ± 1.57E-02 9.71E-03 ± 1.57E-02 3.3E-07 6360 6.56E-07 2.5 23514 168 ± 7 1082 ± 22 3.53 ± 0.2 0.1 ± 0.004 1.03E-03 ± 1.50E-03 1.87E-02 ± 1.50E-03 3.54E-06 290 2.02E-06 0.98 35650 45 ± 3 536 ± 19 13.4 ± 1.8 0.1 ± 0.007 1.48E-04 ± 8.54E-05 2.50E-03 ± 8.54E-05 6.71E-04 0.22 4.16E-06 0.11 43989 112 ± 13 7.24 ± 2.3 7.43E-05 ± 1.19E-05 8.54E-05 0.87 6.12E-07 1.0 54341 60 ± 1 168 ± 25 106.7 ± 2.9 13.6± 4.1 2.61E-04 ± 8.88E-06 1.95E-05 ± 8.88E-06 1.64E-02 0.02 4.66E-04 8.7 76543 49 ± 7 105 ± 10 119.2 ± 20.2 25.9 ± 0.3 4.81E-05 ± 3.98E-06 3.64E-05 ± 3.98E-06 8.65E-04 0.06 1.07E-04 6.1 57 76582 51 ± 3 132 ± 33 89.1 ± 10.7 13.29 ± 5.5 1.71E-04 ± 1.19E-05 3.20E-05 ± 1.19E-05 7.92E-04 0.26 2.13E-04 4.5 84870 54 ± 2 75.1 ± 5.4 4.71E-04 ± 3.39E-05 1.78E-03 0.26 4.17E-04 4.2 85672 77 ± 6 37.9 ± 5.6 5.99E-04 ± 1.03E-04 1.11E-03 0.54 1.35E-04 4.2 99945 38 ± 3 166.5 ± 27.7 5.93E-05 ± 3.52E-06 3.14E-03 0.02 2.58E-04 4.5 113766 267 ± 5 1209 ± 213 2.3 ± 0.11 0.2 ± 0.07 2.24E-02 ± 2.39E-03 1.05E-02 ± 2.39E-03 4.12E-06 5440 1.88E-05 2.0 121191 118 ± 2 555 ± 16 18.1 ± 0.5 0.8 ± 0.06 2.59E-03 ± 1.22E-04 2.09E-03 ± 1.22E-04 5.10E-04 5.1 1.34E-04 4.99 124718 179 ± 49 2.4 ± 1.8 2.14E-04 ± 3.05E-05 4.16E-07 514 1.98E-07 0.9 131488 94 ± 1 570 ± 10 41.0 ± 0.8 1.1 ± 0.05 2.73E-03 ± 1.13E-04 2.78E-03 ± 1.13E-04 2.02E-03 1.4 7.22E-04 8.4 BD+20307 417 ± 14 0.7 ± 0.05 9.78E-03 ± 4.80E-03 2.00E-08 490000 7.74E-07 0.9

a b Note. — τ=LIR/Lbol; the ratio of the observed fractional IR luminosity (τ) and the maximum fractional IR luminosity that can be achieved through steady state collisions (τ max). If f1 is greater than 100, then the observed dust was likely produced in a transient event. All calculated values (τ max,Md,min, and ablow are derived using the outermost dust belt parameters only. 3.4.2 IR Cirrus

We must also investigate the possibility that excess IR emission is due to confusion with background cirrus, which is known to emit at ∼20 K (Roy et al., 2010). We checked each of our cold excess systems (HD 8558, HD 13183, HD 80425, and HD 99945) for evidence of cirrus in the Herschel and WISE images. HD 99945 is not explained by confusion with a background galaxy or nearby IR excess source. We also found no detectable cirrus in the Herschel or WISE images. This, combined with the fact that the 160 µm flux for this object is >100mJy implies that the excess around the star is due to emission from a debris disk. HD 99945 is therefore included in Table 3.3. Of the four potential cold disks in our sample, only HD 99945 (the warmest of the four) survived to the final sample.

3.5 Spectral Energy Distributions

Spectral energy distributions (SEDs) were created using a fully automated photosphere- fitting technique that made use of the PHOENIX models (Hauschildt et al., 1999). Stellar photospheres were fit using B, V, J, H, and K fluxes, while the mid- and far-IR photometry was used to fit the dust emission. We fit a simple blackbody to the IR photometry using Spitzer, WISE, and IRAS to supplement the Herschel data points whenever possible. For some systems, the long wavelength data (at 100 or 160 µm) falls below a simple blackbody curve. In these cases, we applied a modified blackbody described by:

ν β F ∝ 0 B (T ) (3.1) ν ν ν d

where Td is the dust temperature. Uncertainties for Td are found using a Monte Carlo approach. For each SED, we generated 1000 simulated data sets by randomly drawing flux values from a single Gaussian distribution centered on the observed fluxes, where the width

of the distribution is given by the observed uncertainty. The values and uncertainties for Td reported in Table 3.3 are the average and standard deviation of the ensemble of fits for each object. The resulting SEDs are found in Figure 3.1.

58 Figure 3.1 Spectral energy distributions (SEDs) of OT1 and OT2 stars. Green data points are B, V, J, H, and K flux densities from the Hipparcos and 2MASS catalogs. Dark blue data points are WISE data (3.4, 4.6, 11, and 22 µm). Red data points are from IRAS. Cyan data points and blue spectra are from Spitzer. Finally, magenta data points are Herschel data points. Stellar temperature and radii were derived by fitting PHOENIX model stellar photospheres (Hauschildt et al., 1999) to photometric points. IR data is fit with one or two simple blackbodies for most targets, except in the case of HD 85672, which required a modified blackbody fit (red and blue dashed curves).

59 Figure 3.1 Cont’d

60 Figure 3.1 Cont’d

61 3.5.1 Stellar Parameters

We used the best-fit model photospheres to determine the stellar temperature and radius.

2 4 From there, we calculated a stellar luminosity using L∗=4πR∗ σTeff . We assumed solar metallicity and log(g) for all 24 stars. Stellar masses were taken from the literature. Ages for stars in our sample were taken from moving group membership whenever possible. When moving group membership could not be determined, we used literature ages from stellar isochrones (for A-F-type stars). For all other stars, we relied on literature ages based on lithium abundance or X-ray activity. Stellar parameters are found in Table 3.1.

3.5.2 Dust Parameters

For the 15 stars in our sample with dust detected by Herschel, we obtain a dust temperature

and fractional IR luminosity (LIR/Lbol=τ) from a blackbody SED fit. Assuming blackbody dust grains, the orbital semi-major axis is:

 2 R∗ T∗ RBB = (3.2) 2 TBB

For the purposes of this work, we define three dust temperature regions; hot dust (> 200K), warm dust (100-200K), and cool dust (< 100K). These temperature regions were chosen to correspond to the solar system’s zodiacal dust, asteroid belt, and Kuiper belt. Of the 15 systems in our sample that were detected by Herschel and were found to be uncontaminated, 9 stars show a cool dust component, 3 stars show a warm dust component, and 10 stars show a hot dust component (some stars show multiple dust components).

We calculated the blowout radius for a dust grain, ablow, defined as:

3L∗QPR ablow = (3.3) 16πGM∗cρ

where QPR is the radiation pressure coupling coefficient and ρ is the density of a typical

−3 dust particle (Chen & Jura, 2001). We assume QPR ∼1 for 2πa/λ > 1 and ρ∼2.5 g cm .

62 Finally, we calculated the minimum mass of dust in the disk. This parameter is best measured using far-IR or sub-mm data, which probes the largest grains in the system. The large grains are where most of the mass of the dust is concentrated. However, we can calculate a minimum dust mass from Equation 4 from Chen & Jura (2001):

16 M ≥ πτρR2hai (3.4) d,min 3 d

where hai = (5/3)ablow (Chen & Jura, 2001) and Rd is the dust semi-major axis. Minimum dust mass values are calculated using the outermost dust belt parameters only, since the mass of the colder dust dominates the system in all cases.

3.6 Resolved Disks

To determine whether a disk was resolved, we compared the radial profile of the star+disk to a reference PSF (see Figure 3.2). To create the radial profile, we binned the pixels of each raw image by radius. The error bars in Figure 3.2 are the standard deviation of the fluxes within each radial bin. We consider each disk presented in Figure 3.2 to be resolved2.

We performed a PSF subtraction and modeled the residual flux with a single narrow ring of dust (∆Rd=0.1Rd). The bright star α Cet was used as a reference PSF. The free parameters fit in our ring model were the semi-major axis, inclination, and position angle of the narrow ring. This model (convolved with the instrument PSF) was appropriate for all of our resolved systems, since residual maps showed no significant structure once the ring model was subtracted. Raw images, PSF-subtracted images, and residuals can be found in Figure 3.3. Of the 15 stars in our sample, seven (HD 54341, HD 76543, HD 76582, HD 84870, HD 85672, HD 99945, and HD 121191) were resolved at either 70 or 100 µm. One system (HD 76582) was resolved at both 100 and 160 µm. Disk parameters determined by ring-fitting can be found in Table 3.4. Errors were determined by varying parameters until residuals increased by 1σ.

2HD 121191 is marginally resolved, and further discussion can be found in Section 3.9.12.

63 Figure 3.2 Radial profiles were created to determine whether a disk was actually resolved. We compared the radial profile of the observed emission to a reference PSF (Alf Cet).

3.6.1 Disk Radii

The blackbody disk semi-major axes derived from SED fitting (RBB) often did not agree 64 with those observed in the resolved images (Rimg). We define a semi-major axis ratio Raw Data PSF-Subtracted Residuals 8.0 7.2 6.4 5.6 4.8 4.0 3.2 HD 54341 2.4 10" 1.6 0.8 0.0

8.0 7.2 6.4 5.6 4.8 4.0 3.2 HD 76543 2.4 1.6 0.8 0.0

8.0 7.2 6.4

m 5.6 µ

0 4.8 0

1 4.0 3.2 HD 76582 2.4 1.6 0.8 0.0

8.0 7.2 6.4

m 5.6 µ

0 4.8 6

1 4.0 3.2 HD 76582 2.4 1.6 0.8 0.0

Figure 3.3 Resolved disks were fit with a narrow ring of dust with four parameters: dust semi major axis, position angle, inclination, and brightness. “PSF-subtracted” images were created by subtracting a stellar PSF which was created using a bright standard star (Alf Cet) and scaled to match the peak flux of the source. All images include the same square-root-stretch scale.

fR=Rimg/RBB. It is well-known that small blackbody particles tend to be super-thermal and thus blackbody SED-fitting will underestimate radial extent of the dust, often by a factor of 2-5 (Rodriguez & Zuckerman, 2012). The steeper the size distribution of the dust grains, the more small grains are present in the disk, and the disk will appear much hotter than a blackbody. At first glance, then, it would seem that fR can probe the size distribution of the dust.

If, however, the dust production mechanism is similar among all of our disks (see Sections

65 Raw Data PSF-Subtracted Residuals 8.0 7.2 6.4 5.6 4.8 4.0

HD 84870 3.2 2.4 10" 1.6 0.8 0.0

8.0 7.2 6.4 5.6 4.8 4.0

HD 85672 3.2 2.4 1.6 0.8 0.0

8.0 7.2 6.4 5.6 4.8 4.0

HD 99945 3.2 2.4 1.6 0.8 0.0

8.0 7.2 6.4 5.6 4.8 4.0 3.2 HD 121191 2.4 1.6 0.8 0.0

Figure 3.3 Cont’d

6-7), then it is reasonable to assume that the resulting size distribution would be similar as well. If that is true, the biggest factor affecting fR would be the spectral type or luminosity of the host star. If the host star is very luminous, it will remove the smallest grains from the system via radiation pressure; this will make the dust appear to act more like a blackbody.

We compared our radius ratios to those of similar programs (Morales et al. 2013, Booth et al. 2013, Rodriguez & Zuckerman 2012) in Figure 3.4. We find that, in most cases, fR increases for lower-luminosity stars. One interesting feature to note in Figure 3.4 is that the value of fR (=Rimg/RBB) is well constrained for disks that are resolved in thermal emission, but there is much more scatter in the relationship between fR and Lbol for stars whose

66 “resolved” radii are derived from SED modeling of the Si emission (see Figure 3.4) and/or scattered light. This may be because the scattered light images are most sensitive to the smallest grains, which can be found in a large, extended disk or halo, rather than in a narrow ring as described by a blackbody fit.

It appears that the stars in our sample (red data points in Figure 3.4) have a higher scatter in Lbol- fR space than do stars from Booth et al. (2013). Notably, the biggest outliers (HD 121191 and HD 85672) are those stars for which we believe an unseen planet could be responsible for dust production (see Section 3.7.2.2). Since the ratio fR depends heavily on the size of the grains themselves, it is possible that a planet-stirred disk has an inherently different grain size distribution than a self-stirred disk. Different grain size distribution could arise from a number of factors, including the collisional velocities of the <100km bodies that produce the dust, and the composition of the dust itself. It is also possible that the Herschel images are sensitive to small grains further from the star (which would peak at Herschel wavelengths), while the average temperature of the grains in the system is actually higher than the temperature implied by the blackbody fit to the SED.

3.7 Dust Production and Planet Formation

Having determined dust properties from the Herschel photometry, we turn our attention to the way in which the observed dust was produced. By the time a star is ∼10 Myr old, any primordial dust should have been completely depleted (used to form planetesimals, accreted onto the star, or blown out of the system by radiation pressure).3 Thus, the dust we see in debris disks older than ∼10 Myr is likely second-generation, created in collisional processes. Furthermore, the lifetime of this dust against radiation pressure and drag forces is shorter than the lifetime of the star. This means that any dust seen in these systems must be replenished regularly.

There are various mechanisms by which dust can be produced as a planetary system

3This idea has been challenged by recent discoveries of 30-40 Myr old disks with copious molecular gas present, suggesting that, for some stars, the protoplanetary stage may last longer than previously thought (e.g. K´osp´alet al. 2013, Zuckerman & Song 2012). Still, since there are so few stars that exhibit gas at 30-40Myr, we maintain that most primordial gas and dust should be gone by ∼10 Myr. 67 SED Modelling + Scattered Light Images Resolved Thermal Images Booth+13 Rodriguez+12 1 1 this work 10 10 HD 121191

HD 85672 B B

R HD 84870 / g m i R

100 HD 99945 100 Pawellek+14 Rodriguez+12 η Crv 10-2 10-1 100 101 102 100 101 102 Lbol/LSun Lbol/LSun

Figure 3.4 Left panel: Green points represent stars compiled by Rodriguez & Zuckerman (2012) which were observed in scattered light. Orange points represent stars in Pawellek et al. (2014) whose “resolved” radii are determined by emission feature - fitting in the SED. The solid black line represents a best-fit to the data from Booth et al. and Rodriguez et al.. Right panel: Pink points represent stars compiled by Rodriguez & Zuckerman (2012) which were resolved in thermal emission. Blue points represent stars from Booth et al. (2013) which were resolved by Herschel. Red points are stars in this work that are resolved at 70 or 100 µm (see Section 3.6). The solid black line represents a best-fit to the data from Booth et al. and Rodriguez et al.. The large scatter in the red points about this best-fit line may be due to the fact that the stars in our sample with the largest discrepancies between Rimg and RBB are also the ones that we suspect may result from planet stirring.

forms and evolves. First, the dust can be produced through steady-state collisions of small planetesimals (Dominik & Decin, 2003). This occurs naturally as a final stage in the process of planet formation. Planet formation proceeds first through the growth of ∼1 km-sized planetesimals. Once the planetesimals grow large enough to start gravitationally focusing the primordial dust in their path, runaway growth can occur. Following this, a few large bodies accrete a large amount of dust, and as they grow, they become the dominant accreter in their orbital path - a process known as oligarchic growth. Once ∼1000 km-sized bodies have formed, they can begin to dynamically stir the remaining smaller (<100 km) planetesimals, driving them to collisional velocities high enough to be destructive. It is in these destructive collisions that the observed dust is produced. The resulting debris is collisionally ground down until the grains are small enough to be blown out of the system via radiation pressure. On their way out of the system, they can also collide with small planetestimals, creating an outward-moving collisional cascade. 68 In the process described above, the stirring mechanism at work is the natural formation of 1000 km-sized bodies in the disk itself (hence, the disks are “self-stirred”, see Section 3.7.2.1). However, one can also imagine a situation where small (<100km) bodies are stirred by a nearby planet (see Section 3.7.2.2). In either case, one would expect moderate fractional IR luminosities (τ∼10−4) compared to those associated with protoplanetary disks (τ∼10−3).

Alternatively, a belt of dust can be created through a giant impact between planetary embryos (e.g. Jackson & Wyatt (2012); see Section 3.7.4). In an even more extreme sce- nario, two fully formed rocky planets can undergo a catastrophic collision, resulting in large amounts of debris. Such a collision has been proposed to explain warm dust in orbit around BD +20 307 (Song et al. 2005, Zuckerman et al. 2008). Such catastrophic collisions should produce a multitude of small grains. Similar collisions are also more likely to occur in the terrestrial planet formation zone, where disk surface density is high; such collisions result in production of warm or hot dust.

A third possible source of hot dust in disk systems might be debris left behind by so-called “star-grazing comets.” This mechanism was suggested by Morales et al. (2011) who found that hot dust in a sample of Spitzer-observed systems had a characteristic temperature of 190K - near the sublimation temperature for icy bodies such as comets (see Section 3.7.3).

3.7.1 Distinguishing Transient from Steady-State Events

We use two distinct methods to distinguish dust created in a transient event from dust created in a steady-state process. First, one can examine the maximum fractional IR luminosity that can be attained through a steady-state process (τ max). This method was explored in Wyatt et al. (2007). Second, one can determine the mass of the parent body that would have created the observed dust. If the mass of the parent body is too large to be explained by steady state collisions among small planetesimals in the disk, the dust was likely created in a larger, transient event. This method was explored in Melis et al. (2014).

We examine the τ max method of Wyatt et al. (2007). According to their Equation 20:

69 −9 7/3 ∆Rd 1/2 5/6 −5/3 −5/6 −1/2 −1 τmax = 0.58 × 10 Rd D Q e M∗ L∗ t (3.5) Rd

As in Equation 4, Rd is the semi-major axis of the dust, and here ∆Rd is the radial width of the disk, D is the diameter of the largest planetesimal in the disk, Q is the specific incident energy required to destroy a particle, e is the eccentricity of the dust ring, and t is the stellar age. For our calculations, we use the outermost dust component (in cases where two components are needed to fit the observed IR flux). In all following calculations, if the dust was spatially resolved, we use the dust semi-major axis from the ring-fitting algorithm (Rimg, see Section 3.6). Otherwise, we use RBB from the SED fits. To model a steady-state collisional cascade, we follow the prescription of Wyatt et al. (2007) and assume

−1 that D=2000km, Q=200 J kg , e=0.05, and ∆Rd=0.1Rd. According to Wyatt et al., one should expect that observed dust was likely created in a transient event if τ/τ max>1000.

The τ/τ max>1000 threshold is based on observations of known very luminous debris disks, while taking into consideration the assumptions that went into Equation 5. For the purposes of our analysis, we assume that debris disks with τ/τ max>100 are likely to be transient in nature, while those with τ/τ max>1000 cannot be explained by a steady-state collisional process alone (see Tables 3 and 5). We calculated τ max for the stars in our sample and found that three debris disks systems could not be explained by a steady-state process alone (all from OT1, and thus with the highest fractional IR luminosities and previously suspected to be the result of transient processes.); HD 15407 (Melis et al., 2010), HD 113766 (Lisse et al., 2008), and BD +20 307 (Song et al., 2005). Since these are well-studied systems, we do not discuss their transient nature further in this paper. Furthermore, the disks at HD 23514 and

HD124718 had 100 <τ/τ max<1000, implying transient processes.

In the context of Melis et al. (2014), we determined the mass of a parent body required to generate the observed dust. If the observed dust mass (Md) would require a parent body larger than an Earth-sized planet, the dust-producing event was likely a transient, catastrophic collision. The minimum mass of the parent body is determined by:

70 6 10 BD+20 307 105

104 HD 15407 HD 113766

103 HD 124718

x 2 HD 23514 a 10 m τ / τ 101

100

10-1

10-2

10-3 10-4 10-3 10-2 τ=LIR/Lbol

Figure 3.5 Comparison of the fractional IR luminosity (τ) of disks in our sample to the maximum dust luminosity achievable through steady-state collisions (τ max). If τ/τ max >1000, the dust was likely produced in a transient event such as a catastrophic collision. Stars meeting this criterion are labeled.

  Md MPB ≥ tage (3.6) tloss

where tloss is the timescale associated with the dominant dust removal mechanism. Two competing dust removal mechanisms are Poynting-Robertson (PR) drag and post-collisional radiative blowout (in which the dominant timescale is the collisional timescale). The PR timescale is:

2 2 4πhaiρc Rd tPR = (3.7) 3L∗

where is the average grain size, determined by integrating over an assumed grain

−3.5 size distribution (dN/da=a ) so that hai=5/3 times ablow from Equation 3. Then

71       3.3 L M ablow = 0.35Qabs (3.8) ρ L M

−3 and Qabs (the absorption efficiency) is assumed to be 1. We take ρ to be 2.5 g cm for icy grains. Blowout grain sizes are listed in Table 3.3. With the following equation from Zuckerman & Song (2012), the collisional timescale is:

s 3 Porb 1 Rd tcoll = = (3.9) 80τ 80τ M∗

and the ratio is then:

t 1 T  rM coll = d ∗ (3.10) tPR 2640τ T∗ R∗

Since most of our dust disks are high-luminosity, low temperature disks, the collisional

timescale is shorter (the disks are collisionally-dominated). Thus, we can plug tcoll in for

tloss in Equation 6. Dust mass (Md) is best measured using far-IR or sub-mm data, which

probes the largest grains, where most of Md is concentrated. However, one can calculate a minimum dust mass from Equation 4 and thus a minimum parent body mass:

  2 Md 20 tageτ 2.5 5 −0.5 MPB ≥ tage ≥ 2.8 × 10 R∗ T∗ M∗ (3.11) tcoll Td

This method for identifying dust belts produced by catastrophic collisions is valid only for

“low-mass stars” (M=1-3M ) in the age range of 10 Myr (while active rocky planet formation is still on-going). This is because the assumption that the maximum mass available for planet formation is ∼1 M⊕ comes from the simulations of ?, which treated solar-type stars only. (Melis et al., 2014). For stars within this parameter space, the above two methods agree with each other; thus for consistency we chose to rely on the more generally applicable τ max method.

72 Table 3.4. Disk Parameters from Herschel Imaging

Star name λ Rimg Rimg Inc. P.A. Disk+Star Flux * (µm) (AU) (0)(◦)(◦) (mJy))

HD 54341 100 185 ±18 2.0 ±0.2 29 ±20 72 ±41 321.6 HD 76543 100 162 ±11 3.3 ±0.2 69 ±9 86 ±7 311.1 HD 76582 100 216 ±6 4.4 ±0.1 66 ±3 103 ±3 637.5 160 235 ±33 4.8 ±0.7 74 ±15 103 ±12 444.4 HD 84870 100 252 ±16 2.8 ±0.2 35 ±10 147 ±18 301.8 HD 85672 100 186 ±28 2.0 ±0.3 28 ±36 N/A 172.8 HD 99945 100 198 ±18 3.3 ±0.3 28 ±16 92 ±35 166.8 HD 121191 70 195 ±261 1.5 ±0.2 40 ±17 25 ±27 295.6

Note. — *Best-fit disk + star flux from disk modeling (see Section 3.6). These best-fit fluxes may not always agree with the fluxes from Table 2 due to the fact that the small aperture size used in deriving the Table 2 fluxes excludes a significant amount of the extended flux due to the circumstellar disk. 1 See Section 3.9.12.

3.7.2 Steady-State Collisions - Stirring Mechanisms

If the observed dust is produced in a steady-state collisional cascade, we would like to identify the trigger mechanism that starts the cascade. We consider collisions triggered by perturbations due to 1000 km-sized bodies within the disk itself (self-stirring), and collisions triggered by a nearby planet or distant stellar or substellar companion (planet-stirring).

3.7.2.1 Self-Stirring

In the case of self-stirring, 1000 km-sized bodies naturally form in the disk which dynamically stir the population of smaller (<100 km-sized) bodies to velocities high enough to cause destructive collisions. These initial collisions then trigger a collisional cascade which leads to the production of copious amounts of dust (Wyatt, 2008).

Since the self-stirring mechanism requires the existence of 1000 km-sized bodies at ap- proximately the same radial location of the dust, we can place limits on the parameters of a 73 disk stirred by this mechanism (Mo´oret al., 2015). In Figure 3.6, we examine the semi-major axis of 1000 km-sized bodies as a function of stellar age. Following the models of Kenyon & Bromley (2008), we assume that 1000 km-sized planetesimals form at a time:

 3  3/2 1.15 Rd 2M t1000 = 145xm [Myr] (3.12) 80AU M∗

As in Mo´oret al. (2015), we vary two parameters in our models; the mass of the host star and a scaling factor (xm) related to the initial mass of the protoplanetary disk (where xm=1 corresponds to the minimum mass solar nebula).

We plot several models for the star-disk system in Figure 3.6, representing stars from

1.5-2.5M and a range of xm. For self-stirring to be responsible for the dust observed around the four labeled stars, the initial disk would need to be 30 times as massive as the minimum mass solar nebula or more. Since ∼30 × MMSN is approximately the protoplanetary disk mass of a high-mass star, we take this as an upper limit for our models (Williams & Cieza, 2011). None of the stars in our sample have detected planets.

3.7.2.2 Planet Stirring

For disks that are unlikely to have formed 1000 km-sized bodies at the radial location of the observed dust, planet-stirring offers another mechanism for dust production (major planets could have formed near the dust at an earlier time). Since debris disks are often considered evidence of planet formation (Zuckerman & Song, 2004), one might expect a correlation between the existence of planets and detection of circumstellar dust. Unfortunately, with so few stars observed to have both a dust disk and at least one planet, this relationship has proved difficult to study. Bryden et al. (2009) found little correlation between planet hosts and detection of an IR excess (the typical age of stars in their sample was ∼6 Gyr, whereas the stars in our sample are significantly younger). More recently, Moro-Mart´ın et al. (2015) examined a large (>200 star) sample of Herschel-observed stars to look for correlations between the presence of a debris disk and: (1) the presence of low-mass planets, (2) the presence of high-mass planets, (3) metallicity, and (3) the presence of one or more 74 2.5 x=30,M=1.5Msun x=30,M=2.0Msun 500 x=30,M=2.5Msun 2.4 x=10,M=1.5Msun x=10,M=2.0Msun x=10,M=2.5Msun 2.3 x=3,M=1.5Msun 400 x=3,M=2.0Msun x=3,M=2.5Msun 2.2

2.1 ] ]

300 n U u S A [ M 2.0 [ k

s HD84870 i ∗ d R M HD54341 1.9 200 HD85672 HD121191 1.8

100 1.7

1.6

0 1.5 100 101 102 103 Age[Myr]

Figure 3.6 Disk Radius vs. stellar age for stars in our sample. Curves represent predicted maximum radial separation of 1000km-sized bodies at a given stellar age (see Equation 4). ”x” is a scaling factor relative to the minimum mass solar nebula. Data points (circles) represent our resolved disks. Triangles represent unresolved targets for which we applied a scaling factor to the blackbody radius in order to obtain more realistic Rdisk values. See Section 3.7.2.1 for further discussion of this figure. stellar companions. Even with their large sample size, Moro-Mart´ınet al. (2015) found no significant correlations between any of the aforementioned parameters.

In our sample of 24 stars, none have detected planets (exoplanets.org; Han et al. 2014). One can try to draw conclusions about the properties of a hypothetical unseen planet based on the observed dust properties. Unfortunately, it is difficult to resolve the degeneracy between planet mass, orbital eccentricity, and semi-major axis using simple models. This issue is treated in more detail in a theory paper motivated by the present results (Nesvold et al., 2016).

It is possible that a belt of small planetesimals could be stirred up to collisional veloc- ities by a distant stellar-mass companion (or ) as opposed to a nearby planet

75 (Zuckerman, 2015). However, Rodriguez et al. (2015) found that stars with debris disks are less likely to be found in binary systems, at least in a sample of FGK stars. This may be attributable to the fact that a companion will accelerate the evolution of the dust, making a debris disk detectable for a shorter period of time, earlier on in the evolution of the system. In any case, we do not consider companion stirring to be the cause of the disks in our sample. This possibility is also examined further in Nesvold et al. (2016).

3.7.3 Star-Grazing Comets

One suggested explanation for the existence of warm and hot dust disks is that so-called “star-grazing comets” leave behind a cloud of debris (Morales et al., 2011). Should this be the case, one would expect most of this cometary debris to be at a radial separation from the star such that the dust is at a temperature of ∼150 K (the sublimation temperature for icy planetesimals). In Figure 3.7, we compare the temperature of our disks to those of Chen et al. (2014) (Spitzer Catalog of Debris Disks). Morales et al. (2011) found that, in a sample of ∼70 stars, most of the warm dust components fell around ∼190 K.4 We do not find a similar trend in the Spitzer catalog taken as a whole.

The disks in our Herschel sample are mostly cold (<100 K), peaking around 60 K. In fact, the Spitzer data from Chen et al. (2014) also shows a peak around 60K. A similar peak is found in the sample of Morales et al. (2011), but no explanation was put forward. Perhaps this 60 K peak is simply an observational bias (a 60K dust belt would peak between 70-100 µm, close to both Spitzer and Herschel filter wavelengths). It may also be that disk detectability falls off at lower temperatures, producing a false “peak” near 60K. Ballering et al. (2013) also identified a peak at 60 K in a Spitzer sample of debris disks, but claim that the peak is not solely due to the dust temperature (see their Figure 5). They suggest that the cold dust temperatures follow a trend with spectral type; hotter, earlier-type stars have warmer outer debris belts. This implies that the peak at 60 K is not due to a temperature- dependent phenomenon such as sublimation.

4The reason the dust temperature is higher than the sublimation temperature is that once the comets sublimate and leave behind grains, those grains appear to be hotter than the original comet because they are not emitting like blackbodies.

76 Regardless of the exact distribution of temperatures among our debris disks, we do not find a peak in dust temperature near the sublimation temperature for comets, and thus conclude that debris left by star-grazing comets does not contribute significantly to the dust seen in the present sample of stars or in the Spitzer Catalog of Debris Disks.

0.016 Chen+14, hot 0.014 Chen+14, cold 0.012 Chen+14, single this work 0.010

0.008

0.006 Normalized Count 0.004

0.002

0.000 0 200 400 600 800 1000 1200 1400 Dust Temperature [K]

Figure 3.7 Comparison of the characteristic temperatures of disks in our sample to those in the Spitzer Debris Disk Catalog (Chen et al., 2014). We find that our disks are colder, on average, than those in the Spitzer catalog. This makes sense, since Herschel is most sensitive to colder disks. Notably, we do not find a peak in the distribution of temperatures from the disks in the Spitzer catalog that corresponds to the sublimation temperature of icy planetesimals (∼150 K). We do, however, note a peak around 60 K. The build-up of disks at 500 K in the single dust belt sample is due to the fact that Chen et al. assigned a dust temperature of 500 K for anything that appeared to be 500 K or hotter.

3.7.4 Giant Impacts and Catastrophic Collisions

It is possible that the observed warm dust components are created during a giant impact between two planetary embryos in the terrestrial planet formation zone (Kenyon & Bromley, 2005). It is generally believed that such impacts are an important part of our own Solar System’s history; a collision between the early Earth and a Mars-sized planetary embryo was likely responsible for the formation of our Moon (Hartmann & Davis, 1975). We also have evidence of large catastrophic collisions around stars other than our Sun; such is the case with BD+20 307 (Song et al. 2005, Zuckerman et al. 2008) and HD 23514 (Rhee et al.,

2008), among others. Even if the observed dust luminosity is smaller than τ max (see Section

77 3.7.1), the dust could still have been created in a catastrophic collision, but one in which the parent bodies did not entirely pulverize one another, and much of the mass of the parent body survived in large fragments.

3.8 Two-Temperature Systems

To determine whether the debris disks in our sample require a two-component fit, we exam- ined the χ2 values for a single- and double- belt fit to the SEDs. In about half of the targets, we found that a double-belt fit resulted in a significantly lower χ2. In one case (HD 76543), we do not find any significant difference in the χ2 value for a single versus double belt fit, but decided to fit two belts in order to be consistent with previous studies in the literature.

Nine stars in our sample showed evidence of a two-temperature component dust system based on the SED fits. While IRS spectra were not available in all cases, which limits our ability to properly judge whether two temperature components are truly needed, we based our SED fits on a χ2 analysis, with the understanding that our results would be improved by mid-IR spectroscopy. In most cases, we would interpret a two-temperature component fit as two spatially separated disks. Such systems can be explained in several ways; 1) the dust originated in a cold belt, and ”leaked” into the warm belt via PR drag and/or scattering by large planetesimals, 2) there was once one extended disk, into which a gap was carved by intervening planets, 3) the dust may have originated in two belts independent of one another, analogous to the asteroid and Kuiper belts, or 4) there is only one belt of dust that presents as a multiple temperature component system due to a range of grain properties.

Concerning possibility 4# above, a two temperature SED could be necessary even if the dust emission arises from a single narrow belt if the grains in the belt have multiple sizes (Kennedy & Wyatt, 2014). Since smaller grains radiate inefficiently at long wavelengths, they retain heat and appear to be at a hotter temperature than larger grains at the same radial location from the star.

Four of the two temperature systems orbit A-type stars (HD 54341, HD 76543, HD 121191, and HD 131488). Since the blowout radius of grains around A-type stars is larger 78 than that of solar-type stars5, grains in a single disk around an A-type star would likely have a more limited distribution of grain sizes, and thus would not be able to mimic a spatially separated two temperature component dust belt. In addition, three stars (HD 15407, HD 76582, and HD 113766) are early or mid F-type, and are also likely to have a limited grain size distribution. We expect that these seven stars likely have two spatially separated belts.

For the remaining two systems (HD 35650 and HD 23514), we calculated a temperature

ratio (RT =Td,2/Td,1, see Table 3.3) to determine if the dust emission is coming from two separate belts. From Figure 4 of Kennedy & Wyatt (2014), we see that single-belt systems

with two temperature components tend to have small (RT . 5) values of RT . By contrast,

spatially separated double-belt systems appear to have values of RT & 5; both HD 35650

(RT =11.9) and HD 23514 (RT =6.4) thus likely represents true spatially separated belts (see Figure 3.8).

3.9 Comparison with Previous Studies

We compared our results to previous studies in the literature. In particular, we compare literature results with our SED-fitting results only, since none of the stars that follow have ever previously been resolved.

3.9.1 HD 15407

This F5/K2 binary system has an age of 80 Myr, derived from high resolution measurements of lithium in the photospheres of both components, X-ray data, and UVW space velocities (Melis et al., 2010). Si emission features are seen in the IRS spectra (Mittal et al., 2015). Melis et al. predicted (based on the IRS spectrum and the IRAS upper limits) that there would be no cold dust detected around HD 15407A. Olofsson et al. (2012) performed a detailed analysis of the emission features in the IRS spectra, and found that HD 15407A should have an extended belt (from 0.4-19.2 AU) with a grain size distribution proportional

5An A-type star has a typical blowout grain size of a few microns, whereas a solar-type star has a blowout grain size of 1 µm or smaller.

79 Figure 3.8 The temperature ratio (RT ) between the inner and outer disks of double-belt systems can be used to distinguish spatially separated belts from single-belt systems with two grain populations (Kennedy & Wyatt, 2014). We conservatively assume that any systems with RT >5 (dashed line) are truly spatially separated systems (see Section 3.8). Colored circles represent double-belt systems from our Herschel sample (OT1 and OT2). Blue triangles represent stars from Kennedy & Wyatt (2014) with known (resolved) double-belt systems. Black crosses represent stars from Kennedy & Wyatt (2014) with double-belt fits to the dust SEDs, but for which it is not known whether there are two truly separated belts present. The green square is HD 181327, which is known to host a single belt of dust with two different temperature grain populations. to n−3.1. This is shallower than the typical -3.5 value assumed for most debris disks. Olofsson et al. calculate a dust mass of ∼ 7.7E-05 M⊕. Fujiwara et al. (2012) estimated that the dust should lie between 0.6 and 1.0 AU.

We find a double-belt system around HD 15407 (Figure 3.1). Both dust components are hot (T∼334K, 1022K) and lie within 1 AU of the central star. These results are consistent with the prediction of a warm, extended belt (Fujiwara et al., 2012). Olofsson et al. (2012) studied the mid-IR emission features of HD 15407, and (based on the width of the disk), predicted that a cold dust belt should be found, that is responsible for feeding dust to the observed hot dust belt. The absence of a cold dust component in the Herschel observations

80 implies that either there is not enough dust to be observable with Herschel, or the dust is unrealistically cold (<10K). The lack of a substantial dust belt would be consistent with a proposed model of transient dust.

3.9.2 HD 23514

HD 23514 is a member with an IR excess detected by IRAS and Spitzer (Rhee et al., 2008). Rhee et al. report a dust temperature of 750 K and an exceptionally high fractional IR luminosity of 2.0E-02. Notably, they also report the results of observations with the Michelle Spectrograph on Gemini North, that show an unusual emission feature peaking around 9 µm. This feature (attributed to SiO2) may indicate a recent major high-velocity collision involving a differentiated terrestrial planet (Lisse et al., 2009). Rhee et al. found a lack of olivine and pyroxene in the spectra, which suggests that a steady-state collisional cascade involving an asteroid belt is likely not the cause of the observed dust. This model is only strengthened by the fact that we detected no cold dust component with Herschel,

and is consistent with our calculations of τ/τ max∼300. We fit two dust components to the observed emission at 168K and 1082K.

Rodriguez et al. (2012) report a substellar companion to HD23514 with a mass of ∼

0.06M at a separation of ∼360 AU. Zuckerman (2015) notes that several stars with dominant warm dust components were later discovered to be members of wide binary systems. The connection between the wide binary and the presence of warm dust is not well understood at this time.

3.9.3 HD 35650

This star is a known AB Dor member (?), with age ∼100Myr. It was observed by Spitzer, and was found to have a 70 µm excess only. Zuckerman et al. (2011) report a dust temperature of 60 K and τ ∼1.7E-04. We find that the cold (∼45 K) dust has τ=1.5E-04, consistent with previous results. We also find that the mid-IR flux could be fit with an additional hot dust component at 536 K (Figure 3.1). HD 35650 was observed by the Near-Infrared

81 Coronagraphic Imager (NICI) with angular differential imaging (ADI), but was not found to have a substellar companion (Biller et al., 2013).

3.9.4 HD 43989

HD 43989 is a member of Tuc Hor (Zuckerman & Song, 2004), and as such has an age of ∼40 Myr (Kraus et al., 2014). Zuckerman et al. (2011) report Spitzer observations that show an excess at 24 µm and in the IRS spectrum, but only an upper limit at 70 µm. We find a dust temperature of 112 K and a τ of 7.4E-05. The star was observed for a planetary companion by the Multiple Mirror Telescope (MMT) with spectral differential imaging (SDI), but no such companion was found Biller et al. (2007).

3.9.5 HD 54341

This A0 star was presented by Rhee et al. (2007). The system age is unreliable; the age based on isochrones disagrees with the age based on UVW space motions (while the isochrones suggest an age of 10 Myr, the UVWs suggest an older age). At the time, there was no MIPS data point, and the dust temperature and luminosity quoted in Rhee et al. (2007) is unrealistic. It was also observed with adaptive optics at Lick Observatory and found not to be a member of a binary system (Rodriguez & Zuckerman, 2012). The system was observed by Spitzer, and Chen et al. (2014) fit a two-component dust belt, with dust temperatures of 246K and 60K, and fractional IR luminosities of 1.9E-05 and 1.7E-04, respectively. While the χ2 values for a single- and double- belt fit were similar, we chose to fit a double-belt to be consistent with Chen et al.’s results. We find that the two belts have temperatures of 168 K and 60 K. The discrepancy in the warm dust temperatures is likely due to the fact that we often did not weigh the IRAS photometry highly, due to the fact that IRAS data points are typically inconsistent with other, more reliable photometry. HD 54341 is one of our resolved systems; we find that the resolved disk size (∼185 AU) is almost twice as big as the blackbody disk size (∼106 AU).

82 3.9.6 HD 76543

This A5 star was initially reported by Rhee et al. (2007) to have an IRAS excess suggestive of a disk at 85 K with τ=1.04E-04. Based on its location in UVW space (well outside of the “good box” of Zuckerman & Song 2004) and its location on the HR diagram, this star is estimated to have an age of ∼400 Myr. The star was also observed with Spitzer. Chen et al. (2014) report a two-component disk with a cool belt at 81 K and a warm belt at 146 K. They find fractional IR luminosities of the two systems of 3E-05 and 1.7E-05 for the cool and warm belts, respectively. The addition of Herschel data helps to constrain the dust temperatures; we now find two belts of dust - one at 49 K and one at 105 K with fractional IR luminosities of 4.8E-05 and 3.6E-05, respectively. Any discrepancy between our dust temperatures and those of Chen et al. (2014) are likely due to the high number of free parameters needed to fit a double belt system; a different cool dust temperature would correspond to a different warm dust temperature. The dust temperature from Rhee et al. (2007) does not take into account any Spitzer or Herschel data.

3.9.7 HD 76582

This F0 star was reported by Rhee et al. (2007) to have an IRAS excess indicative of a disk at 85 K and τ=2.22E-04. This relatively high fractional IR luminosity is surprising, given its 300 Myr age. The star was also observed by Spitzer (Chen et al., 2014). These observations revealed a two-component disk, with an inner belt at 466 K (akin to a zodiacal dust cloud) and an outer belt at 78 K (akin to a Kuiper Belt). Our Herschel observations constrain the long wavelength behavior of the cold belt. We also obtain a two-component fit to our SEDs, with an inner belt at 132 K (possibly an asteroid belt analog) and an outer belt at 51 K (a close analog of the Kuiper Belt). The cold dust emission appears to peak at Herschel wavelengths; after a fit with a 51 K curve, dust at ∼450 K does not appear to be needed. Longer wavelength data will help to constrain the grain properties and dust mass. This star was targeted for sub-mm follow-up by the DUNES team (Marshall et al., 2016).

83 3.9.8 HD 84870

HD 84870 was first reported by Rhee et al. (2007) to host a 100 Myr old debris disk with an IRAS excess indicative of a dust belt at 85 K. Rhee et al. listed this A3 star as a binary, but Mason et al. (2013) describe the two stars in question as an optical pair (sep∼3000) based on a study of their relative motions. Mittal et al. (2015) report a slight Si emission at 10 µm (5σ) and 20 µm (12σ). They also report 70 µm photometry that suggests a double-belt architecture, with a hot inner belt at 553 K and a cool outer belt at 67 K. Our Herschel observations are slightly inconsistent with the Spitzer data point at 70 µm, and we do not find a need for a double-belt system. We fit a single belt at 54 K with τ=4.7E-04.

3.9.9 HD 85672

This A0 star was first reported as a debris disk by Rhee et al. (2007) with a cool belt at 79 K and τ=4.82E-04. Our Herschel results (combined with new photometry from WISE) better constrain the temperature of the observed dust. We found that the long-wavelength photometry required a modified blackbody fit (λ0=107, β=1.1), resulting in a best-fit dust temperature of 77 K and τ=6.0E-04.

3.9.10 HD 99945

HD 99945 was initially reported by Rhee et al. (2007) as a new debris disk discovered by IRAS. While our Herschel photometry at 100 µm is inconsistent with the IRAS data point at 60 µm, we are able to fit a belt of cold dust to the emission (T=38 K). Due to the low temperature, we examined this A2 star to determine if the emission might the due to contamination with a background galaxy or IR cirrus (see Sections 3.4.1 and 3.4.2). Due to the high far-IR flux and the fact that the emission is slightly too warm do be accounted for by a background galaxy at z∼1, we believe that the excess emission indicates a belt of dust at 167 AU from the host star.

84 3.9.11 HD 113766

HD 113766 is a well-known, extremely bright debris disk with a hot dust component. The mid-IR photometry has been well-covered in the literature. Si emission features are seen in the IRS spectra (Mittal et al., 2015). Chen et al. (2005) reported the Spitzer results, and found a single belt of dust at 330 K. Olofsson et al. (2013) observed this star with VLTI/MIDI and Herschel/PACS, and determined that, in order to fit the mid-IR data simultaneously with the far-IR photometry, two spatially separated belts were needed: a hot belt within 1 AU, made of small grains which cause emission features in the mid-IR, and an outer belt at 9-13 AU. Our results independently confirm this two-belt structure, and are consistent with the findings of Olofsson et al. (2013) regarding the transient nature of the dust. We report an inner belt at 0.2 AU and an outer belt at 2.3 AU. Our estimate for the semimajor axis of the cooler dust is smaller than that of Olofsson et al. (2013), though Oloffson et al. used a modified blackbody fit to the dust, and attempted to fit their VLTI/MIDI data simultaneously. As discussed in Olofsson et al. (2013), the binary companion to HD 113766A is likely too far from the disk to have any serious influence on the stirring of the disk material, though Zuckerman (2015) point out a possible relationship between distant companions and copious amounts of warm dust.

3.9.12 HD 121191 and HD 131488

These A-type stars were OT-1 targets. Melis et al. (2013) report mid-IR imaging and spectroscopy from Gemini/T-ReCS. Most notably, they discovered that HD 121191 and HD 131488 both have unusual emission features that peak shortward of 8 µm. This emission feature does not appear to be due silica, olivines, or pyroxenes, all which show emission features peaking between 8-12 µm. Our Herschel observations confirm the two-belt structure of the debris disk around HD 121191, with a hot inner disk at 555 K and a warm disk at 118 K. There does not seem to be a cold dust component in this system. Melis et al. fit a two-belt debris disk to the SED of HD 131488, with one inner disk at 750 K and an outer disk at 100 K. Our Herschel observations confirm this double-belt nature of the debris disk,

85 but with an inner belt at 570 K and an outer belt at 94 K. It should be noted that, while we believe HD 121191 is at least marginally resolved in the Herschel images, confirmation is needed to consider it to be a truly resolved disk since it appears as an extreme outlier in Figure 3.4.

3.9.13 HD 124718

This G5 star was initially reported by Rhee et al. (2007) to have an IRAS excess indicative of a dust belt at 85 K and with a large fractional IR luminosity (τ=2.11E-03), which was surprising given its old age (>500 Myr). WISE mid-IR photometry reveals an excess at 22 µm. Our Herschel observations are inconsistent with the IRAS data, and demonstrate that there is no accompanying cold dust belt. We fit a dust temperature of 179 K and τ=2.1E- 04. This discrepancy is unsurprising, since the dust temperature and luminosity reported by Rhee et al. were based on a single data point in excess, before WISE results were available.

3.9.14 BD+20 307

The excess IR emission around this well-studied close G-type binary star system was first reported by Song et al. (2005) primarily based on IRAS photometry at 12 and 25 µm (the 60 and 100 µm IRAS observations only returned upper limits). Zuckerman et al. (2008) obtained optical spectra to better determine the system age. Their results suggest that BD+20 307 could, in fact, be several Gyr old. Thus, the massive quantity of hot dust is not a result of ongoing planet formation, but rather the result of a collision between two mature planets in the terrestrial planet zone. The absence of cold dust was also noted in Weinberger et al. (2011). The Herschel SED confirms that there is no cold dust emitting at far-IR wavelengths, and helps to constrain the temperature of the dust (417 K) and to lend support to the planet-collision model. We did not attempt to fit the Spitzer IRS spectrum, since it is dominated by emission features (Mittal et al., 2015). Thus, we adopt the τ value of 0.032 from Weinberger et al. (2011), since our estimate of τ (∼0.01) does not include flux from the strong silicate emission feature.

86 3.10 Conclusions

We observed 24 stars with the PACS camera on the Herschel Space Observatory. Two infrared sources detected with Herschel are offset from the target coordinates by >200. These are unlikely to be due to dusty debris belts. Three targets were not detected with Herschel, and are non-excess stars. One star was detected with Herschel, but shows no evidence of an IR excess. Two stars have low IR fluxes, and could possibly be explained by contamination by a background galaxy at z∼1. One target star is clearly contaminated by a background galaxy. The remaining 15 stars were examined to determine dust properties and the possibility of ongoing planet formation. A summary of the results can be found in Table 3.5.

• Nine stars (HD 15407, HD 23514, HD 35650, HD 54341, HD 76543, HD 76582, HD 113766, HD 121191, and HD 131488) appear to have dust components at two temper- atures according to SED fitting. All appear to have spatially separated dust belts.

• Three stars (HD 15407, HD 113766, and BD+20 307) have disks that cannot be ex- plained by a steady-state collisional process alone. Two other stars (HD 23514 and HD 124718) are likely explained by a transient process. The other debris disks could be explained by steady-state collisional processes.

• Dust belts at HD 54341, HD 84870, HD 85672, and HD 121191 are at large enough distances from their host stars that the dust could be stirred by a yet-unseen planet or binary companion. Stirring of these disks by putative 1000 km-sized bodies may be insufficient to explain the dust production in these systems.

• The stars HD 54341, HD 76543, HD 76582, HD 84870, HD 85672, and HD 99945 are spatially resolved (or probably resolved as in the case of HD 121191), and a comparison between their blackbody radii (from SED-fitting) and resolved radii show that the latter are typically larger than the former, perhaps by up to a factor as large as 10 (HD 121191).

• Six stars (HD 15407, HD 23514, HD113766, HD 121191, HD 124718, and BD+20 307) show no evidence of cold dust in the Herschel data. 87 Table 3.5. Summary of Results

Star Resolved? Transient? Planet Self Two-Belt? Solid-state Name Stirred? Stirred? Emission?

15407 Y Y Y 23514 Y? Y Y 35650 Y Y 43989 Y N 54341 Y Y Y N 76543 Y Y Y N 76582 Y Y Y N 84870 Y Y N 85672 Y Y 99945 Y Y 113766 Y Y Y 121191 Y Y Y Y 124718 Y? Y 131488 Y Y Y BD+20307 Y Y

3.11 Acknowledgements

This research has made use of the Exoplanet Orbit Database, the Exoplanet Data Explorer at exoplanets.org, the SIMBAD database, and VIZIER search engine, operated by CDS in France. Partial support for this work was supported by a NASA grant to UCLA and by an NSF Graduate Research Fellowship to Laura Vican.

88 CHAPTER 4

Spectroscopic Observations of Nearby Low Mass Stars in the GALNYSS Survey

4.1 Introduction

Young stars are important laboratories for studying the formation and early evolution of planetary systems. In particular, nearby, low-mass stars offer us the opportunity to directly image planetary systems by taking advantage of the high contrast ratio between star and planet. It is advantageous, then, to identify young, nearby, low-mass stars. The age of a star in isolation, however, is one of the most difficult parameters to constrain. The age of high-mass stars can be determined through the use of stellar isochrones, but solar-mass and low-mass stars evolve much more slowly on the main sequence. Luckily, there are some indicators of youth in low-mass stars.

Rodriguez et al. (2011) developed a new method for finding young low-mass stars. They found that low-mass, young stars, when plotted on a color-color plot (NUV-W1 vs. J-W2), stood out as having excess NUV emission (see their Figure 2). This effect had been seen before (e.g. Shkolnik et al. 2011, Guinan & Engle 2009). Rodriguez et al. (2013) used the wide sky coverage of the Galaxy Evolution Explorer (GALEX; Martin et al. 2005) and the Two-Micron All-Sky Survey (2MASS; Cutri et al. 2003) to create a catalog of over 2,000 candidate young, nearby, late K- to early L-type stars.

While we suspect that these stars are young based on their excess NUV emission, confir- mation of youth requires spectroscopic follow-up. Optical spectroscopy allows one to identify several signatures of youth at once. While most parameters of low-mass stars change slowly

89 on the main sequence, lithium abundance changes very quickly. This is because the deep convective envelopes of low-mass stars are effective at mixing lithium from the photosphere into the core where it is destroyed. We can therefore use the presence of lithium to indicate youth.

Optical emission lines can also be used to identify young stars. Stars with high levels of magnetic activity (and therefore youth) should exhibit hydrogen and calcium emission features. The youngest stars, which may have ongoing accretion, may also exhibit emission from helium, sodium, and iron (Zuckerman et al., 2014). Accreting stars will also have rotationally broadened Hα profiles, which are readily distinguishable from non-accreting stars (White & Basri, 2003).

High-resolution optical spectroscopy, in particular, allows us to calculate radial velocities for candidate young stars. This allows us to calculate UVW space velocities and place these stars in young, nearby moving groups. The advantage of placing a star in a moving group is that the age of the moving group is much more easily determined than the age of a star in isolation. While the ages of moving groups are still a topic of ongoing study (e.g. Binks & Jeffries 2014, Mamajek & Bell 2014), they are still far more constrained than the ages of individual stars. The identification of a star as a member of a nearby moving group indicates that the star is most likely <150 Myr old, and therefore is likely exhibiting ongoing planet formation.

We used seven instruments at four telescopes (see Table 4.4) in both the Northern and Southern hemispheres to follow up on a subsample of stars in this catalog with high- and medium- resolution spectroscopy. Our goals were to: (1) establish their youth by measuring lithium abundance, (2) confirm high levels of magnetic activity by measuring Hα and Ca II H&K emission, (3) measure radial velocities, (4) from the radial velocities and proper motions, calculate UVW space velocities, and (5) identify new low-mass members of nearby young moving groups via their UVWs and other indicators. In addition, we checked the WISE catalog to look for evidence of an infrared excess, which can also be indicative of youth. Finally, we re-calculated the lithium depletion boundary ages for several nearby moving groups after adding new low-mass members. 90 700 GALNYSS Observed 600

500

400 Count 300

200

100

0 2 0 2 4 6 8 10 12 SpNum

Figure 4.1 Photometric spectral types (based on J-W2 colors) for stars in the GALNYSS survey. SpNum represents the spectral type after M. Negative SpNum indicates K-type stars. Red bars represent stars observed for this paper.

4.2 Stellar Sample

Stars were first selected based on their UV brightness such that 9.5≤NUV-W1<12.5 where NUV is the GALEX near-UV magnitude (∼0.23µm), and W1 is the magnitude in WISE Band 1 (3.4 µm). A cut was also made at J-W2 ≥ 0.8 to select low-mass stars (late-K through early-L) where J is the 2MASS magnitude at 1.25 µm and W2 is the WISE Band 2 magnitude at 4.6 µm. Further details about the selection criteria used are discussed in Rodriguez et al., 2013. The final GALNYSS table consists of over 2,000 stars. We selected stars for observation based on their brightness, proper motions (high proper motion stars are likely to be closer to Earth and of more interest for follow-up), and potential for moving group membership based on their position in the sky and proper motions. The spectral types of the stars we observed are compared to those of the entire GALNYSS catalog in Figure 4.1.

91 0.5

0.4

0.3

0.2

0.1

Normalized Flux 0.0

0.1

0.2 6670 6680 6690 6700 6710 6720 6730 6740 6750 Wavelength [Ang] 1.00

0.95

0.90 Normalized Flux 0.85

0.80 6670 6680 6690 6700 6710 6720 6730 6740 6750 Wavelength [Ang]

Figure 4.2 Example spectrum of J0441-1947 (M1) taken with HIRES (high resolution; top panel) and Kast (medium resolution; bottom panel). The detected Li line is indicated with a vertical dashed line. Abscissa wavelengths are in air.

4.3 Observations

In total, we were granted 53 nights on 4 telescopes (Keck 10-m, Shane 3-m, MPG 2.2m, and the duPont 2.5m). Our general protocol was to observe a large number of stars with medium- resolution spectrographs (R∼2,000) looking for Li, then follow up with high resolution data (R∼40,000) for a subset of the sample which showed evidence of Li in the medium-resolution spectra, or which had a high probability of being members of nearby moving groups according to their proper motions, or both. Figure 4.2 shows an example spectrum of a particular star in our sample taken with both a medium and high resolution spectrograph. A summary of our observations can be found in Table 4.4. A complete list of observed stars can be found in Table 4.5. Shane and duPont spectra were reduced using standard IRAF packages. FEROS and HIRES spectra were reduced through an automated pipeline.

92 4.4 Results

A summary of results can be found in Table 4.6. In total, we observed 471 targets; 242 with high resolution spectrographs and 229 with medium resolution spectrographs. We were able to calculate radial velocities for 232 stars with high signal-to-noise data. Typical errors for our measurements are ∼1.5 km/s. We identified 138 stars as probable members of nearby moving groups, 99 of which are newly identified in this paper. We identified 36 spectroscopic binaries from their high resolution spectra, and an additional 16 from the literature, along with 50 common proper motion pairs in UCAC4. We removed 17 giant stars from our analysis, which were identified by their Hα profiles and spectral indices. We detected Li in 89 stars, with 69 stars having equivalent widths (EWs) above 200 mA˚. Two stars have infrared excesses confirmed in their WISE images.

4.4.1 Signatures of Youth

4.4.1.1 Lithium

Lithium abundance can be used in congruence with the color of a star to estimate the age of solar-type stars (Zuckerman & Song, 2004). Since low-mass stars have deep convective envelopes, they are very effective at burning lithium; by 20 Myr, there should be little to no detectable lithium (Feiden & Chaboyer, 2013). Thus, if the EW of the 6707A˚ Li line in such stars is several hundred mA˚, one can deduce that the star is likely younger than 20-30 Myr.

We measured the lithium EW at 6707 A˚ (in-air wavelength, without attempting to de- blend the doublet), and defined the surrounding continuum using two bands on either side of the feature between 6700-6705 A˚ and 6710-6714 A˚. 89 stars were found to have detectable Li. EWs can be found in Table 4.6.

We also used Li equivalent widths (EWs) for stars in nearby young moving groups to calculate the age of that moving group via the Lithium Depletion Boundary (LDB) method (see Section 4.5.2).

93 4.4.1.2 Emission Features

We measured the EW of Hα (Table 4.6) by fitting a Voigt line profile to the emission feature in IRAF. We measured the EW of each individual line several times, varying the location of the continuum. The EWs presented in Table 4.6 represent the average EW resulting from this process, while the errors represent the standard deviation of all measurements. While many of the observed stars show double-peaked Hα emission features, we measured EW in the same way that we would for a single-peaked emission feature. We only deblended this feature if we saw evidence elsewhere in the spectrum that we were looking at a spectroscopic binary (see Section 4.5.3).

The 10-% width of the Hα emission feature can also provide evidence of ongoing accretion (White & Basri, 2003). We compare the EW to the 10-% width of the Hα line in Figure 4.3. If the 10-% width is > 270km/s, the star is likely accreting material from a circumstellar disk, according to White & Basri (2003). We took a more conservative approach, and set the threshold for possible accretion at 200 km/s, since we know of at least two stars (the components of the LDS 5606 binary system, listed in this work as J0448+1439AB) which show signs of accretion, but have Hα 10%-widths <270km/s (see Zuckerman et al. 2014 and Rodriguez et al. 2014 for details). Eight of our stars show 10%-widths >200km/s, including J0448+1439AB. Of the eight stars with 10-% widths > 200km/s only two (J0448+1439 and J1250-4231) also show evidence of metal emission. Curiously, the star with the widest Hα profile (J1026-4105) does not show any evidence of metal emission in its spectrum (Figure 4.4). This star does show other Balmer emission lines (Hα -H), all which exhibit extreme rotational broadening (200-300 km/s). However the lack of emission at He I and Na I implies that the star is not actively accreting. We also see no emission in the Ca IR triplet ∼ 8500A˚. It is possible that the width of Hα in this star is due to a combination of unresolved binarity and rapid rotation rather than accretion. Further high resolution data could be used to identify spectroscopic binarity in this star.

We were able to use the line profile of Hα in stars with high-resolution spectra to identify and remove giant stars from our analysis. The Hα line profile of a giant star is distinguishable

94 J0448+1439A(Nov16) 102 J0448+1439A (Oct17) ] [

) J0448+1439B (Oct21) α H (

J1250-4231 h t d i 101 J1026-4105 W

t n e l a v i u q E

100

50 100 150 200 250 300 10%-Width (Hα) [km/s]

Figure 4.3 Broad Hα emission features are signatures of ongoing accretion. Black data points represent stars observed with high-resolution spectrographs, and therefore having high fidelity Hα EWs and 10% widths. Green squares represent spectroscopic binary systems. Red stars represent stars that show metal emission features in their spectra. White & Basri (2003) claim that any stars with 10% widths >270 km/s (vertical dashed line) are likely accreting. We find stars with signs of accretion in their spectra with lower 10% widths, and apply a more conservative threshold for accretion of 200 km/s (solid vertical line). One notable outlier is J1026-4105, which stands out as having a very large 10% width but no metal emission features (see Figure 4.4)

95 Spectrum of J1026-4105, taken with FEROS

0.09 0.09 He I Na I Na I 0.08 0.08

0.07 0.07

0.06 0.06

0.05 0.05

0.04 0.04 Na I Normalized Flux 0.03 0.03

0.02 0.02

0.01 0.01 5870 5875 5880 5885 5890 5895 5900 5160 5165 5170 5175 5180 Wavelength [Ang] Wavelength [Ang] 0.40 0.40 0.40

0.35 0.35 0.35

0.30 0.30 0.30

0.25 0.25 0.25 Hα 0.20 0.20 0.20

0.15 0.15 0.15

Normalized Flux 0.10 0.10 0.10 Hβ 0.05 0.05 0.05 Hγ 0.00 0.00 0.00 6550 6555 6560 6565 6570 6575 4850 4855 4860 4865 4870 4330 4335 4340 4345 4350 Wavelength [Ang] Wavelength [Ang] Wavelength [Ang]

Figure 4.4 Although J1026-4105 has an extremely wide Hα emission feature (see Figure 4.3), it does not show the other emission lines that typically signify accretion (see Figure 4.7).

from that of a typical young, low-mass star. While most low-mass stars exhibit Hα in emission, giant stars exhibit self-reversal in the Hα line, with a strong absorption feature at the central wavelength, and emission in the wings (see Figure 4.5). We plotted the J-W2 and NUV-W1 colors of observed stars in Figure 4.6, and found that stars with detectable Li are randomly distributed in this parameter space, while giant stars typically have bluer J-W2 colors compared to the rest of our sample.

Emission from various elements (e.g. Fe II, Na I, He I) is evidence of ongoing accretion (White & Basri, 2003) and therefore youth (Zuckerman & Song, 2004). While most young low-mass show Hα and He I in emission, only very strong accretors show metal emission lines. Such emission features were seen in seven of our stars (J0100+0250, J0448-1439, J0524-1601, J1542+5936, J2137-6036, J2302-1215, and J1250-4231). Spectra for six of these stars (excluding J0448-1439, whose spectrum is covered in detail in Zuckerman et al. 2014) are shown in Figure 4.7.

96 0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.08 6530 6540 6550 6560 6570 6580 6590 6600 Wavelength [Ang]

0.10

0.05

0.00

6530 6540 6550 6560 6570 6580 6590 6600 Wavelength [Ang]

Figure 4.5 The Hα profile of a giant star (top panel) is easily distinguishable from that of an active, low-mass star (bottom panel).

97 13.0 1.0

0.9 12.5 0.8 12.0 0.7 11.5 0.6

11.0 0.5 NUV-W1 EW(Li) [A] 10.5 0.4

0.3 10.0 0.2 9.5 0.1 9.0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 J-W2

Figure 4.6 Observed stars from the GALNYSS sample. Plus symbols represent stars in the sample with no detectable Li. Colored data points represent stars with detectable Li. Large grey squares represent stars we identified as giants based on their Hα profiles.The large outlier is J0448+1439, which has a large IR excess.

98 Figure 4.7 Spectra for six stars showing emission for Fe II, He I, and Na I. J0100+0250 is a spectroscopic binary. J0524-1601 may also be a spectroscopic binary, but its rapid rotation makes this difficult to discern. The spectrum of J0448-1439AB, that shows many more emission lines than the stars in this figure, is presented in Zuckerman et al. (2014).

99 4.4.1.3 IR Excesses

We defined an IR excess following the prescription in Schneider et al. (2012). Most M stars have W1-W4 between 0 and 1. Thus, a candidate excess source is first identified as having W1-W4 >1.0. Color information for our sample can be found in Table 4.7. Of the 471 stars observed during our campaign, 333 had detections at W4, and only 25 have W1-W4 >1.0 (see Figure 4.8).To rule out possible contamination, we examined the WISE data products of those 25 stars. Only two (J0448+1439AB and J2051-1538) appeared to have clean WISE images in W4 (22µm). The apparent IR excess in the other 23 stars appear to be the result of cirrus contamination or confusion with a nearby IR excess source.

The spectral energy distribution (SED) of J0448+1439AB is presented in Zuckerman et al. (2014), and the SED of J2051-1538 is shown in Figure 4.9. We were not able to measure the Hα 10%-width of J2051-1538, since it was not observed with a high-resolution spectrograph (and thus does not appear in Figure 4.3). However, its extremely high EW(Hα) (42 A˚) suggests that it is likely accreting. It is one of our latest-type stars (SpT from TiO5 = M4.9), and (unlike J0448+1439) does not appear to have a common proper motion companion (within 30). Fitting a simple blackbody to the observed excess, we find a dust temperature of 238K and fractional IR luminosity of τ=4.65E-02. These dust properties are similar to those of the secondary in the J0448+1439 system (Tdust=220, τ=6.28E-02). Curiously, J2051-1538 was classified as an ”old field star” (see Section 4.5.1.2), meaning that it does not appear to belong to any of the moving groups covered in this paper. That said, it does not have a measured radial velocity, and its moving group membership probabilities are calculated based on proper motions alone. This is a high-priority target for future observations.

Our finding that only 2/333 stars have a measurable mid-IR excess is consistent with previous findings that the debris disk incidence among M stars is consistent with 0% (e.g. Binks 2016).

100 5

J2051-1548 J0448+1439 4

3

2 W1-W4

1

0

1 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 W1-W3

Figure 4.8 WISE colors of stars in our sample. Stars with W1-W4>1.0 are the red data points. After visually inspecting each potential IR excess source, we found that only J0448+1439 and J2051-1548 are uncontaminated in the WISE images.

101 Figure 4.9 Spectral energy distribution (SED) of J2051-1548. The black dotted curve is a photospheric model for a 3700 K star from Hauschildt et al. (1999). The red dashed curve is a simple blackbody with T=238 K. The black solid curve represents the combined contribution of the stellar photosphere and dust blackbody. τ is the fractional IR luminosity (LIR/Lbol).

102 4.4.2 Space Motions

4.4.2.1 Radial Velocities

Heliocentric radial velocities were calculated for stars with high-resolution data using ab- sorption features near 6430A˚. We used RV standards from Nidever et al. (2002), observed each night, to confirm the validity of our wavelength solution. Barycentric corrections were calculated using the IRAF task rvcorrect. Errors were calculated from the standard devi- ation in the measurement of radial velocity across several orders of the spectrum. Typical errors in radial velocity were ∼1.5 km/s.

4.4.2.2 Distances

As a first-order estimate, we determined distances using empirical 10 and 100 Myr isochrones created with data from known young moving group members from Torres et al. (2008) (see Rodriguez et al. 2013, Figure 5). To determine distances more robustly, we placed stars in moving groups using the Bayesian Analysis for Nearby Young AssociatioNs (BANYAN; Malo et al. 2013). The BANYAN tool allows users to input a range of stellar parameters, including proper motions, radial velocities, and distances. Kinematic models of a set of nearby young moving groups are then constructed based on the properties of known members of said moving groups. Bayesian inference is then applied to these models to determine the probability of membership for a user-submitted target. If no distance is provided, a statistical distance is calculated, assuming the star is a bona-fide member of a particular moving group. The statistical distance is calculated by applying a Bayesian analysis with the input being the sky position, proper motions, and radial velocity, but leaving the distance as a variable. The statistical distance is then the most probable distance for a star given membership in a particular moving group. See Malo et al. (2013) for more details.

For stars observed with high resolution spectrographs (and therefore with measurable radial velocities), we used the BANYAN tool to determine the probability of membership to a set of nearby young moving groups, without providing a distance. If a star had a 50-

103 Hα Li CaH2 CaH3 TiO5 NaI

10000

8000 Flux 6000

4000

2000 6500 7000 7500 8000 Wavelength (Ang)

Figure 4.10 A typical medium-resolution spectrum; parts of the spectrum used for spectral typing are highlighted, along with the Hα and Li regions.

90% probability of belonging to a particular moving group, we used the statistical distance for that moving group as the distance to the star itself. Distances listed in Table 4.8 are preferentially taken from this statistical distance. If a star is not a member of a nearby moving group, we identified it as either a young field object or an old field object, and used the distances appropriate for a 10 Myr or 100 Myr isochrone, respectively (see Section 4.5.1.2).

4.4.3 Spectral Indices

Several temperature-dependent molecular absorption bands were used to calculate spectral indices used to determine spectral type (see Figure 4.10). TiO5 indices were calculated according to the band definitions from Reid et al. (1995). Spectral type was then calculated using the following relation from Reid et al. (1995):

SpNum = −10.775 × T iO5 + 8.2 (4.1)

where SpNum is the spectral number (beginning with M) and the error in spectral number is approximately 0.5. A comparison between spectral numbers determined from the optical spectra and spectral numbers determined by J-W2 colors can be found in Figure 4.11.

104 6 0.50

0.45

4 0.40

0.35

2 0.30

0.25 W1-W4 SpNum (TiO) 0 0.20

0.15

2 0.10

0.05

0.00 0 2 4 6 SpNum (J-W2)

Figure 4.11 Comparison between spectral types determined by J-W2 colors and by TiO5 indices. The solid black line represents a 1:1 relationship. The dashed black lines indicate ±0.5 spectral classes from a 1:1 relationship.

105 1.1 1.2 1.0 1.0 0.9 0.8 0.8 CaH2 0.6 CaH3 0.7 0.4 0.6 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 TiO5 TiO5

1.5 1.4 1.3 1.2 Nai 1.1 1.0 0.9 0.2 0.4 0.6 0.8 1.0 1.2 TiO5

Figure 4.12 Spectral indices were calculated to determine the spectral type of stars in our sample. Definitions for these spectral indices were taken from Reid et al. (1995).

We also calculated NaI indices, CaH2 indices, and CaH3 indices (Reid et al., 1995). All calculated indices and derived spectral types can be found in Table 4.9. Comparisons between the TiO5 index used to calculate spectral types and the other spectral indices can be found in Figure 4.12. TiO measurements were used to calculate spectral types whenever possible, but TiO5 indices agree well with both CaH2 and CaH3 indices. Thus we were able to use CaH2 and CaH3 indices to calculate a TiO5 index when we were not able to measure TiO directly from the spectrum. We were only able to calculate spectral types for a) medium-resolution targets and b) high resolution targets with high SNR and whose spectral bands did not span more than one aperture.

106 Table 4.1. Moving Groups

Moving Group Age Ref1 UVW σ(UVW) Myr km/s km/s

TW Hydrae 7 D14 (-11.1, -18.9, -5.6) (0.9, 1.6, 2.8) β Pictoris 24 B14 (-11.0, -15.6, -9.2) (1.4, 1.7, 2.5) Tuc Hor 40 K14 (-9.7, -20.5, -0.8) (1.1, 1.7, 2.4) Columba 40 K14 (-12.1, -21.3, -5.6) (0.5, 1.3, 1.7) Carina 40 K14 (-10.7, -22.2, -5.7) (0.3, 0.7, 1.1) Argus 50 B04 (-21.5, -12.2, -4.6) (0.9, 1.7, 2.7) AB Dor 149 B15 (-7.0, -27.2, -13.9) (1.2, 1.7, 1.9)

Note. — Kinematic data are taken from Gagn´eet al. (2014). 1 D14 = Ducourant et al. (2014) (dynamical age), B14 = Binks & Jeffries (2014) (LDB age), K14 = Kraus et al. (2014) (LDB age; ages of Columba and Carina moving groups are assumed to be the same as Tuc Hor, for which the LDB age was actually measured), B04 = Barrado y Navascu´eset al. (2004) (LDB age, assumes the age of Argus is the same as IC 2391), B15 = Bell et al. (2015) (isochrone age)

4.5 Discussion

4.5.1 Moving Group Membership

We calculated UVW space motions for stars in our sample with high resolution spectra available and high enough SNR to allow for the measurement of radial velocities. We used measured radial velocities and distances calculated with the online BANYAN tool (see Sec- tion 4.4.2.2). The moving groups we considered, along with their ages and average UVW are listed in Table 4.1. The terminology we use when determining moving group membership is explained in Table 4.2.

107 Table 4.2. Definition of Moving Group Terminology

Term Definition

Possible MG Member Star with a 50-90% probability of belonging to a partic- ular moving group. Star with >90% probability of belonging to a particular moving group, but which is not isochronal with known members (within 1 mag). Probable MG Member Star with >90% probability of belonging to a particular moving group. Star with low-resolution data only, >90% probability of belonging to a particular moving group and which is isochronal with known members (within 1 mag). Bonafide MG Member Star with high-resolution data, >90% probability of belonging to a particular moving group and which is isochronal with known members (within 1 mag). Young Field Star Star with >30% probability of belonging to more than one MG. Star with >50% probability of belonging to the old field population (according to BANYAN), but with de- tectable lithium. Old Field Star Star with >50% probability of belonging to the old field population.

108 4.5.1.1 Moving Group Members

To determine the probability of of a star’s membership in a nearby young moving group, we used BANYAN (see Section 4.4.2.2). For stars with high resolution data available and therefore measurable radial velocities, we inputted the radial velocity and proper motions into the BANYAN tool, and examined the resulting membership probabilities. The resulting statistical distance was used in conjunction with the measured radial velocity to obtain the UVW listed in Table 4.8. If a star with a measurable radial velocity was found to have greater than 90% chance of belonging to a moving group, we considered it a probable member. If it had a 50-90% probability of belonging to a moving group, it was considered a possible member.

We then examined the photometric properties of candidate members. Using statistical distances from the BANYAN analysis, we calculated absolute K and V magnitudes for our stars, and plotted the stars in our sample along with bonafide members from the literature. To assemble a sample of bonafide members, we began with the recent review by Bell et al. (2015). We then added in β Pic and AB Dor members from Binks & Jeffries (2016) and Tuc Hor members from Kraus et al. (2014). In addition, we added stars from Torres et al. (2008) which also have a >90% probability of membership when run through the BANYAN analysis tool. We created isochrones using the models from Baraffe et al. (1998) and Feiden & Chaboyer (2013). We chose the Feiden & Chaboyer models for the lowest-mass stars (M4.5 and later), because their stellar evolution models include a 2.5kG magnetic field appropriate for very low-mass stars. We used models with solar metallicities and gravity indices. We applied the non-magnetic models for V-J< 3 (corresponding to a spectral type of ∼M4.5). We considered a star to be isochronal with its moving group if its absolute V-magnitude was within 1 magnitude of the models at its given V-J. At this stage, we did not consider whether or not a star was a member of an unresolved binary pair. We find that most of our newly identified members fall along the appropriate isochrone for the moving group in question (see Figure 4.13).

Once a candidate was confirmed to be isochronal with a moving group on a color-

109 magnitude diagram (Figure 4.13, we considered it to be a bonafide member of the moving group. Only then would it be used in the analysis of the lithium depletion boundary age of that moving group (Section 4.5.2). If a star has >90% probability of belonging to a moving group, but was not found to be isochronal (to within one magnitude), it was downgraded to a possible member of that moving group.

If a star has >30% probability of belonging to multiple moving groups, it is considered to be a “young field” dwarf. If a star has >50% probability of belonging to the population of old field dwarfs (according to BANYAN), we classify it as an “old field” dwarf (Section 4.5.1.2).

We ran our medium resolution targets through the BANYAN analysis tool without in- putting any distance or radial velocity information. Our classification scheme followed the same protocol as the high resolution targets, with one important difference. A star with medium-resolution data was never considered to be a bonafide member, even if it had >90% probability of belonging to a moving group and was isochronal with known members.

All candidate members of moving groups (those with and without high resolution data) are plotted in Figure 4.13. In total, we identified 60 bonafide members of nearby moving groups, 39 of which whose membership is newly identified. 53 stars were classified as “young field” objects, and 198 were classified as “old field” objects. Probable members of moving groups are found in Table 4.10. Possible members of moving groups (stars with a 50-90% probability of membership) are found in Table 4.11. A summary of our findings can be found in Table 4.3.

We also plotted the EW of Li for bona-fide members of moving groups (those which were isochronal with known members) alongside the known members of those moving groups in Figure 4.14.

4.5.1.2 Field Dwarfs

In addition to placing stars in nearby young moving groups, we also sought to identify them as young or old field dwarfs. Note that the classification of a star as an “old field object” in

110 2 2 known known probable, high-res probable, high-res 0 possible, high-res 0 possible, high-res probable, low-res probable, low-res

2 SBs 2 SBs

4 4

] 6 ] 6 g g a a m m [ [

V V

M 8 M 8

10 Tuc Hor 10 β Pic

12 12

14 14

16 16 1 0 1 2 3 4 5 6 0 1 2 3 4 5 6 V-J [mag] V-J [mag]

Figure 4.13 Known and candidate members of six nearby young moving groups. Known members from Bell et al. (2015), Torres et al. (2008), and Binks & Jeffries (2014) are in black. Filled red data points represent probable members presented in this paper (see Section 4.5.1 with high resolution data available. Open red data points represent possible members of moving groups. Blue triangles represent probable members without high resolution data available. Isochrones from Baraffe et al. (1998) (non-magnetic) and Feiden & Chaboyer (2013) (=2.5kG) meet at V-J=3, and are shown as black lines.

111 2 2 known known probable, high-res probable, high-res 0 possible, high-res 0 possible, high-res probable, low-res SBs 2 2

4 4

6 6 ] ] g g a a m m [ [

V V

M 8 M 8

10 AB Dor 10 Columba

12 12

14 14

16 16 1 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 V-J [mag] V-J [mag]

Figure 4.13 Cont’d

Table 4.3. MG Membership Summary

MG Possible Probable Bonafide New & Bonafide # stars # stars # stars # stars

AB Dor 18 6 4 3 Argus 22 6 2 2 β Pic 50 28 17 12 Carina 1 1 1 1 Columba 12 10 7 5 Tuc Hor 11 28 18 5 TWA 21 15 11 11

112 2 2 known known probable, high-res probable, high-res 0 possible, high-res 0 possible, high-res probable, low-res probable, low-res SBs SBs 2 2

4 4

6 6 ] ] g g a a m m [ [

V V

M 8 M 8

10 Argus 10 TWA

12 12

14 14

16 16 1 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 V-J [mag] V-J [mag]

Figure 4.13 Cont’d

113 1000 800 600 400 β Pic EW(Li) 200 0 200 0 1 2 3 4 5 6 7 V-Ks

600 500 400 Tuc Hor 300 200 EW(Li) 100 0 0 1 2 3 4 5 6 7 V-Ks

500 400 AB Dor 300 200 EW(Li) 100 0 0 1 2 3 4 5 6 7 V-Ks

Figure 4.14 EW of the 6707A˚ Li line for newly identified bonafide members of moving groups (red data points) alongside the EW of Li for previously known members (blue crosses). Only stars from Figure 4.13 that are isochronal with known members are included in this figure. The red triangles represent upper limits on Li EW from this paper.

114 400 300 Columba 200 EW(Li) 100

0 1 2 3 4 5 6 7 V-Ks

800 700 600 TWA 500 EW(Li) 400 300 0 1 2 3 4 5 6 7 V-Ks 500 400 Argus 300 200

EW(Li) 100 0

0 1 2 3 4 5 6 7 V-Ks

Figure 4.14 Cont’d

115 this paper does not necessary exclude it from having a young age; we simply did not identify it as a young star based on its kinematic properties (Table 4.2).

If a star has >30% probability of belonging to more than one moving group, we considered that star to be a “young field” dwarf, and give it the classification ”YF” in Table 4.12. These stars likely belong to a moving group, but we are unable to distinguish which one.

227 of our 471 observed GALNYSS stars were found to be “old field” stars by the analysis described in Section 4.5.1.1. 42 of these 227 “old field” stars showed detectable Li, and 29 have EW(Li)>200 mA˚. These stars are likely members of nearby moving groups that were not considered in the analysis in this paper. If a star was initially classified as an “old field” star, but shows evidence of detectable Li, we re-classified those stars as “young field” stars. This re-classifications is reflected in Table 4.12; re-classified stars were assigned the designation “YF”.

Stars classified as “young field” stars (including those re-classified due to their Li EW) were further investigated to determine if they might be members of moving groups not considered by BANYAN. Of 42 stars classified as YF, 25 had measured radial velocities in this work. We calculated UVWs for these 25 stars using distances from 10 Myr isochrones and compared them to the UVWs of the Carina-Near moving group and Octans moving group. We found that the UVWs of our young field stars did not match the UVWs of either moving group.

4.5.2 Lithium Depletion Boundary Ages

The presence or absence of lithium can be used as an age diagnostic for an entire moving group. The burn rate of lithium is highly sensitive to a star’s mass, and therefore spectral type. In early-type stars, radiative cores keep the lithium from being fully mixed. Therefore, they can maintain lithium in their atmospheres over a long period of time. Later-type stars are fully convective, and are extremely effective at mixing lithium into their cores where it is burned. The lowest mass M stars may not reach interior temperatures high enough to effectively burn lithium, meaning that the element can once again remain detectable over a

116 longer period of time. The age at which a star depletes most of its photospheric lithium is thus sensitive to the mass of the star, and therefore also sensitive to the luminosity of the

2.3 star (since L∗ ∝ M∗ for M∗<0.5M ). As an association ages, lithium depletion proceeds towards later and later spectral types (and thus lower-luminosity stars). The luminosity at which lithium becomes detectable in low-mass stars is a sharp transition in color-magnitude space, and is known as the lithium depletion boundary (LDB). This boundary is correlated with the age of the association in question, and has been used to determine the age of the β Pic moving group (Binks & Jeffries, 2014) as well as the Tuc Hor moving group (Kraus et al., 2014).

In the present work, we identified 138 stars as probable members of nearby moving groups. There are three moving groups (β Pic, Tuc Hor, and AB Dor) for which we added enough new, low-mass members, that it justified a re-evaluation of that moving group’s LDB age (see Figure 4.15).

To determine the LDB of a moving group, we first identified (by-eye), the K-band magni- tude (MK ) at which lithium becomes detectable again (EW(Li)>200mA˚; Palla et al. 2007) on a color-magnitude diagram in our sample of low-mass stars. We used bolometric corrections from Mann et al. (2015) to translate absolute K magnitudes into bolometric luminosities via the following equations:

2 3 BCK = 1.421 − 0.6084(V − J) − 0.09655(V − J) − 0.006263(V − J) (4.2)

Mbol = MK − BCK (4.3)

L  4.8 − M log bol = bol (4.4) L 2.5

The luminosity associated with the LDB transition (LLDB/L ) translates directly into an age, using the magnetic models of Feiden & Chaboyer (2013) and assuming that there has been a lithium depletion of 99%. 117 β Pic (24Myr) 2 2 Tuc Hor (46 Myr) 2 AB Dor (44-165 Myr)

4 4 4

6 6 6 K K K M M M

8 8 8

10 10 10 this work, with Li this work, with Li this work, with Li this work, no Li this work, no Li this work, no Li literature, with Li literature, with Li literature, with Li literature, no Li literature, no Li literature, no Li 12 12 12 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 V-Ks V-Ks V-Ks

Figure 4.15 The lithium depletion boundaries (LDBs) for three nearby moving groups. Hor- izontal black lines represent the location of the LDB for each group. In β Pic, we find several Li-poor stars beyond the LDB determined by Binks & Jeffries (2016). Of those, only four cannot be explained by rapid rotation, EW(Li) between 100-200mA˚, or tenuous MG membership (due to lack of RV measurement). These four stars are shown as green squares, and are discussed in Section 4.5.2.2. In AB Dor, we add several new low-mass Li-poor stars, which help to constrain the lower limit of the age of the AB Dor moving group (see Figure 4.16).

118 4.5.2.1 LDB Age of Tuc Hor

In the Tuc Hor moving group, our findings are consistent with the results from Kraus et al.

(2014); we find that the lithium depletion boundary falls at Mbol=9.89, corresponding to

a luminosity LLDB=0.0092 L . With the magnetic stellar evolution models of Feiden & Chaboyer (2013), we calculate an age of 46 Myr. This LDB age differs slight from the estimate of Kraus et al. (2014) due to our use of magnetic stellar evolution models.

4.5.2.2 LDB Age of β Pic

In the β Pic moving group, we find eight Li-poor stars that fall beyond the LDB de- fined in Binks & Jeffries (2016), namely: J0251+2227, J0336+0329, J0516+0227, J0529- 3239, J1733+1655, J1953-0707, J2120-1645, and J2208+1144. Of these eight stars, two (J0516+0227 and J1953-0707) do not have high-resolution data available. Their member- ship was based solely on proper motions. It is therefore plausible that they are not true members of β Pic. Of the remaining six stars, one (J1733+1655) has EW(Li)=172 mA˚, and cannot really be considered “Li-poor,” and one (J2120-1645) has an upper limit of Li of 200 mA˚, and also cannot be considered “Li-poor.” The remaining four stars (J0251+2227, J0336+0329, J0529-3239, and J2208+1144) are labeled in Figure 4.15 as green squares. J0336+0329 is categorized as a flare star (Gershberg et al., 1999). Since there are many indicators of youth in β Pic (e.g. Mamajek & Bell 2014), it is unlikely that the LDB should be moved very far from its current location; especially since the LDB age quoted by Binks & Jeffries (2016) (24 Myr) is in agreement with the latest kinematic and isochronal ages. That said, the Li-poor, low-mass stars presented here suggest that there may be old, low-mass stars with similar UVWs to the β Pic moving group.

4.5.2.3 LDB Age of AB Dor

The AB Dor moving group provides a particular challenge to those wishing to assign an LDB age, since there is a dearth of low-mass stars with measured Li. Binks & Jeffries (2016) give a range of ages for AB Dor from 40-165 Myr (using magnetic stellar evolution models). We 119 90

80

70

60

50 44 Myr (this work)

Age [Myr] 40 40 Myr (Binks et al. 2016) 30

20

10 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0

log(LLDB/Lbol) (99% depletion)

Figure 4.16 With the magnetic stellar evolution models of Feiden & Chaboyer (2013), we are able to place a constraint on the lower limit of the age of AB Dor. The red curve represents data from the magnetic stellar evolutionary models. The black vertical line represents our estimated value for LLDB. The thin horizontal black line represents the previous estimate for the lower limit of the age of AB Dor from Binks & Jeffries (2016) (40 Myr)-. We estimate a new lower limit of 44 Myr. identified several low-mass, Li-poor stars that help to constrain the lower limit on that age range. We calculate a LDB at Mbol=6.92, corresponding to a luminosity of LLDB=0.0103L . Using the magnetic models from Feiden & Chaboyer (2013), we calculate a minimum age of 44 Myr (see Figure 4.16). More observations of low-mass stars are needed to fill in the gap in AB Dor and better constrain the age of the group.

4.5.3 Binary Systems

It is expected that ∼1% of low-mass stars should be in wide (sep>1000AU) binary systems (Dhital et al., 2010), while at least 11% of low mass stars should be in binary systems with separations < 825AU (Reid & Gizis, 1997). We examined the stars in our sample to determine if any of them appeared in binary systems.

We began by searching through our stars with high resolution data available, looking for

120 spectroscopic binaries (SBs). Of 242 stars with high resolution data, we found that 36 stars were members of SBs, 30 of which were previously unidentified. These stars are listed in Table 4.13. In some cases, the separate components of the SB system were measured for Li, Ha, Ca, and RV independently (in which case they are listed individually). Otherwise they are listed as “AB” (in the ”Comp” column of our tables), meaning that, while the star is likely a spectroscopic binary, the components were not well separated enough in velocity space to be measured independently.

We then searched the UCAC4 catalog to find companions within 20 and with common proper motions. To determine whether a “companion” star selected from UCAC4 was truly associated with one of our GALNYSS stars, we applied 3 rules for companionship from Halbwachs (1986). First, a candidate pair needed to satisfy the following inequality:

2 2 2 (µ1 − µ2) < −2(σ1 + σ2)ln(0.05) (4.5)

where µ represents the proper motion vector (RA, Dec) in mas/yr, and σ is the mean error in proper motion. This rule determines whether candidate common proper motion pairs are admissible with 95% confidence. As a second rule, we did not consider any stars for which either of the pair had proper motions consistent with 0 mas/yr by ensuring that µ > 5 mas/yr. Finally, we imposed a condition on the separation of the stars by requiring

that ρ/µTOT > 3000 yrs. This third rule allows for larger separations between pairs if the stars have higher proper motions, and places a proper motion minimum of ∼20 mas/yr out to separations of 10 and ∼40 mas/yr out to 20.

Of stars with candidate companions within 20 separation in the UCAC4 catalog, 59 pairs fit all three criteria for companionship. We then removed pairs with unreasonable positions on a color-magnitude diagram (i.e. the redder star must also have a more positive magnitude). 35 pairs survived this photometry test, 32 of which are presented here (as common proper motion pairs) for the first time. These 35 common proper motion pairs are listed in Table 4.14. We searched the WISE databased to look for evidence of an IR excess

around either component of these 35 binary systems. If a star had W1-W3 or W1-W4&1,

121 we examined the WISE image itself to make sure the field is clean. We found that three stars have evidence of an IR excess in WISE, and clean fields: J0448+1439 (both A and B components), J1215-7537 (secondary component), and J1321-2854 (primary component). J0448+1439 is covered in Zuckerman et al. (2014). J1215-7537 is an Argus member, but its membership is tenuous because it was determined without access to high-resolution data. J1321-2854 is very slightly extended in WISE, and may be contaminated (it was therefore not included in the discussion in Section 4.8).

4.5.4 Signatures of Magnetic Activity

M dwarfs are known to emit in UV and X-rays due to their magnetic activity. It is important to understand the magnetic behavior of M-dwarfs due to their potential for hosting habitable exoplanets. In particular, the extreme-UV (EUV) radiation from a star can lead to mass- loss from close-in, potentially habitable exoplanets (Rugheimer et al., 2015). Since there is no instrument currently available to study the EUV spectral range, we must rely on NUV, FUV, and X-ray flux as well as Hα emission to understand the magnetic activity of young, low-mass stars. All measured and calculated values related to magnetic activity are listed in Table 4.15.

4.5.4.1 X-Ray Emission

Riaz et al. (2006) examined the X-ray emission of 1080 nearby M-dwarfs from the ROSAT catalog, and found that X-ray emission “saturates” at log(LX /Lbol)=-3 given a range of spectral types and Hα EWs. Shkolnik & Barman (2014) used GALEX NUV and FUV fluxes to characterize the magnetic activity of over 200 nearby M-dwarfs. They found that, while X-ray flux decays over 5 Gyrs by a factor of 65, NUV and FUV flux dropped by factors of 20 and 30, respectively (see their Figure 12). By comparing their GALEX results to model photospheres from the PHOENIX models (Hauschildt et al., 1999), they found that the photosphere contributed very little (<5%) of the NUV flux, implying that the emission seen in GALEX is truly coming from magnetic activity in the chromosphere.

122 2.0 2.2 6.0 6.0 2.4 5.6 5.6 2.5 2.6 5.2 5.2 ) ) l l o o b b

L L 2.8

/ 4.8 / 4.8

X 3.0 X L L V-K V-K ( (

g 4.4 g 3.0 4.4 o o l l 4.0 3.2 4.0 3.5 3.6 3.4 3.6

3.2 3.6 3.2 4.0 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 4.0 3.5 3.0 2.5 2.0

log(LNUV/Lbol) log(LHa/Lbol)

Figure 4.17 Comparison of Hα emission and NUV emission to X-ray emission. No obvious correlation is seen in either panel.

We gathered X-ray data for stars in the GALNYSS sample from the ROSAT catalog (Voges et al., 1999), and converted count rates and hardness ratios to X-ray luminosities using the following relations:

2 LX = 4πd CX fX (4.6)

where d is the distance from Earth in cm, fX is the ROSAT count rate, and CX is a conversion factor defined in Mamajek & Hillenbrand (2008):

−12 CX = (8.31 + 5.3HR1) × 10 (4.7)

where HR1 is the harness ratio in the 0.1-2.4 keV band. LX /Lbol values can be found in Table 4.15. We compared X-ray emission to NUV and Hα emission in Figure 4.17. While Mamajek & Hillenbrand (2008) find that chromospheric activity and coronal activity are positively correlated for solar-type stars, we find no such correlation in low-mass stars. Further observations (and more X-ray data) are needed to better characterize and understand the relationship between coronal and chromospheric heating.

123 4.5.4.2 Hα Emission

Ansdell et al. (2015) followed up GALEX-observed M-dwarfs with optical spectra from Palo- mar Observatory and found that the fractional NUV luminosity saturated for young stars

(similar to the X-ray luminosity). Jones & West (2016) directly compared the LHα/Lbol to

LNUV /Lbol and found that active young stars followed the following relation:

log(LNUV /Lbol) = 0.67 × log(LHα/Lbol) − 0.85 (4.8)

In the current work, we began by selecting stars with NUV ≥ 9.5 (see Section 4.2). Since not all stars in our sample with measured Hα EWs ended up being members of moving groups (therefore having reasonably reliable distances), we wanted to find a way of determining

LHα/Lbol in a distance-independent way. We converted our Hα EWs to LHα/Lbol values using a color-dependent conversion factor χ, which came from Walkowicz et al. (2004). This conversion factor was empirically derived from observations of nearby low-mass (M0.5-L0) stars, and can be calculated from SDSS colors:

logχ = −3.31740 − 1.153440(i − z) (4.9)

We calculated LHα/Lbol values using this formula for stars with SDSS colors available. For the remaining stars, Bilir et al. (2011) provides transformation formulae for 2MASS-SDSS colors. We employed the following conversion formula:

(r − i) = 0.6(J − H) + 0.268(H − K) − 0.049 (4.10)

We then applied the following formula from Walkowicz et al. (2004) to obtain χ values:

logχ = −3.44258 − 0.509421(r − i) (4.11)

We were able to calculate LHα/Lbol values for 404 stars, which are seen plotted in Figure

124 6.4

3.0 5.6

4.8

3.5 l o b 4.0 L / V U V-K N L 3.2

4.0 2.4

1.6

4.5 0.8 5 4 3 2

LHa/Lbol

Figure 4.18 Comparison of Hα emission to NUV emission. Colored data points represent stars from our GALNYSS sample of observed stars. Black data points represent M-dwarfs from Jones & West (2016). The black line is the best-fit from Jones & West (2016). While the sample of stars in Jones & West (2016) was not limited to young stars, our sample of stars is saturated in NUV and Hα emission.

4.18. We find no significant correlation between LHα/Lbol and LNUV /Lbol. We examined the Hα and NUV emission as a function of age for bonafide members of young moving groups in Figure 4.19. Our results are consistent with those of Shkolnik & Barman (2014); both NUV and Hα emission are saturated for low-mass stars younger than a few hundred Myr old.

4.5.4.3 Ca II H&K Emission

Another measure of chromospheric activity is emission from Ca II H & K lines around 3900 A˚. At this wavelength, Ca absorption features suppress emission from the photosphere and allow one to see the emission features caused by the magnetic heating of the chromosphere. Since the continuum flux scaling relations typically used for the study of chromospheric emission

0 (e.g. Hall 1996) are only valid for solar-type stars, and since any calculation of R HK relies on an instrument-specific calibration, we do not attempt to calculate a chromospheric emission index from our EW measurements of the Ca II H & K lines. We compared the EWs of the 125 2.0 LHa/Lbol

LNUV/Lbol l o

b 2.5 L / a H L

, l o b 3.0 L / V U N L 3.5

0 50 100 150 Age [Myr]

Figure 4.19 Average Hα and NUV luminosities for bonafide members of young moving groups (whose ages are well-determined). The magnetic activity indicators, LHα/Lbol and LNUV /Lbol are both saturated for young, low-mass stars. The data point at 100 Myr represents our population of young field stars.

Ca lines to other activity indicators (see above), but found no correlations. EWs of Ca H & K lines can be found in Table 4.15.

4.6 Conclusions

The following conclusions can be drawn from our observations:

1) The process of identifying young stars by their UV excess (Rodriguez et al. 2011) is a robust method for nearby, low-mass stars. Of the 471 stars observed during our campaign, 89 have detectable lithium absorption. That so many UV-bright stars have detectable Li is evidence that one is able to identify young stars using the Rodriguez et al. method.

2) Radial velocities were measured for 232 stars; we identify 138 as probable members of known nearby young moving groups, 99 of which are presented here for the first time.

3) We recalculated the lithium depletion boundary ages for three moving groups: β Pic, Tuc Hor, and AB Dor. While our LDB ages for Tuc Hor and AB Dor were consistent with previous studies, we found several Li-poor stars beyond the LDB of β Pic quoted by Binks

126 (2016).

4) We identified 36 spectroscopic binaries based on high-resolution spectra, 30 of which were previously unidentified. We identified 35 common proper motion pairs in the UCAC4 catalog with components in our stellar sample, 32 of which were previously unidentified. These binary systems provide good tests for stellar evolutionary models.

5) We examined the relationship between chromospheric and coronal activity in low-mass stars, and found no significant correlations.

127 Table 4.4. Observations

Observatory Telescope Instrument Resolution λ range [A˚] # Nights # Stars

Northern Hemisphere Observations Keck Observatory Keck 10m HIRES 45,000 4300-9000 5 65 Lick Observatory Shane 3m Hamilton 45,000 3500-9500 12 40

128 Lick Observatory Shane 3m Kast Dual Spectrometer (blue) 1,500 3500-5500 12 153 Lick Observatory Shane 3m Kast Dual Spectrometer (red) 2,500 5500-7200 12 153 Southern Hemisphere Observations European Southern Observatory (ESO) MPG 2.2m FEROS 48,000 3500-9200 15 118 Las Campanas Observatory du Pont 2.5m Echelle 45,000 5300-9100 3 37 Las Campanas Observatory du Pont 2.5m B&C Spectrograph (600)* 1,200 5500-8700 1 21 Las Campanas Observatory du Pont 2.5m B&C Spectrograph (832)* 2,400 6000-8700 5 118

Note. — *The B&C spectrograph at Las Campanas Observatory was used with both the 600 grooves/mm and 832 grooves/mm gratings. Table 4.5. Observations

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J000453.05-103220.0 31-Oct-2012 Lick 3-m Kast 1.221055 -10.538898 J000453.05-103220.0 21-Oct-2013 Keck 1 HIRES 1.221055 -10.538898 J001527.62-641455.2 21-Dec-2013 MPG 2.2m FEROS 3.86512 -64.24868 J001527.62-641455.2 21-Dec-2013 MPG 2.2m FEROS 3.86512 -64.24868 J001536.79-294601.2 31-Oct-2012 Lick 3-m Kast 3.903304 -29.76702 J001536.79-294601.2 12-Sep-2014 du Pont echelle 3.903304 -29.76702 J001552.28-280749.4 31-Aug-2013 Lick 3-m Kast 3.967864 -28.130413 J001555.65-613752.2 15-Nov-2014 du Pont B&C-832 3.981882 -61.631187 J001709.96+185711.8 NS 25-Aug-2012 Lick 3-m Hamilton 4.291516 18.953289 J001723.69-664512.4 15-Dec-2013 du Pont echelle 4.348712 -66.753456 J002101.27-134230.7 31-Oct-2012 Lick 3-m Kast 5.255325 -13.708543 J003057.97-655006.4 12-Sep-2014 du Pont echelle 7.74158 -65.83512 J003234.86+072926.4 16-Nov-2013 Keck 1 HIRES 8.145264 7.490681 J003903.51+133016.0 16-Oct-2014 Keck 1 HIRES 9.764648 13.504445 J004210.98-425254.8 12-Sep-2014 du Pont echelle 10.545773 -42.8819 J004524.84-775207.5 23-Dec-2013 MPG 2.2m FEROS 11.353521 -77.86876 J004528.25-513734.4 AB 20-Dec-2013 MPG 2.2m FEROS 11.367711 -51.626244 J004826.70-184720.7 30-Oct-2012 Lick 3-m Kast 12.111283 -18.789095 J004826.70-184720.7 21-Oct-2013 Keck 1 HIRES 12.111283 -18.789095 J005633.96-225545.4 31-Aug-2013 Lick 3-m Kast 14.141507 -22.929296 J010047.97+025029.0 30-Oct-2012 Lick 3-m Kast 15.199889 2.841393 J010047.97+025029.0 21-Oct-2013 Keck 1 HIRES 15.199889 2.841393 J010126.59+463832.6 25-Aug-2012 Lick 3-m Hamilton 15.360823 46.64241 J010126.59+463832.6 30-Oct-2012 Lick 3-m Kast 15.360823 46.64241 J010243.86-623534.8 26-Sep-2013 MPG 2.2m FEROS 15.682756 -62.59301 J010251.05+185653.7 30-Oct-2012 Lick 3-m Kast 15.712735 18.948252 J010629.32-122518.4 30-Oct-2012 Lick 3-m Kast 16.622194 -12.421784 J010629.32-122518.4 23-Sep-2013 MPG 2.2m FEROS 16.622194 -12.421784 J010711.99-193536.4 16-Nov-2013 Keck 1 HIRES 16.799969 -19.59345 J011440.20+205712.9 31-Aug-2013 Lick 3-m Kast 18.667517 20.953604 J011846.91+125831.4 31-Aug-2013 Lick 3-m Kast 19.69546 12.975401 J012118.22-543425.1 18-Dec-2013 MPG 2.2m FEROS 20.325943 -54.57365 J012245.24-631845.0 26-Sep-2013 MPG 2.2m FEROS 20.688528 -63.312504 J012332.89-411311.4 14-Nov-2014 du Pont B&C-832 20.887068 -41.21985 J012532.11-664602.6 15-Nov-2014 du Pont B&C-832 21.383791 -66.7674 J013110.69-760947.7 12-Sep-2014 du Pont echelle 22.794582 -76.16326

129 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J014156.94-123821.6 1-Sep-2013 Lick 3-m Kast 25.487268 -12.639343 J014431.99-460432.1 14-Nov-2014 du Pont B&C-832 26.133316 -46.075607 J015057.01-584403.4 23-Dec-2013 MPG 2.2m FEROS 27.737549 -58.7343 J015257.41+083326.3 31-Aug-2013 Lick 3-m Kast 28.239233 8.557332 J015257.41+083326.3 21-Oct-2013 Keck 1 HIRES 28.239233 8.557332 J015350.81-145950.6 31-Aug-2013 Lick 3-m Kast 28.461733 -14.997402 J015455.24-295746.0 24-Sep-2013 MPG 2.2m FEROS 28.730206 -29.962805 J020012.84-084052.4 28-Aug-2012 Lick 3-m Hamilton 30.053532 -8.681236 J020302.74+221606.8 1-Sep-2013 Lick 3-m Kast 30.761421 22.268574 J020305.46-590146.6 15-Nov-2014 du Pont B&C-832 30.772789 -59.029625 J020805.55-474633.7 15-Dec-2013 du Pont echelle 32.02314 -47.77603 J021258.28-585118.3 12-Sep-2014 du Pont echelle 33.242874 -58.855087 J021330.24-465450.3 23-Sep-2013 MPG 2.2m FEROS 33.37602 -46.91398 J021935.52-455106.2 AB 16-Oct-2014 Keck 1 HIRES 34.89801 -45.851734 J022240.88+305515.4 31-Oct-2012 Lick 3-m Kast 35.67036 30.920958 J022424.69-703321.2 12-Sep-2014 du Pont echelle 36.102913 -70.55589 J023005.14+284500.0 31-Aug-2013 Lick 3-m Kast 37.521442 28.750013 J023139.36+445638.1 30-Oct-2012 Lick 3-m Kast 37.914017 44.943924 J024552.65+052923.8 31-Aug-2013 Lick 3-m Kast 41.469383 5.489962 J024746.49-580427.4 18-Dec-2013 MPG 2.2m FEROS 41.943737 -58.07428 J024852.67-340424.9 16-Nov-2013 Keck 1 HIRES 42.219467 -34.073586 J025154.17+222728.9 27-Aug-2012 Lick 3-m Hamilton 42.97571 22.458029 J025913.40+203452.6 26-Nov-2012 Lick 3-m Hamilton 44.805836 20.581285 J030002.98+550652.4 27-Nov-2012 Lick 3-m Hamilton 45.01242 55.114582 J030251.62-191150.0 21-Oct-2013 Keck 1 HIRES 45.71511 -19.197247 J030444.10+220320.8 30-Oct-2012 Lick 3-m Kast 46.18376 22.055794 J030444.10+220320.8 17-Oct-2013 Keck 1 HIRES 46.18376 22.055794 J030824.14+234554.2 31-Aug-2013 Lick 3-m Kast 47.100624 23.765062 J031650.45-350937.9 24-Sep-2013 MPG 2.2m FEROS 49.210224 -35.16055 J032047.66-504133.0 12-Sep-2014 du Pont echelle 50.19859 -50.692524 J033235.82+284354.6 31-Oct-2012 Lick 3-m Kast 53.14929 28.731844 J033431.66-350103.3 14-Nov-2014 du Pont B&C-832 53.631927 -35.017582 J033640.91+032918.3 26-Sep-2013 MPG 2.2m FEROS 54.170464 3.488443 J034115.60-225307.8 23-Sep-2013 MPG 2.2m FEROS 55.315018 -22.885527 J034116.16-225244.0 14-Nov-2014 du Pont B&C-832 55.317337 -22.878906 J034236.95+221230.2 16-Oct-2014 Keck 1 HIRES 55.65396 22.208393

130 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J034444.80+404150.4 26-Nov-2012 Lick 3-m Hamilton 56.18669 40.697342 J035100.83+141339.2 31-Aug-2013 Lick 3-m Kast 57.75349 14.227561 J035134.51+072224.5 16-Oct-2014 Keck 1 HIRES 57.893814 7.373481 J035223.52-282619.6 25-Sep-2013 MPG 2.2m FEROS 58.098022 -28.438784 J035223.52-282619.6 16-Nov-2013 Keck 1 HIRES 58.098022 -28.438784 J035345.92-425018.0 23-Sep-2013 MPG 2.2m FEROS 58.441364 -42.838345 J035716.56-271245.5 17-Dec-2013 MPG 2.2m FEROS 59.31903 -27.212666 J035733.95+244510.2 30-Oct-2012 Lick 3-m Kast 59.39147 24.752855 J035829.67-432517.2 14-Nov-2014 du Pont B&C-832 59.623646 -43.421467 J040539.68-401410.5 25-Sep-2013 MPG 2.2m FEROS 61.415344 -40.236256 J040649.38-450936.3 24-Sep-2013 MPG 2.2m FEROS 61.705757 -45.160107 J040711.50-291834.3 16-Nov-2013 Keck 1 HIRES 61.79795 -29.309538 J040743.83-682511.0 12-Sep-2014 du Pont echelle 61.93265 -68.41973 J040809.80-611904.3 23-Sep-2013 MPG 2.2m FEROS 62.040833 -61.317883 J040827.01-784446.7 20-Dec-2013 MPG 2.2m FEROS 62.11255 -78.74632 J041050.04-023954.4 26-Sep-2013 MPG 2.2m FEROS 62.708527 -2.665132 J041255.78-141859.2 25-Nov-2012 Lick 3-m Hamilton 63.232452 -14.316457 J041255.78-141859.2 23-Sep-2013 MPG 2.2m FEROS 63.232452 -14.316457 J041336.14-441332.4 12-Sep-2014 du Pont echelle 63.400623 -44.22568 J041525.58-212214.5 16-Oct-2014 Keck 1 HIRES 63.8566 -21.370705 J041749.66+001145.4 20-Dec-2013 MPG 2.2m FEROS 64.456924 0.195962 J041807.76+030826.0 17-Dec-2013 MPG 2.2m FEROS 64.53235 3.140582 J042139.19-723355.7 18-Dec-2013 MPG 2.2m FEROS 65.4133 -72.56548 J042500.91-634309.8 14-Nov-2014 du Pont B&C-832 66.253815 -63.719402 J042736.03-231658.8 16-Nov-2013 Keck 1 HIRES 66.900154 -23.283026 J042739.33+171844.2 21-Oct-2013 Keck 1 HIRES 66.9139 17.3123 J043213.46-285754.8 14-Nov-2014 du Pont B&C-832 68.0561 -28.965242 J043257.29+740659.3 1-Sep-2013 Lick 3-m Kast 68.23875 74.11649 J043657.44-161306.7 19-Dec-2013 MPG 2.2m FEROS 69.23936 -16.218529 J043726.87+185126.2 25-Nov-2012 Lick 3-m Hamilton 69.36197 18.857302 J043923.21+333149.0 16-Oct-2014 Keck 1 HIRES 69.84671 33.530293 J043939.24-050150.9 AB 1-Sep-2013 Lick 3-m Kast 69.91352 -5.030814 J043939.24-050150.9 AB 17-Oct-2013 Keck 1 HIRES 69.91352 -5.030814 J044036.23-380140.8 15-Dec-2013 du Pont echelle 70.15098 -38.028015 J044036.23-380140.8 19-Dec-2013 MPG 2.2m FEROS 70.15098 -38.028015 J044120.81-194735.6 1-Sep-2013 Lick 3-m Kast 70.33672 -19.79325

131 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J044120.81-194735.6 23-Sep-2013 MPG 2.2m FEROS 70.33672 -19.79325 J044120.81-194735.6 17-Oct-2013 Keck 1 HIRES 70.33672 -19.79325 J044154.44+091953.1 14-Nov-2014 du Pont B&C-832 70.47687 9.331425 J044336.19-003401.8 21-Oct-2013 Keck 1 HIRES 70.900795 -0.567191 J044349.19+742501.6 31-Oct-2012 Lick 3-m Kast 70.95498 74.417114 J044356.87+372302.7 17-Oct-2013 Keck 1 HIRES 70.98697 37.384087 J044455.71+193605.3 25-Nov-2012 Lick 3-m Hamilton 71.23216 19.601484 J044530.77-285034.8 15-Nov-2014 du Pont B&C-832 71.37823 -28.843006 J044700.46-513440.4 20-Dec-2013 MPG 2.2m FEROS 71.75196 -51.577896 J044721.05+280852.5 30-Oct-2012 Lick 3-m Kast 71.83772 28.147923 J044800.86+143957.7 AB 17-Oct-2013 Keck 1 HIRES 72.003624 14.666052 J044802.59+143951.1 AB 21-Oct-2013 Keck 1 HIRES 72.0108 14.664199 J045114.41-601830.5 20-Dec-2013 MPG 2.2m FEROS 72.81004 -60.30848 J045420.20-400009.9 15-Nov-2014 du Pont B&C-832 73.5842 -40.002754 J045651.47-311542.7 26-Sep-2013 MPG 2.2m FEROS 74.21446 -31.261866 J050333.31-382135.6 15-Nov-2014 du Pont B&C-832 75.888824 -38.359913 J050610.44-582828.5 24-Sep-2013 MPG 2.2m FEROS 76.54354 -58.474598 J050827.31-210144.3 16-Nov-2013 Keck 1 HIRES 77.113815 -21.028992 J051026.38-325307.4 16-Nov-2013 Keck 1 HIRES 77.60992 -32.885414 J051255.82-212438.7 15-Nov-2014 du Pont B&C-832 78.2326 -21.410769 J051310.57-303147.7 18-Dec-2013 MPG 2.2m FEROS 78.29406 -30.529932 J051403.20-251703.8 24-Sep-2013 MPG 2.2m FEROS 78.513336 -25.284391 J051403.20-251703.8 16-Nov-2013 Keck 1 HIRES 78.513336 -25.284391 J051650.66+022713.0 15-Nov-2014 du Pont B&C-832 79.21111 2.453623 J051803.00-375721.2 15-Dec-2013 du Pont echelle 79.51253 -37.95589 J052419.14-160115.5 21-Oct-2013 Keck 1 HIRES 81.07978 -16.020977 J052535.85-250230.2 15-Nov-2014 du Pont B&C-832 81.39938 -25.041725 J052944.69-323914.1 21-Oct-2013 Keck 1 HIRES 82.43625 -32.653942 J053100.27+231218.3 21-Oct-2013 Keck 1 HIRES 82.75116 23.205107 J053311.32-291419.9 16-Nov-2013 Keck 1 HIRES 83.29718 -29.23888 J053328.01-425720.1 AB 24,26-Sep-2013 MPG 2.2m FEROS 83.36671 -42.9556 J053747.56-424030.8 16-Oct-2014 Keck 1 HIRES 84.4482 -42.675224 J053925.08-424521.0 20-Dec-2013 MPG 2.2m FEROS 84.85453 -42.755836 J054223.86-275803.3 15-Nov-2014 du Pont B&C-832 85.59946 -27.967588 J054433.76-200515.5 18-Dec-2013 MPG 2.2m FEROS 86.14069 -20.087664 J054448.20-265047.4 15-Dec-2013 du Pont echelle 86.20085 -26.846502

132 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J054709.88-525626.1 24-Sep-2013 MPG 2.2m FEROS 86.79119 -52.940582 J054719.52-335611.2 15-Nov-2014 du Pont B&C-832 86.83134 -33.936462 J055008.59+051153.2 20-Mar-2014 Lick 3-m Kast 87.535805 5.198137 J055041.58+430451.8 20-Mar-2014 Lick 3-m Kast 87.67325 43.081062 J055041.58+430451.8 14-Apr-2016 Lick 3-m Hamilton 87.67325 43.081062 J055208.04+613436.6 20-Mar-2014 Lick 3-m Kast 88.0335 61.57684 J055941.10-231909.4 15-Nov-2014 du Pont B&C-832 89.92126 -23.319292 J060156.10-164859.9 AB 15-Dec-2013 du Pont echelle 90.483765 -16.816643 J060156.10-164859.9 AB 19-Dec-2013 MPG 2.2m FEROS 90.483765 -16.816643 J060156.10-164859.9 AB 20-Dec-2013 MPG 2.2m FEROS 90.483765 -16.816643 J060156.10-164859.9 AB 14-Apr-2016 Lick 3-m Hamilton 90.483765 -16.816643 J060224.56-163450.0 18-Dec-2013 MPG 2.2m FEROS 90.60233 -16.580578 J060329.60-260804.7 28-Mar-2013 du Pont B&C-600 90.87334 -26.134644 J060329.60-260804.7 24-Mar-2014 MPG 2.2m FEROS 90.87334 -26.134644 J061313.30-274205.6 18-Feb-2013 MPG 2.2m FEROS 93.30543 -27.701555 J061740.43-475957.2 28-Mar-2013 du Pont B&C-600 94.41847 -47.99923 J061851.01-383154.9 19-Mar-2014 du Pont echelle 94.71257 -38.531918 J062047.17-361948.2 18-Feb-2013 MPG 2.2m FEROS 95.19654 -36.330067 J062130.52-410559.1 28-Mar-2013 du Pont B&C-600 95.37718 -41.09976 J062407.62+310034.4 25-Nov-2012 Lick 3-m Hamilton 96.03176 31.009565 J063001.84-192336.6 19-Mar-2014 du Pont echelle 97.507706 -19.393524 J065846.87+284258.9 4-May-2013 Lick 3-m Kast 104.69532 28.716381 J070657.72-535345.9 28-Mar-2013 du Pont B&C-600 106.74052 -53.89611 J070657.72-535345.9 23-Dec-2013 MPG 2.2m FEROS 106.74052 -53.89611 J071036.50+171322.6 20-Mar-2014 Lick 3-m Kast 107.65211 17.222956 J072641.52+185034.0 30-Oct-2012 Lick 3-m Kast 111.673035 18.842798 J072821.16+334511.6 25-Nov-2012 Lick 3-m Hamilton 112.08819 33.75324 J072911.26-821214.3 18-Dec-2013 MPG 2.2m FEROS 112.29694 -82.20398 J073138.47+455716.5 5-May-2013 Lick 3-m Kast 112.910324 45.954605 J075233.22-643630.5 28-Mar-2013 du Pont B&C-600 118.13843 -64.6085 J075808.25-043647.5 24-Mar-2014 MPG 2.2m FEROS 119.53439 -4.613201 J075830.92+153013.4 AB 21-Oct-2013 Keck 1 HIRES 119.62884 15.503726 J080352.54+074346.7 5-May-2013 Lick 3-m Kast 120.96895 7.729641 J080636.05-744424.6 17-Feb-2013 MPG 2.2m FEROS 121.65022 -74.74017 J081443.62+465035.8 30-Oct-2012 Lick 3-m Kast 123.681786 46.843292 J081738.97-824328.8 15-Dec-2013 du Pont echelle 124.41241 -82.72467

133 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J082105.04-090853.8 AB 24-Mar-2014 MPG 2.2m FEROS 125.27101 -9.148296 J082558.91+034019.5 26-Nov-2012 Lick 3-m Hamilton 126.49549 3.672095 J083528.87+181219.9 5-May-2013 Lick 3-m Kast 128.87032 18.205545 J090227.87+584813.4 30-Oct-2012 Lick 3-m Kast 135.61617 58.80374 J092216.12+043423.3 4-May-2013 Lick 3-m Kast 140.56718 4.573141 J093212.63+335827.3 5-May-2013 Lick 3-m Kast 143.05264 33.974274 J094317.05-245458.3 17-Dec-2013 MPG 2.2m FEROS 145.82104 -24.916203 J094508.15+714450.1 20-Mar-2014 Lick 3-m Kast 146.28397 71.74725 J094508.15+714450.1 17-Jun-2014 Keck 1 HIRES 146.28397 71.74725 J100146.28+681204.1 30-Oct-2012 Lick 3-m Kast 150.44287 68.20115 J100230.94-281428.2 18-Feb-2013 MPG 2.2m FEROS 150.62894 -28.241182 J100230.94-281428.2 24-Mar-2014 MPG 2.2m FEROS 150.62894 -28.241182 J101543.44+660442.3 4-May-2013 Lick 3-m Kast 153.93103 66.078445 J101905.68-304920.3 19-Dec-2013 MPG 2.2m FEROS 154.77368 -30.822311 J101917.57-443736.0 18-Feb-2013 MPG 2.2m FEROS 154.82323 -44.62668 J101917.57-443736.0 19-Dec-2013 MPG 2.2m FEROS 154.82323 -44.62668 J102602.07-410553.8 AB 16-Feb-2013 MPG 2.2m FEROS 156.50864 -41.0983 J102602.07-410553.8 AB 17-Dec-2013 MPG 2.2m FEROS 156.50864 -41.0983 J102602.07-410553.8 AB 24-Mar-2014 MPG 2.2m FEROS 156.50864 -41.0983 J102636.95+273838.4 22-May-2013 Lick 3-m Kast 156.65398 27.644022 J103016.11-354626.3 15-Dec-2013 du Pont echelle 157.56715 -35.773987 J103137.59-374915.9 19-Mar-2014 du Pont echelle 157.90663 -37.821102 J103557.17+285330.8 3-May-2013 Lick 3-m Kast 158.98822 28.891914 J103952.70-353402.5 20-Jun-2014 du Pont B&C-832 159.96959 -35.567383 J104008.36-384352.1 28-Mar-2013 du Pont B&C-600 160.03484 -38.731148 J104044.98-255909.2 15-Dec-2013 du Pont echelle 160.18745 -25.985912 J104044.98-255909.2 14-Apr-2016 Lick 3-m Hamilton 160.18745 -25.985912 J104551.72-112615.4 17-Feb-2013 MPG 2.2m FEROS 161.46552 -11.437622 J105515.87-033538.2 3-May-2013 Lick 3-m Kast 163.81615 -3.593963 J105518.12-475933.2 17-Dec-2013 MPG 2.2m FEROS 163.82552 -47.99257 J105524.25-472611.7 AB 19-Mar-2014 du Pont echelle 163.85104 -47.436604 J105711.36+054454.2 3-May-2013 Lick 3-m Kast 164.29735 5.748402 J105850.47-234620.8 16-Feb-2013 MPG 2.2m FEROS 164.71031 -23.772451 J105850.47-234620.8 28-Mar-2013 du Pont B&C-600 164.71031 -23.772451 J110119.22+525222.9 3-May-2013 Lick 3-m Kast 165.33011 52.87304 J110335.71-302449.5 18-Feb-2013 MPG 2.2m FEROS 165.8988 -30.4137

134 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J110551.56-780520.7 21-Jun-2014 du Pont B&C-832 166.46486 -78.08909 J111052.06-725513.0 21-Jun-2014 du Pont B&C-832 167.71695 -72.92029 J111103.54-313459.0 19-Mar-2014 du Pont echelle 167.76479 -31.583067 J111103.54-313459.0 17-Jun-2014 Keck 1 HIRES 167.76479 -31.583067 J111128.13-265502.9 18-Feb-2013 MPG 2.2m FEROS 167.86723 -26.917492 J111128.13-265502.9 28-Mar-2013 du Pont B&C-600 167.86723 -26.917492 J111229.74-461610.1 15-Dec-2013 du Pont echelle 168.12393 -46.269474 J111309.15+300338.4 4-May-2013 Lick 3-m Kast 168.28815 30.060677 J111707.56-390951.3 15-Dec-2013 du Pont echelle 169.28154 -39.16425 J112047.03-273805.8 17-Feb-2013 MPG 2.2m FEROS 170.19598 -27.63496 J112105.43-384516.6 17-Feb-2013 MPG 2.2m FEROS 170.27266 -38.754623 J112105.43-384516.6 28-Mar-2013 du Pont B&C-600 170.27266 -38.754623 J112512.28-002438.2 22-May-2013 Lick 3-m Kast 171.3012 -0.410632 J112547.46-441027.4 18-Feb-2013 MPG 2.2m FEROS 171.44777 -44.174286 J112651.28-382455.5 18-Feb-2013 MPG 2.2m FEROS 171.7137 -38.415417 J112816.27-261429.6 17-Feb-2013 MPG 2.2m FEROS 172.06783 -26.241568 J112816.27-261429.6 28-Mar-2013 du Pont B&C-600 172.06783 -26.241568 J112816.27-261429.6 24-Mar-2014 MPG 2.2m FEROS 172.06783 -26.241568 J112955.84+520213.2 4-May-2013 Lick 3-m Kast 172.48268 52.037025 J113105.57+542913.5 22-May-2013 Lick 3-m Kast 172.77322 54.487083 J113114.81-482628.0 19-Mar-2014 du Pont echelle 172.8117 -48.44114 J113120.31+132140.0 5-May-2013 Lick 3-m Kast 172.83463 13.361128 J114623.01-523851.8 20-Jun-2014 du Pont B&C-832 176.59592 -52.64773 J114728.37+664402.7 20-Mar-2014 Lick 3-m Kast 176.86821 66.73409 J115156.73+073125.7 4-May-2013 Lick 3-m Kast 177.98642 7.523807 J115438.73-503826.4 20-Jun-2014 du Pont B&C-832 178.66138 -50.640675 J115927.82-451019.3 18-Feb-2013 MPG 2.2m FEROS 179.86595 -45.172054 J115949.51-424426.0 17-Feb-2013 MPG 2.2m FEROS 179.95631 -42.74056 J115949.51-424426.0 28-Mar-2013 du Pont B&C-600 179.95631 -42.74056 J115949.51-424426.0 18-Dec-2013 MPG 2.2m FEROS 179.95631 -42.74056 J115949.51-424426.0 19-Mar-2014 du Pont echelle 179.95631 -42.74056 J115957.68-262234.1 23-Dec-2013 MPG 2.2m FEROS 179.99037 -26.376167 J120001.54-173131.1 18-Feb-2013 MPG 2.2m FEROS 180.00642 -17.525309 J120001.54-173131.1 28-Mar-2013 du Pont B&C-600 180.00642 -17.525309 J120001.54-173131.1 19-Mar-2014 du Pont echelle 180.00642 -17.525309 J120001.54-173131.1 17-Jun-2014 Keck 1 HIRES 180.00642 -17.525309

135 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J120237.94-332840.4 17-Feb-2013 MPG 2.2m FEROS 180.65811 -33.4779 J120237.94-332840.4 28-Mar-2013 du Pont B&C-600 180.65811 -33.4779 J120647.40-192053.1 16-Nov-2013 Keck 1 HIRES 181.697626 -19.348103 J120929.80-750540.2 21-Jun-2014 du Pont B&C-832 182.3742 -75.094505 J121153.04+124912.9 3-May-2013 Lick 3-m Kast 182.97101 12.820264 J121341.59+323127.7 AB 3-May-2013 Lick 3-m Kast 183.4233 32.524387 J121341.59+323127.7 AB 3-May-2013 Lick 3-m Kast 183.4233 32.524387 J121429.15-425814.8 19-Mar-2014 du Pont echelle 183.62149 -42.9708 J121511.25-025457.1 4-May-2013 Lick 3-m Kast 183.79692 -2.915868 J121558.37-753715.7 21-Jun-2014 du Pont B&C-832 183.99324 -75.621056 2M 12182363-3515098 17-Feb-2013 MPG 2.2m FEROS 184.598 -35.2527 J122643.99-122918.3 3-May-2013 Lick 3-m Kast 186.68332 -12.488425 J122643.99-122918.3 19-Mar-2014 du Pont echelle 186.68332 -12.488425 J122725.27-454006.6 24-Mar-2014 MPG 2.2m FEROS 186.8553 -45.66852 J122813.57-431638.9 28-Mar-2013 du Pont B&C-600 187.05658 -43.277496 J123005.17-440236.1 17-Feb-2013 MPG 2.2m FEROS 187.52158 -44.043373 J123234.07-414257.5 20-Jun-2014 du Pont B&C-832 188.14198 -41.715977 J123425.84-174544.4 17-Feb-2013 MPG 2.2m FEROS 188.60768 -17.762339 J123704.99-441919.5 28-Mar-2013 du Pont B&C-600 189.27081 -44.322094 J124054.09-451625.4 24-Mar-2014 MPG 2.2m FEROS 190.22539 -45.27373 J124612.32-384013.5 20-Jun-2014 du Pont B&C-832 191.55135 -38.670425 J124955.67-460737.3 24-Mar-2014 MPG 2.2m FEROS 192.48196 -46.12704 J125049.12-423123.6 17-Feb-2013 MPG 2.2m FEROS 192.7047 -42.523243 J125049.12-423123.6 28-Mar-2013 du Pont B&C-600 192.7047 -42.523243 J125326.99-350415.3 17-Feb-2013 MPG 2.2m FEROS 193.36247 -35.07093 J125902.99-314517.9 18-Feb-2013 MPG 2.2m FEROS 194.76248 -31.75498 J125902.99-314517.9 28-Mar-2013 du Pont B&C-600 194.76248 -31.75498 J130501.18-331348.7 21-Jun-2014 du Pont B&C-832 196.25493 -33.23022 J130522.37-405701.2 24-Mar-2014 MPG 2.2m FEROS 196.34322 -40.950348 J130530.31-405626.0 24-Mar-2014 MPG 2.2m FEROS 196.37633 -40.94058 J130618.16-342857.0 20-Jun-2014 du Pont B&C-832 196.57568 -34.48252 J130650.27-460956.1 21-Jun-2014 du Pont B&C-832 196.70949 -46.1656 J130731.03-173259.9 21-Jun-2014 du Pont B&C-832 196.87932 -17.549997 J131129.00-425241.9 20-Jun-2014 du Pont B&C-832 197.87083 -42.87831 J132112.77-285405.1 19-Mar-2014 du Pont echelle 200.30322 -28.901419 J133238.94+305905.8 20-Mar-2014 Lick 3-m Kast 203.16225 30.984955

136 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J133509.40+503917.5 3-May-2013 Lick 3-m Kast 203.7892 50.65489 J133901.87-214128.0 24-Jun-2014 Lick 3-m Kast 204.7578 -21.691114 J134146.41+581519.2 25-Jun-2004 Lick 3-m Kast 205.44339 58.255344 J134907.28+082335.8 3-May-2013 Lick 3-m Kast 207.28036 8.393282 J135145.65-374200.7 17-Feb-2013 MPG 2.2m FEROS 207.940297 -37.700115 J135511.38+665207.0 20-Mar-2014 Lick 3-m Kast 208.79744 66.86862 J135913.33-292634.2 3-May-2013 Lick 3-m Kast 209.80556 -29.442839 J135913.33-292634.2 19-Mar-2014 du Pont echelle 209.80556 -29.442839 J140337.56-501047.9 28-Mar-2013 du Pont B&C-600 210.90651 -50.179996 J141045.24+364149.8 5-May-2013 Lick 3-m Kast 212.68852 36.697193 J141045.24+364149.8 25-Jun-2004 Lick 3-m Kast 212.68852 36.697193 J141332.23-145421.1 24-Jun-2014 Lick 3-m Kast 213.38432 -14.905864 J141510.77-252012.0 22-May-2013 Lick 3-m Kast 213.79488 -25.336668 J141842.36+475514.9 3-May-2013 Lick 3-m Kast 214.67651 47.92083 J141903.13+645146.4 23-May-2013 Lick 3-m Kast 214.76308 64.86291 J143517.80-342250.4 20-Jun-2014 du Pont B&C-832 218.8242 -34.380688 J143648.16+090856.5 20-Mar-2014 Lick 3-m Kast 219.20068 9.149042 J143753.36-343917.8 20-Jun-2014 du Pont B&C-832 219.47235 -34.654953 J145014.12-305100.6 23-May-2013 Lick 3-m Kast 222.55887 -30.850187 J145731.11-305325.0 24-Jun-2014 Lick 3-m Kast 224.37965 -30.890293 J145949.90+244521.9 5-May-2013 Lick 3-m Kast 224.95793 24.75611 J150119.48-200002.1 24-Jun-2014 Lick 3-m Kast 225.33119 -20.0006 J150230.94-224615.4 24-Jun-2014 Lick 3-m Kast 225.62895 -22.77096 J150355.37-214643.1 23-May-2013 Lick 3-m Kast 225.98071 -21.778656 J150355.37-214643.1 17-Jun-2014 Keck 1 HIRES 225.98071 -21.778656 J150355.37-214643.1 14-Apr-2016 Lick 3-m Hamilton 225.98071 -21.778656 J150601.66-240915.0 30-Jun-2013 du Pont B&C-832 226.50693 -24.154173 J150723.91+433353.6 5-May-2013 Lick 3-m Kast 226.84964 43.56491 J150820.15-282916.6 20-Jun-2014 du Pont B&C-832 227.08398 -28.487947 J150836.69-294222.9 25-Jun-2004 Lick 3-m Kast 227.15288 -29.706371 J150939.16-133212.4 22-May-2013 Lick 3-m Kast 227.4132 -13.536785 J150939.16-133212.4 17-Jun-2014 Keck 1 HIRES 227.4132 -13.536785 J150939.16-133212.4 14-Apr-2016 Lick 3-m Hamilton 227.4132 -13.536785 J151212.18-255708.3 3-May-2013 Lick 3-m Kast 228.05075 -25.952326 J151242.69-295148.0 30-Jun-2013 du Pont B&C-832 228.1779 -29.863344 J151411.31-253244.1 30-Jun-2013 du Pont B&C-832 228.54713 -25.545603

137 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J152150.76-251412.1 4-May-2013 Lick 3-m Kast 230.46153 -25.236694 J153248.80-230812.4 30-Jun-2013 du Pont B&C-832 233.20337 -23.136787 J153549.35-065727.8 24-Mar-2014 MPG 2.2m FEROS 233.95566 -6.957734 J154220.24+593653.0 20-Mar-2014 Lick 3-m Kast 235.58435 59.614742 J154220.24+593653.0 17-Jun-2014 Keck 1 HIRES 235.58435 59.614742 J154227.07-042717.1 30-Jun-2013 du Pont B&C-832 235.61281 -4.454763 J154349.42-364838.7 30-Jun-2013 du Pont B&C-832 235.95592 -36.810776 J154435.17+042307.5 3-May-2013 Lick 3-m Kast 236.14656 4.385424 J154435.17+042307.5 21-Oct-2013 Keck 1 HIRES 236.14656 4.385424 J154435.17+042307.5 14-Apr-2016 Lick 3-m Hamilton 236.14656 4.385424 J154656.43+013650.8 3-May-2013 Lick 3-m Kast 236.73515 1.614116 J155046.47+305406.9 3-May-2013 Lick 3-m Kast 237.69365 30.901928 J155515.35+081327.9 24-Jun-2014 Lick 3-m Kast 238.81398 8.224432 J155759.01-025905.8 24-Jun-2014 Lick 3-m Kast 239.4959 -2.984958 J155947.24+440359.6 4-May-2013 Lick 3-m Kast 239.94684 44.066563 J160116.86-345502.7 21-Jun-2014 du Pont B&C-832 240.32028 -34.917427 J160549.19-311521.6 4-May-2013 Lick 3-m Kast 241.45499 -31.256012 J160549.19-311521.6 17-Jun-2014 Keck 1 HIRES 241.45499 -31.256012 J160828.45-060734.6 4-May-2013 Lick 3-m Kast 242.11858 -6.126302 J160828.45-060734.6 19-Mar-2014 du Pont echelle 242.11858 -6.126302 J160828.45-060734.6 17-Jun-2014 Keck 1 HIRES 242.11858 -6.126302 J160954.85-305858.4 30-Jun-2013 du Pont B&C-832 242.47856 -30.982906 J161410.76-025328.8 AB 24-Mar-2014 MPG 2.2m FEROS 243.54486 -2.891355 J161743.18+261815.2 25-Aug-2012 Lick 3-m Hamilton 244.42995 26.304237 J162422.68+195922.0 3-May-2013 Lick 3-m Kast 246.0945 19.989456 J162548.69-135912.0 28-Aug-2012 Lick 3-m Hamilton 246.4529 -13.986669 J162548.69-135912.0 4-May-2013 Lick 3-m Kast 246.4529 -13.986669 J162602.80-155954.5 30-Jun-2013 du Pont B&C-832 246.51167 -15.99848 J162602.80-155954.5 24-Mar-2014 MPG 2.2m FEROS 246.51167 -15.99848 J163051.34+472643.8 20-Mar-2014 Lick 3-m Kast 247.71393 47.44552 J163632.90+635344.9 4-May-2013 Lick 3-m Kast 249.13708 63.89582 J164539.37+702400.1 31-Oct-2012 Lick 3-m Kast 251.41406 70.40004 J170415.15-175552.5 28-Aug-2012 Lick 3-m Hamilton 256.06317 -17.931255 J170415.15-175552.5 30-Jun-2013 du Pont B&C-832 256.06317 -17.931255 J171038.44-210813.0 27-Aug-2012 Lick 3-m Hamilton 257.6602 -21.136951 J171117.68+124540.4 23-May-2013 Lick 3-m Kast 257.8237 12.761246

138 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J171426.13-214845.0 20-Jun-2014 du Pont B&C-832 258.6089 -21.812504 J171441.70-220948.8 1-Sep-2013 Lick 3-m Kast 258.6738 -22.163563 J171441.70-220948.8 21-Oct-2013 Keck 1 HIRES 258.6738 -22.163563 J172130.71-150617.8 20-Jun-2014 du Pont B&C-832 260.37796 -15.104968 J172131.73-084212.3 20-Jun-2014 du Pont B&C-832 260.38223 -8.703423 J172309.67-095126.2 31-Aug-2013 Lick 3-m Kast 260.7903 -9.857304 J172454.26+502633.0 20-Mar-2014 Lick 3-m Kast 261.2261 50.442524 J172454.26+502633.0 14-Apr-2016 Lick 3-m Hamilton 261.2261 50.442524 J172615.23-031131.9 21-Jun-2014 du Pont B&C-832 261.5635 -3.192205 J172615.23-031131.9 24-Jun-2014 Lick 3-m Kast 261.5635 -3.192205 J172951.38+093336.9 20-Mar-2014 Lick 3-m Kast 262.4641 9.560255 J173353.07+165511.7 28-Aug-2012 Lick 3-m Hamilton 263.47116 16.91993 J173544.26-165209.9 27-Aug-2012 Lick 3-m Hamilton 263.93445 -16.869434 J173544.26-165209.9 3-May-2013 Lick 3-m Kast 263.93445 -16.869434 J173623.80+061853.0 24-Jun-2014 Lick 3-m Kast 264.09918 6.314737 J173826.94-055628.0 21-Jun-2014 du Pont B&C-832 264.61224 -5.941125 J174203.85-032340.4 21-Jun-2014 du Pont B&C-832 265.51605 -3.394558 J174426.59-074925.3 24-Jun-2014 Lick 3-m Kast 266.11084 -7.823697 J174439.27+483147.1 24-Jun-2014 Lick 3-m Kast 266.16367 48.529774 J174536.31-063215.3 21-Jun-2014 du Pont B&C-832 266.4013 -6.537586 J174735.31-033644.4 20-Jun-2014 du Pont B&C-832 266.89713 -3.612346 J174811.33-030510.2 24-Jun-2014 Lick 3-m Kast 267.0472 -3.086179 J174936.01-010808.7 20-Jun-2014 du Pont B&C-832 267.40005 -1.135774 J175022.27-094457.8 20-Jun-2014 du Pont B&C-832 267.5928 -9.749393 J175839.30+155208.6 22-May-2013 Lick 3-m Kast 269.6638 15.869077 J175839.30+155208.6 17-Jun-2014 Keck 1 HIRES 269.6638 15.869077 J175942.12+784942.1 17-Jun-2014 Keck 1 HIRES 269.92554 78.828384 J180508.62-015058.5 21-Jun-2014 du Pont B&C-832 271.28592 -1.849588 J180554.92-570431.3 21-Jun-2014 du Pont B&C-832 271.47885 -57.075382 J180658.07+161037.9 3-May-2013 Lick 3-m Kast 271.74197 16.177212 J180658.07+161037.9 21-Oct-2013 Keck 1 HIRES 271.74197 16.177212 J180733.00+613153.6 30-Oct-2012 Lick 3-m Kast 271.8875 61.53157 J180929.71-543054.2 21-Jun-2014 du Pont B&C-832 272.3738 -54.515076 J181059.88-012322.4 20-Jun-2014 du Pont B&C-832 272.74954 -1.389562 J181725.08+482202.8 25-Aug-2012 Lick 3-m Hamilton 274.3545 48.367474 J181725.08+482202.8 17-Jun-2014 Keck 1 HIRES 274.3545 48.367474

139 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J182054.20+022101.5 20-Jun-2014 du Pont B&C-832 275.22586 2.350438 J182905.79+002232.2 20-Jun-2014 du Pont B&C-832 277.27414 0.375622 J184204.85-555413.3 21-Jun-2014 du Pont B&C-832 280.52023 -55.903717 J184206.97-555426.2 30-May-2014 MPG 2.2m FEROS 280.52905 -55.907288 J184206.97-555426.2 21-Jun-2014 du Pont B&C-832 280.52905 -55.907288 J184536.02-205910.8 24-Jun-2014 Lick 3-m Kast 281.40012 -20.986347 J190453.69-140406.0 27-Aug-2012 Lick 3-m Hamilton 286.22372 -14.068342 J191019.82-160534.8 30-Jun-2013 du Pont B&C-832 287.5826 -16.093012 J191036.02-650825.5 21-Jun-2014 du Pont B&C-832 287.65012 -65.14044 J191235.95+630904.7 1-Sep-2013 Lick 3-m Kast 288.1498 63.151318 J191500.80-284759.1 30-Jun-2013 du Pont B&C-832 288.75336 -28.799763 J191534.83-083019.9 27-Aug-2012 Lick 3-m Hamilton 288.89514 -8.50553 J191629.61-270707.2 30-Jun-2013 du Pont B&C-832 289.1234 -27.118683 J192240.05-061208.0 1-Sep-2013 Lick 3-m Kast 290.66687 -6.202241 J192242.80-051553.8 31-Aug-2013 Lick 3-m Kast 290.67834 -5.264947 J192250.70-631058.6 26-Sep-2013 MPG 2.2m FEROS 290.71127 -63.182972 J192323.20+700738.3 26-Aug-2012 Lick 3-m Hamilton 290.8467 70.12733 J192323.20+700738.3 3-May-2013 Lick 3-m Kast 290.8467 70.12733 J192434.97-344240.0 30-Jun-2013 du Pont B&C-832 291.14572 -34.71113 J192434.97-344240.0 30-May-2014 MPG 2.2m FEROS 291.14572 -34.71113 J192600.77-533127.6 AB 30-Jun-2013 du Pont B&C-832 291.50323 -53.524357 J192600.77-533127.6 AB 30-May-2014 MPG 2.2m FEROS 291.50323 -53.524357 J192659.33-710923.8 25-Sep-2013 MPG 2.2m FEROS 291.74722 -71.15662 J193052.51-545325.4 24-Sep-2013 MPG 2.2m FEROS 292.71878 -54.89041 J193411.46-300925.3 23-Sep-2013 MPG 2.2m FEROS 293.54776 -30.157051 J193711.26-040126.7 24-Jun-2014 Lick 3-m Kast 294.29694 -4.024102 J194309.89-601657.8 21-Jun-2014 du Pont B&C-832 295.79123 -60.28275 J194309.89-601657.8 12-Sep-2014 du Pont echelle 295.79123 -60.28275 J194444.21-435903.0 21-Jun-2014 du Pont B&C-832 296.18423 -43.98417 J194539.01+704445.9 26-Aug-2012 Lick 3-m Hamilton 296.41254 70.7461 J194539.01+704445.9 3-May-2013 Lick 3-m Kast 296.41254 70.7461 J194714.54+640237.9 4-May-2013 Lick 3-m Kast 296.8106 64.043884 J194816.54-272032.3 3-May-2013 Lick 3-m Kast 297.06897 -27.34233 J194834.58-760546.9 21-Jun-2014 du Pont B&C-832 297.1441 -76.096375 J195227.23-773529.4 AB 24-Sep-2013 MPG 2.2m FEROS 298.11346 -77.5915 J195315.67+745948.9 4-May-2013 Lick 3-m Kast 298.3153 74.996925

140 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J195331.72-070700.5 20-Jun-2014 du Pont B&C-832 298.3822 -7.116815 J195340.71+502458.2 23-May-2013 Lick 3-m Kast 298.41965 50.41618 J195602.95-320719.3 20-Jun-2014 du Pont B&C-832 299.01233 -32.12205 J200137.19-331314.5 30-Jun-2013 du Pont B&C-832 300.405 -33.22072 J200137.19-331314.5 24-Sep-2013 MPG 2.2m FEROS 300.405 -33.22072 J200311.61-243959.2 4-May-2013 Lick 3-m Kast 300.7984 -24.666468 J200311.61-243959.2 23-Sep-2013 MPG 2.2m FEROS 300.7984 -24.666468 J200409.19-672511.7 21-Jun-2014 du Pont B&C-832 301.0383 -67.41994 J200423.80-270835.8 31-Aug-2013 Lick 3-m Kast 301.0992 -27.143295 J200556.44-321659.7 30-Jun-2013 du Pont B&C-832 301.4852 -32.28327 J200837.87-254526.2 30-Jun-2013 du Pont B&C-832 302.1578 -25.757284 J200853.72-351949.3 30-Jun-2013 du Pont B&C-832 302.22385 -35.33037 J201000.06-280141.6 30-Jun-2013 du Pont B&C-832 302.50027 -28.028225 J201000.06-280141.6 25-Sep-2013 MPG 2.2m FEROS 302.50027 -28.028225 J201931.84-081754.3 4-May-2013 Lick 3-m Kast 304.8827 -8.298427 J202505.36+835954.2 17-Jun-2014 Keck 1 HIRES 306.27237 83.9984 J202716.80-254022.8 30-Jun-2013 du Pont B&C-832 306.82004 -25.673018 J203023.10+711419.8 30-Oct-2012 Lick 3-m Kast 307.59628 71.23884 J203023.10+711419.8 21-Oct-2013 Keck 1 HIRES 307.59628 71.23884 J203301.99-490312.6 20-Jun-2014 du Pont B&C-832 308.2583 -49.0535 J203337.63-255652.8 30-Jun-2013 du Pont B&C-832 308.4068 -25.948002 J203337.63-255652.8 21-Oct-2013 Keck 1 HIRES 308.4068 -25.948002 J204406.36-153042.3 24-Jun-2014 Lick 3-m Kast 311.0265 -15.51177 J204714.59+110442.2 24-Jun-2014 Lick 3-m Kast 311.81082 11.078394 J205131.01-154857.6 30-Jun-2013 du Pont B&C-832 312.8792 -15.816022 J205136.27+240542.9 17-Jun-2014 Keck 1 HIRES 312.90115 24.095266 J205832.99-482033.8 20-Jun-2014 du Pont B&C-832 314.63748 -48.342743 J210131.13-224640.9 30-Jun-2013 du Pont B&C-832 315.37973 -22.778051 J210338.46+075330.3 25-Aug-2012 Lick 3-m Hamilton 315.91028 7.891777 J210708.43-113506.0 25-Sep-2013 MPG 2.2m FEROS 316.78516 -11.585001 J210722.53-705613.4 25-Sep-2013 MPG 2.2m FEROS 316.84387 -70.93708 J210736.82-130458.9 27-Aug-2012 Lick 3-m Hamilton 316.90344 -13.083031 J210957.48+032121.1 17-Jun-2014 Keck 1 HIRES 317.4895 3.35587 J211004.67-192031.2 24-Sep-2013 MPG 2.2m FEROS 317.5195 -19.342028 J211005.41-191958.4 23-Sep-2013 MPG 2.2m FEROS 317.52258 -19.332901 J211031.49-271058.1 AB 30-Jun-2013 du Pont B&C-832 317.63123 -27.182814

141 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J211031.49-271058.1 AB 21-Oct-2013 Keck 1 HIRES 317.63123 -27.182814 J211031.49-271058.1 AB 16-Oct-2014 Keck 1 HIRES 317.63123 -27.182814 J211635.34-600513.4 26-Sep-2013 MPG 2.2m FEROS 319.14728 -60.08708 J212007.84-164548.2 30-Jun-2013 du Pont B&C-832 320.03268 -16.763414 J212007.84-164548.2 1-Sep-2013 Lick 3-m Kast 320.03268 -16.763414 J212007.84-164548.2 26-Sep-2013 MPG 2.2m FEROS 320.03268 -16.763414 J212007.84-164548.2 26-Sep-2013 MPG 2.2m FEROS 320.03268 -16.763414 J212128.89-665507.1 21-Jun-2014 du Pont B&C-832 320.3704 -66.91866 J212230.56-333855.2 30-Jun-2013 du Pont B&C-832 320.62735 -33.648678 J212750.60-684103.9 21-Jun-2014 du Pont B&C-832 321.96085 -68.68444 J212750.60-684103.9 12-Sep-2014 du Pont echelle 321.96085 -68.68444 J212750.60-684103.9 12-Sep-2014 du Pont echelle 321.96085 -68.68444 J213507.39+260719.4 1-Sep-2013 Lick 3-m Kast 323.7808 26.122057 J213520.34-142917.9 30-Jun-2013 du Pont B&C-832 323.83478 -14.488314 J213644.54+670007.1 30-Oct-2012 Lick 3-m Kast 324.18495 67.00166 J213708.89-603606.4 24-Sep-2013 MPG 2.2m FEROS 324.28705 -60.601788 J213740.24+013713.2 16-Oct-2014 Keck 1 HIRES 324.41766 1.620342 J213835.44-505111.0 21-Jun-2014 du Pont B&C-832 324.64767 -50.85306 J213847.58+050451.4 30-Jun-2013 du Pont B&C-832 324.69827 5.080961 J214101.48+723026.7 30-Oct-2012 Lick 3-m Kast 325.25616 72.50743 J214126.66+204310.5 31-Aug-2013 Lick 3-m Kast 325.3611 20.719593 J214414.73+321822.3 24-Jun-2014 Lick Kast 326.0614 32.306206 J214905.04-641304.8 21-Jun-2014 du Pont B&C-832 327.27103 -64.218 J215053.68-055318.9 28-Aug-2012 Lick 3-m Hamilton 327.72366 -5.888601 J215128.95-023814.9 30-Jun-2013 du Pont B&C-832 327.87067 -2.637497 J215128.95-023814.9 31-Aug-2013 Lick 3-m Kast 327.87067 -2.637497 J215717.71-341834.0 20-Jun-2014 du Pont B&C-832 329.32382 -34.309452 J220216.29-421034.0 23-Sep-2013 MPG 2.2m FEROS 330.5679 -42.176136 J220254.57-644045.0 23-Sep-2013 MPG 2.2m FEROS 330.7274 -64.67918 J220306.98-253826.6 31-Oct-2012 Lick 3-m Kast 330.77908 -25.640726 J220730.16-691952.6 24-Sep-2013 MPG 2.2m FEROS 331.87567 -69.33129 J220850.39+114412.7 16-Nov-2013 Keck 1 HIRES 332.21 11.736883 J221217.17-681921.1 21-Jun-2014 du Pont B&C-832 333.07156 -68.32255 J221559.00-014733.0 30-Jun-2013 du Pont B&C-832 333.99585 -1.792526 J221833.85-170253.2 30-Jun-2013 du Pont B&C-832 334.64108 -17.048128 J221842.70+332113.5 30-Oct-2012 Lick 3-m Kast 334.67795 33.353775

142 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J222024.21-072734.5 30-Jun-2013 du Pont B&C-832 335.1009 -7.459597 J224111.08-684141.8 21-Jun-2014 du Pont B&C-832 340.29617 -68.69496 J224221.02-410357.2 20-Jun-2014 du Pont B&C-832 340.58762 -41.0659 J224448.45-665003.9 15-Nov-2014 du Pont B&C-832 341.2019 -66.83443 J224500.20-331527.2 14-Nov-2014 du Pont B&C-832 341.25085 -33.25757 J224634.82-735351.0 26-Sep-2013 MPG 2.2m FEROS 341.64508 -73.897514 J225914.87+373639.3 16-Oct-2014 Keck 1 HIRES 344.81198 37.61093 J225934.89-070447.1 30-Jun-2013 du Pont B&C-832 344.89542 -7.079774 J230209.10-121522.0 31-Oct-2012 Lick 3-m Kast 345.53793 -12.256117 J230209.10-121522.0 23-Sep-2013 MPG 2.2m FEROS 345.53793 -12.256117 J230209.10-121522.0 23-Sep-2013 MPG 2.2m FEROS 345.53793 -12.256117 J230327.73-211146.2 30-Jun-2013 du Pont B&C-832 345.86557 -21.19619 J230740.98+080359.7 1-Sep-2013 Lick 3-m Kast 346.92078 8.066594 J231021.75+685943.6 31-Aug-2013 Lick 3-m Kast 347.59064 68.99545 J231211.37+150329.7 31-Aug-2013 Lick 3-m Kast 348.0474 15.058253 J231246.53-504924.8 30-May-2014 MPG 2.2m FEROS 348.19388 -50.82356 J231246.53-504924.8 20-Jun-2014 du Pont B&C-832 348.19388 -50.82356 J231246.53-504924.8 20-Jun-2014 du Pont B&C-832 348.19388 -50.82356 J231457.86-633434.0 AB 26-Sep-2013 MPG 2.2m FEROS 348.7411 -63.57613 J231457.86-633434.0 AB 23-Dec-2013 MPG 2.2m FEROS 348.7411 -63.57613 J231457.86-633434.0 AB 26-Sep-2013 MPG 2.2m FEROS 348.7411 -63.57613 J231457.86-633434.0 AB 23-Dec-2013 MPG 2.2m FEROS 348.7411 -63.57613 J231543.66-140039.6 27-Aug-2012 Lick 3-m Hamilton 348.93195 -14.011015 J231543.66-140039.6 31-Oct-2012 Lick 3-m Kast 348.93195 -14.011015 J231543.66-140039.6 31-Oct-2012 Lick 3-m Kast 348.93195 -14.011015 J231933.16-393924.3 16-Nov-2013 Keck 1 HIRES 349.887775 -39.656615 J232008.15-634334.9 14-Nov-2014 du Pont B&C-832 350.034 -63.72637 J232151.23+005037.3 31-Aug-2013 Lick 3-m Kast 350.46347 0.843714 J232656.43+485720.9 25-Aug-2012 Lick 3-m Hamilton 351.73517 48.955822 J232857.75-680234.5 25-Sep-2013 MPG 2.2m FEROS 352.24063 -68.04294 J232904.42+032910.8 30-Oct-2012 Lick 3-m Kast 352.26843 3.486344 J232917.64-675000.6 14-Nov-2014 du Pont B&C-832 352.32352 -67.83351 J232959.47+022834.0 30-Jun-2013 du Pont B&C-832 352.4978 2.476128 J233647.87+001740.1 30-Jun-2013 du Pont B&C-832 354.1995 0.294496 J233647.87+001740.1 1-Sep-2013 Lick 3-m Kast 354.1995 0.294496 J234243.45-622457.1 14-Nov-2014 du Pont B&C-832 355.68103 -62.41587

143 Table 4.5 (cont’d)

WISE Desig Comp Obs Date (UT) Telescope Instrument RA [deg] Dec [deg]

J234326.88-344658.5 30-Jun-2013 du Pont B&C-832 355.86203 -34.78294 J234326.88-344658.5 21-Dec-2013 MPG 2.2m FEROS 355.86203 -34.78294 J234333.91-192802.8 31-Oct-2012 Lick 3-m Kast 355.89133 -19.467451 J234333.91-192802.8 26-Nov-2012 Lick 3-m Hamilton 355.89133 -19.467451 J234333.91-192802.8 26-Nov-2012 Lick 3-m Hamilton 355.89133 -19.467451 J234347.83-125252.1 1-Sep-2013 Lick 3-m Kast 355.9493 -12.881158 J234857.35+100929.3 30-Jun-2013 du Pont B&C-832 357.23898 10.158151 J234924.87+185926.7 21-Oct-2013 Keck 1 HIRES 357.35364 18.990759 J234926.23+185912.4 30-Oct-2012 Lick 3-m Kast 357.3593 18.986795 J235250.70-160109.7 1-Sep-2013 Lick 3-m Kast 358.21127 -16.019367

Table 4.6. Spectroscopic Properties

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

HIRES J003234.86+072926.4 3.6 -8.0 0.3 55.3 4.2 ¡ 0.09 J003903.51+133016.0 4.9 -9.0 0.1 61.2 4.4 ¡ 0.07 J010711.99-193536.4 1.8 -2.4 0.1 71.3 0.9 0.35 0.00 J021935.52-455106.2 W -0.9 0.0 65.8 11.4 ¡ 0.08 J021935.52-455106.2 E 7.1 -1.8 0.1 85.0 4.8 ¡ 0.05 J024852.67-340424.9 4.5 -9.1 0.1 72.1 5.7 ¡ 0.03 J030251.62-191150.0 4.6 -7.3 0.6 67.7 0.7 ¡ 0.05 J034236.95+221230.2 5.8 -12.9 0.3 51.9 6.3 0.68 0.01 J035134.51+072224.5 7.4 -4.2 0.1 50.8 2.1 ¡ 0.04 J040711.50-291834.3 1.4 -2.6 0.1 64.1 1.2 0.40 0.05 J041525.58-212214.5 5.2 ¡ 0.04 J042736.03-231658.8 4.7 -8.9 53.0 0.39 J042739.33+171844.2 4.1 DBL ¡ 0.08 J043923.21+333149.0 3.3 -11.0 0.2 71.8 5.5 ¡ 0.04 J044336.19-003401.8 4.0 -5.9 0.3 66.2 13.9 0.25 0.01 J044800.86+143957.7 AB 10.5 DBL DBL 0.45 J044802.59+143951.1 A -23.2 71.0 0.63 J050827.31-210144.3 5.9 -17.8 107.0 0.49 J051026.38-325307.4 7.3 J052419.14-160115.5 4.3 -19.8 0.5 167.3 28.5 0.15 0.03 J052944.69-323914.1 4.7 -6.1 0.2 53.9 3.3 ¡ 0.09 J053100.27+231218.3 4.3 -9.3 0.2 108.0 5.3 0.13 0.01 J053311.32-291419.9 4.0 -8.3 71.0 ¡ 0.06 J053747.56-424030.8 4.9 -12.8 0.3 84.4 2.3 0.84 0.02 J075830.92+153013.4 B 5.3 -4.8 56.0 ¡ 0.08 J075830.92+153013.4 A 5.3 -4.8 56.0 ¡ 0.08 J094508.15+714450.1 5.7 -12.4 0.6 73.1 10.2 ¡ 0.10 J120647.40-192053.1 0.19 J150355.37-214643.1 -0.9 -3.9 0.1 73.4 9.2 0.53 0.01 J150939.16-133212.4 1.3 -8.6 0.3 156.2 20.6 0.52 0.01 J154220.24+593653.0 4.0 -32.3 0.7 129.6 29.2 ¡ 0.06 J160549.19-311521.6 1.2 -2.3 0.1 62.9 7.0 0.54 0.03 J175839.30+155208.6 1.3 -3.6 0.2 49.5 0.8 ¡ 0.06 J175942.12+784942.1 6.4 lowSNR ¡ 0.08

144 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J202505.36+835954.2 6.1 -5.7 0.3 58.2 3.1 ¡ 0.08 J205136.27+240542.9 5.3 -5.2 0.3 60.5 5.6 ¡ 0.07 J210957.48+032121.1 5.0 0.3 0.0 ¡ 0.06 J211031.49-271058.1 B 6.8 -11.9 1.1 206.4 3.0 0.86 0.01 J213740.24+013713.2 4.5 -12.1 0.9 106.2 3.7 ¡ 0.08 J220850.39+114412.7 4.3 -6.8 0.0 64.5 11.8 ¡ 0.05 J225914.87+373639.3 5.1 -7.9 0.2 79.9 7.7 ¡ 0.06 J231933.16-393924.3 0.2 0.0 ¡ 0.03 J234924.87+185926.7 2.8 -0.8 0.1 lowSNR ¡ 0.05 FEROS 2M 12182363-3515098 -1.5 -0.5 0.1 0.31 0.01 J001527.62-641455.2 2.5 -3.3 0.2 ¡ 0.08 J004524.84-775207.5 3.3 ¡ 0.05 J004528.25-513734.4 B 2.1 -0.9 0.1 ¡ 0.03 J004528.25-513734.4 A 2.1 0.0 0.0 ¡ 0.03 J010243.86-623534.8 4.2 -3.2 0.5 47.9 13.6 ¡ 0.16 J010629.32-122518.4 3.4 -9.7 0.8 66.1 8.3 ¡ 0.11 J012118.22-543425.1 1.0 0.7 0.0 ¡ 0.03 J012245.24-631845.0 4.2 -12.9 0.8 79.2 1.9 ¡ 0.08 J015057.01-584403.4 2.9 -8.8 0.3 ¡ 0.06 J015455.24-295746.0 -0.5 0.6 0.1 0.13 0.01 J021330.24-465450.3 4.3 -7.7 0.5 58.4 3.1 ¡ 0.09 J024746.49-580427.4 3.0 -3.1 0.2 ¡ 0.05 J031650.45-350937.9 3.6 -8.6 0.2 88.4 0.0 ¡ 0.12 J033640.91+032918.3 4.6 -12.2 0.9 122.9 0.6 ¡ 0.08 J034115.60-225307.8 0.3 -2.8 0.2 65.4 5.3 ¡ 0.08 J035223.52-282619.6 0.6 -5.1 0.8 117.4 1.6 ¡ 0.04 J035345.92-425018.0 0.6 -2.4 0.1 50.8 3.4 ¡ 0.10 J035716.56-271245.5 0.7 J040539.68-401410.5 0.4 -8.6 0.3 59.4 0.8 ¡ 0.08 J040649.38-450936.3 0.5 -5.7 0.3 55.1 0.9 ¡ 0.10 J040809.80-611904.3 0.9 0.5 0.0 ¡ 0.04 J040827.01-784446.7 1.7 -2.2 0.1 0.08 0.01 J041050.04-023954.4 0.8 -2.4 0.1 79.3 5.7 ¡ 0.05 J041255.78-141859.2 0.7 -2.0 0.1 ¡ 0.08

145 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J041749.66+001145.4 -0.1 -3.3 0.2 0.30 0.02 J041807.76+030826.0 1.6 J042139.19-723355.7 2.5 -4.4 0.2 ¡ 0.07 J043657.44-161306.7 3.2 -8.2 0.3 ¡ 0.10 J044120.81-194735.6 -0.5 -1.4 0.0 67.3 6.5 0.32 0.01 J044700.46-513440.4 2.5 -2.9 0.2 ¡ 0.05 J045114.41-601830.5 1.2 -1.2 0.2 ¡ 0.04 J045651.47-311542.7 -2.4 1.2 0.0 0.02 0.00 J050610.44-582828.5 2.5 -4.6 0.5 59.3 6.5 ¡ 0.07 J051310.57-303147.7 0.3 -2.0 0.1 0.17 0.00 J051403.20-251703.8 3.4 -4.9 0.2 50.3 3.6 ¡ 0.06 J053328.01-425720.1 A 1.8 -4.6 0.2 ¡ 0.25 J053925.08-424521.0 2.3 -2.3 0.4 ¡ 0.05 J054433.76-200515.5 2.6 -2.2 0.1 ¡ 0.04 J054709.88-525626.1 -0.8 -1.9 0.2 155.9 9.7 ¡ 0.20 J060224.56-163450.0 0.8 -2.8 0.1 ¡ 0.05 J061313.30-274205.6 3.2 -4.9 0.4 ¡ 0.07 J062047.17-361948.2 0.4 -1.7 0.1 0.35 0.03 J072911.26-821214.3 1.8 -1.9 0.1 ¡ 0.05 J075808.25-043647.5 2.0 J080636.05-744424.6 2.4 -2.0 0.3 ¡ 0.06 J082105.04-090853.8 A 0.8 ¡ 0.05 J082105.04-090853.8 B 2.2 J082105.04-090853.8 B 2.2 ¡ 0.05 J094317.05-245458.3 0.4 J100230.94-281428.2 4.2 -9.4 0.8 64.1 1.0 ¡ 0.10 J101905.68-304920.3 2.2 -2.0 0.1 ¡ 0.08 J101917.57-443736.0 3.7 -3.9 0.3 63.9 11.9 0.49 0.01 J102602.07-410553.8 B 1.0 -9.9 0.8 319.3 0.4 0.23 J102602.07-410553.8 A 1.0 -9.9 0.8 319.3 0.4 0.38 J104551.72-112615.4 5.6 124.7 8.2 ¡ 0.26 J105518.12-475933.2 0.6 -1.4 0.2 0.45 0.02 J105850.47-234620.8 4.4 J110335.71-302449.5 -1.2 ¡ 0.17 J111128.13-265502.9 4.1 -17.2 0.8 56.1 4.2 0.92 0.05

146 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J112047.03-273805.8 4.1 -16.3 1.9 58.0 0.9 1.00 0.08 J112105.43-384516.6 1.3 -3.5 0.1 0.54 0.02 J112547.46-441027.4 4.6 -10.7 0.2 83.5 9.9 ¡ 0.15 J112651.28-382455.5 -0.4 -7.5 0.4 0.57 0.03 J112816.27-261429.6 4.3 -3.0 0.5 108.3 19.9 ¡ 0.08 J115927.82-451019.3 5.1 -10.6 0.2 66.4 5.2 0.72 0.03 J115949.51-424426.0 4.4 0.5 0.0 78.5 7.1 ¡ 0.10 J115957.68-262234.1 2.0 -2.9 0.4 0.56 0.03 J120001.54-173131.1 3.9 -7.8 0.2 101.2 2.5 0.77 0.02 J120237.94-332840.4 4.2 -9.9 0.6 0.73 0.06 J122725.27-454006.6 -0.9 -1.1 0.1 99.9 0.2 0.42 0.04 J123005.17-440236.1 3.7 -7.4 0.9 0.67 0.05 J123425.84-174544.4 -0.6 -1.5 0.1 ¡ 0.08 J124054.09-451625.4 1.7 -3.8 0.3 58.3 2.6 0.11 0.01 J124955.67-460737.3 1.5 -1.7 0.2 69.0 6.5 0.44 0.03 J125049.12-423123.6 4.0 -16.0 1.2 206.5 0.6 0.23 0.05 J125326.99-350415.3 2.9 -5.2 0.3 65.2 3.2 ¡ 0.15 J125902.99-314517.9 4.3 -5.2 0.1 74.4 3.9 0.61 0.03 J130522.37-405701.2 2.8 -4.6 0.3 60.9 6.4 ¡ 0.08 J130530.31-405626.0 -0.8 -1.5 0.1 67.8 2.0 0.49 0.03 J135145.65-374200.7 -1.3 0.2 0.35 0.02 J153549.35-065727.8 0.1 -1.8 0.1 70.6 1.6 0.65 0.05 J161410.76-025328.8 AB -1.7 -3.7 0.2 181.1 2.5 0.11 J184206.97-555426.2 3.0 -7.0 1.1 ¡ 0.14 J192250.70-631058.6 2.8 -6.0 0.4 65.7 10.6 ¡ 0.10 J192659.33-710923.8 1.0 -3.4 0.2 95.8 0.3 ¡ 0.15 J193052.51-545325.4 0.4 -2.6 0.2 87.8 4.5 ¡ 0.08 J193411.46-300925.3 3.9 -13.1 1.7 75.5 0.9 0.65 0.14 J195227.23-773529.4 B 3.9 -3.0 1.4 ¡ 0.30 J195227.23-773529.4 A 3.9 -3.0 1.4 ¡ 0.30 J200311.61-243959.2 2.6 -2.0 0.4 92.9 3.4 ¡ 0.14 J210708.43-113506.0 -1.0 0.0 0.20 0.01 J210722.53-705613.4 3.0 -3.9 0.2 0.14 0.03 J211004.67-192031.2 4.0 -8.7 0.2 135.6 6.6 ¡ 0.20 J211005.41-191958.4 3.7 -4.4 0.4 50.3 0.9 ¡ 0.07

147 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J211635.34-600513.4 1.4 -6.4 0.2 66.4 4.3 ¡ 0.22 J213708.89-603606.4 4.7 -7.5 0.4 115.3 4.2 ¡ 0.11 J220216.29-421034.0 2.8 -2.0 0.1 56.9 7.7 ¡ 0.06 J220254.57-644045.0 3.5 -3.3 0.3 72.5 0.9 ¡ 0.06 J220730.16-691952.6 3.8 -1.8 0.5 50.9 2.5 ¡ 0.30 J224634.82-735351.0 1.0 -5.0 0.3 55.7 2.0 ¡ 0.15 J230209.10-121522.0 2.2 -7.0 0.8 167.8 24.1 ¡ 0.15 J231246.53-504924.8 4.0 -7.4 0.5 ¡ 0.08 J231457.86-633434.0 B 2.8 -1.6 0.2 59.9 2.0 ¡ 0.06 J231457.86-633434.0 A 3.3 -1.5 0.1 43.0 8.0 ¡ 0.06 J232857.75-680234.5 4.1 -6.1 0.3 71.5 2.2 ¡ 0.11 Hamilton J001709.96+185711.8 S 2.1 0.9 0.0 ¡ 0.02 J001709.96+185711.8 N 2.1 1.1 0.1 ¡ 0.02 J020012.84-084052.4 2.5 -4.0 0.1 55.4 2.3 ¡ 0.08 J025154.17+222728.9 3.2 -5.8 0.1 63.7 10.1 ¡ 0.07 J025913.40+203452.6 -0.9 4.0 0.2 ¡ 0.02 J030002.98+550652.4 1.1 -1.1 0.2 ¡ 0.05 J034444.80+404150.4 2.7 -1.1 0.2 ¡ 0.13 J043726.87+185126.2 -0.2 -1.0 0.0 0.49 0.01 J044455.71+193605.3 1.2 -0.8 0.1 ¡ 0.03 J062407.62+310034.4 3.9 -4.0 0.4 ¡ 0.09 J072821.16+334511.6 3.5 -7.0 0.5 ¡ 0.08 J082558.91+034019.5 5.1 -5.1 0.3 ¡ 0.10 J161743.18+261815.2 1.6 ¡ 0.05 J171038.44-210813.0 1.6 -2.2 0.1 72.0 5.1 0.53 0.02 J173353.07+165511.7 5.2 -10.3 0.9 73.3 3.5 0.17 0.03 J190453.69-140406.0 2.3 ¡ 0.05 J191534.83-083019.9 -0.8 -1.3 0.1 71.8 1.4 0.12 0.01 J210338.46+075330.3 0.7 -1.1 0.1 73.0 1.0 0.24 0.01 J210736.82-130458.9 3.5 -4.7 0.2 82.0 8.6 ¡ 0.08 J215053.68-055318.9 2.1 -2.2 0.1 56.3 11.8 ¡ 0.05 J232656.43+485720.9 1.1 -0.7 0.0 43.7 0.9 ¡ 0.02 J044356.87+372302.7 3.3 -6.9 0.3 77.7 13.8 0.21 0.01 J181725.08+482202.8 1.7 -2.3 0.4 51.8 7.0 ¡ 0.07

148 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J010126.59+463832.6 -1.8 ¡ 0.10 J162548.69-135912.0 -2.2 1.5 0.1 0.13 0.01 J173544.26-165209.9 -0.6 -1.0 0.1 ¡ 0.05 J192323.20+700738.3 -2.1 ¡ 0.05 J194539.01+704445.9 -3.4 -2.2 0.1 110.6 0.7 0.18 0.02 J231543.66-140039.6 0.7 0.6 0.0 ¡ 0.03 J234333.91-192802.8 0.8 -1.2 0.0 ¡ 0.05 duPont Echelle J001536.79-294601.2 4.1 -4.5 0.5 64.2 1.3 ¡ 0.04 J001723.69-664512.4 2.4 -5.3 0.3 56.2 6.5 ¡ 0.07 J003057.97-655006.4 4.0 -3.1 0.1 68.4 0.3 ¡ 0.03 J004210.98-425254.8 2.4 -2.5 0.1 49.4 7.9 ¡ 0.07 J013110.69-760947.7 2.6 -1.3 0.1 53.9 2.4 ¡ 0.03 J020805.55-474633.7 1.5 0.5 0.0 ABS ¡ 0.06 J021258.28-585118.3 2.9 -3.2 0.2 59.7 11.9 ¡ 0.04 J022424.69-703321.2 4.3 -3.1 0.1 52.6 6.8 ¡ 0.03 J032047.66-504133.0 2.4 -0.8 0.2 ¡ 0.03 J040743.83-682511.0 3.3 -1.8 0.1 68.0 5.2 ¡ 0.02 J041336.14-441332.4 3.9 -2.4 0.2 65.0 3.3 ¡ 0.03 J044036.23-380140.8 1.7 J051803.00-375721.2 2.4 -3.9 0.1 56.6 5.7 ¡ 0.05 J054448.20-265047.4 -0.2 giant ¡ 0.06 J060156.10-164859.9 A 2.5 -1.5 0.0 54.3 7.8 ¡ 0.05 J060156.10-164859.9 B 2.5 -1.5 0.1 68.2 3.2 ¡ 0.05 J061851.01-383154.9 -2.1 -3.4 0.5 218.7 4.1 ¡ 1.00 J063001.84-192336.6 1.8 -2.4 0.2 44.6 5.4 ¡ 1.00 J081738.97-824328.8 3.5 -8.0 0.2 72.9 3.6 ¡ 0.03 J103016.11-354626.3 1.8 -2.2 0.1 74.3 14.8 ¡ 0.04 J103137.59-374915.9 0.8 -5.8 0.5 62.7 10.1 0.64 0.08 J104044.98-255909.2 2.6 0.4 0.0 ABS ¡ 0.04 J105524.25-472611.7 A -0.8 lowSNR ¡ 0.14 J111103.54-313459.0 0.1 -4.9 0.5 77.7 6.7 ¡ 0.24 J111229.74-461610.1 0.7 giant ¡ 0.05 J111707.56-390951.3 1.0 -1.2 0.1 83.8 5.4 0.42 0.02 J113114.81-482628.0 0.1 -8.7 0.3 165.4 2.3 ¡ 0.50

149 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J121429.15-425814.8 0.7 -3.6 0.1 121.7 4.4 0.43 0.08 J122643.99-122918.3 0.2 -6.2 0.5 51.3 14.5 ¡ 0.40 J132112.77-285405.1 0.8 -1.6 0.2 giant? ¡ 0.14 J135913.33-292634.2 -1.7 0.3 0.0 ABS ¡ 0.07 J160828.45-060734.6 3.4 -4.6 0.2 86.6 20.7 0.20 0.01 Kast J000453.05-103220.0 4.4 -8.3 0.4 197.3 7.4 0.69 0.01 J001552.28-280749.4 0.2 -1.6 0.4 ¡ 0.21 J002101.27-134230.7 4.4 0.5 0.2 ¡ 0.06 J004826.70-184720.7 -1.7 -8.4 0.3 56.1 3.6 0.59 0.02 J005633.96-225545.4 -0.4 -2.1 0.4 ¡ 0.18 J010047.97+025029.0 -1.4 -5.6 168.0 ¡ 0.05 J010251.05+185653.7 4.4 -7.5 0.3 ¡ 0.18 J011440.20+205712.9 -1.2 -1.3 0.3 ¡ 0.09 J011846.91+125831.4 -1.4 -0.8 0.3 ¡ 0.06 J014156.94-123821.6 2.1 -1.2 0.3 ¡ 0.18 J015257.41+083326.3 2.6 -11.9 1.0 125.5 5.1 0.45 0.01 J015350.81-145950.6 1.6 -7.7 0.4 ¡ 0.21 J020302.74+221606.8 2.4 -1.1 0.3 ¡ 0.21 J022240.88+305515.4 3.5 -5.0 0.3 ¡ 0.24 J023005.14+284500.0 -0.9 0.1 0.3 ¡ 0.21 J023139.36+445638.1 4.3 -7.8 0.3 ¡ 0.18 J024552.65+052923.8 0.2 -3.0 0.3 ¡ 0.21 J030444.10+220320.8 -1.9 -9.5 0.2 74.9 8.1 0.71 0.03 J030824.14+234554.2 -0.2 -2.0 0.3 ¡ 0.21 J033235.82+284354.6 4.0 -7.1 0.3 ¡ 0.24 J035100.83+141339.2 2.3 -10.0 0.5 ¡ 0.36 J035733.95+244510.2 0.6 -1.7 0.2 ¡ 0.03 J043257.29+740659.3 1.8 -3.1 0.4 ¡ 0.24 J043939.24-050150.9 B -1.2 -4.0 J043939.24-050150.9 A -1.2 -4.0 J044349.19+742501.6 3.7 -3.5 0.3 ¡ 0.15 J044721.05+280852.5 3.7 -9.6 0.3 ¡ 0.12 J053328.01-425720.1 B 4.0 J055008.59+051153.2 -0.1 -1.7 0.4 ¡ 0.39

150 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J055041.58+430451.8 0.2 -2.4 0.3 ¡ 0.06 J055208.04+613436.6 -0.9 -0.7 0.3 ¡ 0.03 J065846.87+284258.9 1.8 0.0 0.3 ¡ 0.18 J071036.50+171322.6 -0.7 -1.6 0.4 ¡ 0.06 J072641.52+185034.0 2.9 -5.0 0.3 ¡ 0.15 J073138.47+455716.5 3.5 -7.3 0.4 ¡ 0.27 J080352.54+074346.7 1.5 -0.1 0.3 ¡ 0.15 J081443.62+465035.8 4.2 -9.1 0.3 ¡ 0.15 J083528.87+181219.9 2.3 -3.8 0.4 ¡ 0.27 J090227.87+584813.4 2.2 -4.0 0.3 ¡ 0.09 J092216.12+043423.3 0.4 -2.7 0.4 ¡ 0.09 J093212.63+335827.3 3.3 -4.7 0.5 ¡ 0.33 J100146.28+681204.1 0.8 -0.5 0.2 ¡ 0.06 J101543.44+660442.3 2.2 -3.9 0.4 ¡ 0.15 J102636.95+273838.4 -0.9 -2.2 0.4 ¡ 0.18 J103557.17+285330.8 1.1 -2.3 0.4 ¡ 0.12 J105515.87-033538.2 -0.4 -1.6 0.3 ¡ 0.03 J105524.25-472611.7 B lowSNR ¡ 0.14 J105711.36+054454.2 -1.4 -2.4 0.3 ¡ 0.06 J110119.22+525222.9 -1.6 -0.4 0.3 ¡ 0.06 J110335.71-302449.5 -1.4 -5.5 0.2 ¡ 0.09 J111309.15+300338.4 0.9 -0.6 0.3 ¡ 0.06 J112512.28-002438.2 -0.3 -2.1 0.3 ¡ 0.15 J112955.84+520213.2 2.3 -4.2 0.3 ¡ 0.09 J113105.57+542913.5 0.4 -3.2 0.3 ¡ 0.12 J113120.31+132140.0 2.4 -3.7 0.5 ¡ 0.30 J114728.37+664402.7 4.7 -8.4 0.4 ¡ 0.12 J115156.73+073125.7 1.9 -0.4 0.3 ¡ 0.15 J121153.04+124912.9 -0.8 -1.8 0.3 ¡ 0.09 J121341.59+323127.7 B -0.4 -0.6 0.05 J121341.59+323127.7 A -0.3 -0.9 0.3 ¡ 0.15 J121511.25-025457.1 3.9 0.0 ¡ 0.02 J133238.94+305905.8 4.3 -5.8 0.4 ¡ 0.21 J133509.40+503917.5 0.8 -4.5 0.4 ¡ 0.18 J133901.87-214128.0 0.5 -4.5 0.3 ¡ 0.15

151 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J134146.41+581519.2 0.5 -2.3 0.3 ¡ 0.21 J134907.28+082335.8 -1.5 -0.3 0.3 ¡ 0.06 J135511.38+665207.0 -2.0 1.2 0.2 ¡ 0.09 J140337.56-501047.9 3.5 -3.7 0.2 0.24 0.03 J141045.24+364149.8 0.7 -3.7 0.3 ¡ 0.24 J141332.23-145421.1 1.1 -8.0 0.4 ¡ 0.15 J141510.77-252012.0 -0.8 0.2 0.3 ¡ 0.09 J141842.36+475514.9 -0.7 -0.6 0.3 ¡ 0.09 J141903.13+645146.4 0.6 -6.8 0.4 ¡ 0.18 J143648.16+090856.5 3.7 -5.9 0.3 ¡ 0.21 J143713.21-340921.1 3.6 -7.8 0.4 ¡ 0.15 J145014.12-305100.6 -1.5 -1.0 0.2 ¡ 0.03 J145731.11-305325.0 0.1 -5.6 0.5 ¡ 0.12 J145949.90+244521.9 3.2 -4.9 0.3 ¡ 0.33 J150119.48-200002.1 1.3 -7.7 0.4 ¡ 0.27 J150230.94-224615.4 1.5 -4.8 0.5 ¡ 0.21 J150723.91+433353.6 3.5 -1.5 0.4 ¡ 0.33 J150836.69-294222.9 -0.2 -1.2 0.6 ¡ 0.33 J151212.18-255708.3 -0.6 -3.9 0.3 0.47 0.01 J152150.76-251412.1 3.0 -7.1 0.4 ¡ 0.18 J154435.17+042307.5 -0.7 -4.7 0.1 154.8 28.5 0.60 0.01 J154656.43+013650.8 0.3 -4.3 0.4 ¡ 0.12 J155046.47+305406.9 1.9 -5.9 0.4 ¡ 0.27 J155515.35+081327.9 -2.2 -0.7 1.0 0.07 0.01 J155759.01-025905.8 -2.1 -0.1 0.3 ¡ 0.06 J155947.24+440359.6 1.4 -2.9 0.3 ¡ 0.18 J162422.68+195922.0 -0.1 -1.1 0.3 ¡ 0.06 J163051.34+472643.8 4.4 -5.5 0.4 ¡ 0.33 J163632.90+635344.9 2.6 0.0 0.2 ¡ 0.21 J164539.37+702400.1 7.1 -2.3 0.3 ¡ 0.21 J171117.68+124540.4 0.0 -4.3 0.3 ¡ 0.18 J171441.70-220948.8 2.4 -5.7 0.2 64.9 1.7 0.55 0.02 J172309.67-095126.2 -0.5 -1.6 0.3 ¡ 0.09 J172454.26+502633.0 -0.1 0.4 0.2 ¡ 0.09 J172951.38+093336.9 4.2 -4.9 0.3 ¡ 0.24

152 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J173623.80+061853.0 -2.2 0.6 0.5 ¡ 0.09 J174426.59-074925.3 -2.7 1.6 0.2 ¡ 0.06 J174439.27+483147.1 -2.2 0.0 0.6 ¡ 0.06 J174811.33-030510.2 1.7 -4.0 0.3 ¡ 0.24 J180658.07+161037.9 -0.8 -5.5 0.2 201.4 22.0 0.58 0.00 J180733.00+613153.6 -0.2 -3.3 0.3 ¡ 0.03 J184536.02-205910.8 -1.1 -0.7 0.2 ¡ 0.09 J191235.95+630904.7 2.0 -3.0 0.3 ¡ 0.15 J192240.05-061208.0 2.5 -4.6 0.4 ¡ 0.18 J192242.80-051553.8 1.1 -6.2 0.4 ¡ 0.27 J193711.26-040126.7 -1.9 0.7 0.2 ¡ 0.06 J194714.54+640237.9 1.4 -1.8 0.3 ¡ 0.21 J194816.54-272032.3 2.2 -4.3 0.3 ¡ 0.09 J195315.67+745948.9 -0.1 -0.3 0.3 ¡ 0.09 J195340.71+502458.2 2.2 -6.9 0.4 ¡ 0.27 J200423.80-270835.8 -0.9 -1.6 0.4 ¡ 0.15 J201931.84-081754.3 0.4 -1.7 0.3 ¡ 0.12 J203023.10+711419.8 -1.8 -1.5 208.0 ¡ 0.08 J204406.36-153042.3 0.7 0.0 0.4 ¡ 0.24 J204714.59+110442.2 0.2 -3.1 0.2 ¡ 0.12 J213507.39+260719.4 -0.6 0.2 0.3 ¡ 0.09 J213644.54+670007.1 -2.5 1.3 0.2 ¡ 0.03 J214101.48+723026.7 1.2 -2.8 0.3 ¡ 0.06 J214126.66+204310.5 0.9 -4.8 0.4 ¡ 0.30 J214414.73+321822.3 -0.8 0.3 ¡ 0.02 J220306.98-253826.6 4.8 -7.3 0.4 ¡ 0.12 J221842.70+332113.5 2.6 -2.4 0.2 ¡ 0.12 J230740.98+080359.7 0.1 -0.5 0.3 ¡ 0.09 J231021.75+685943.6 -0.8 0.0 0.2 ¡ 0.24 J231211.37+150329.7 0.1 -2.9 0.3 ¡ 0.27 J232151.23+005037.3 -1.3 0.4 0.3 ¡ 0.21 J232904.42+032910.8 5.1 -7.6 0.4 ¡ 0.15 J234347.83-125252.1 2.3 -2.2 0.4 ¡ 0.15 J234926.23+185912.4 -0.1 -1.1 0.3 ¡ 0.06 J235250.70-160109.7 4.0 -6.3 0.5 ¡ 0.24

153 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

duPont B&C 832 J001555.65-613752.2 3.6 -5.8 0.3 ¡ 0.33 J012332.89-411311.4 4.4 -5.9 0.5 ¡ 0.27 J012532.11-664602.6 4.3 -7.8 0.4 ¡ 0.21 J014431.99-460432.1 5.3 -23.4 4.1 ¡ 1.11 J020305.46-590146.6 2.4 -4.1 1.0 ¡ 1.32 J033431.66-350103.3 4.1 -11.5 0.5 ¡ 0.27 J034116.16-225244.0 0.6 -2.8 0.3 ¡ 0.09 J035829.67-432517.2 3.5 -8.5 0.3 ¡ 0.12 J042500.91-634309.8 3.4 -6.0 0.3 ¡ 0.21 J043213.46-285754.8 4.1 -10.6 1.0 ¡ 0.63 J044154.44+091953.1 4.5 -9.2 0.4 ¡ 0.50 J044530.77-285034.8 3.7 -5.9 0.3 ¡ 0.27 J045420.20-400009.9 4.3 -4.3 0.2 ¡ 0.15 J050333.31-382135.6 4.2 -8.4 0.3 ¡ 0.27 J051255.82-212438.7 4.0 -9.8 0.5 ¡ 0.36 J051650.66+022713.0 4.6 -11.2 0.5 ¡ 0.24 J052535.85-250230.2 1.3 -2.6 0.3 ¡ 0.15 J054223.86-275803.3 3.9 -8.0 0.3 ¡ 0.36 J054719.52-335611.2 3.6 -3.2 0.2 ¡ 0.36 J055941.10-231909.4 3.9 -10.5 0.3 ¡ 0.27 J103952.70-353402.5 0.7 -2.3 0.2 ¡ 0.12 J110551.56-780520.7 3.4 -0.2 0.2 ¡ 1.00 J111052.06-725513.0 4.2 -9.9 0.9 ¡ 1.00 J114623.01-523851.8 4.6 -8.4 0.5 ¡ 0.42 J115438.73-503826.4 3.8 -7.7 0.3 ¡ 0.18 J120929.80-750540.2 3.2 -6.9 0.3 ¡ 0.18 J121558.37-753715.7 5.0 -9.4 0.6 ¡ 0.39 J123234.07-414257.5 4.7 -10.7 0.6 ¡ 0.54 J124612.32-384013.5 3.8 -6.2 0.4 ¡ 0.18 J130501.18-331348.7 2.0 -0.7 0.2 ¡ 0.12 J130618.16-342857.0 4.7 -8.2 0.4 0.42 0.07 J130650.27-460956.1 -1.0 -1.4 0.2 0.08 0.02 J130731.03-173259.9 4.0 -7.9 0.5 ¡ 0.24 J131129.00-425241.9 1.4 -3.4 0.2 0.27 0.05

154 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J143517.80-342250.4 1.3 -2.2 0.2 ¡ 0.09 J143753.36-343917.8 3.9 -3.8 0.3 ¡ 0.21 J150601.66-240915.0 4.2 -10.8 2.3 ¡ 1.11 J150820.15-282916.6 4.2 -6.6 0.4 ¡ 0.33 J151242.69-295148.0 1.8 -3.7 0.3 0.29 0.07 J151411.31-253244.1 -1.4 -0.6 0.2 0.21 0.04 J153248.80-230812.4 -0.5 -2.2 0.2 0.26 0.03 J154227.07-042717.1 -0.5 -1.3 0.2 0.26 0.08 J154349.42-364838.7 3.5 -8.6 0.4 0.31 0.06 J160116.86-345502.7 5.5 -2.0 0.5 ¡ 0.51 J160954.85-305858.4 -0.1 -0.9 0.2 0.19 0.05 J162602.80-155954.5 -2.6 3.5 0.2 ¡ 0.03 J170415.15-175552.5 -2.8 1.4 0.0 0.12 0.01 J171426.13-214845.0 -2.4 1.9 0.1 ¡ 0.15 J172130.71-150617.8 4.4 -5.9 0.5 ¡ 0.36 J172131.73-084212.3 2.3 -5.0 0.3 ¡ 0.27 J172615.23-031131.9 4.9 -13.4 0.7 ¡ 0.36 J173826.94-055628.0 -2.6 2.4 0.2 ¡ 0.15 J174203.85-032340.4 4.0 -7.6 0.5 ¡ 0.30 J174536.31-063215.3 -3.1 3.1 0.2 ¡ 0.15 J174735.31-033644.4 -3.1 2.2 0.2 ¡ 0.15 J174936.01-010808.7 4.3 -5.6 0.5 ¡ 0.27 J175022.27-094457.8 -2.8 1.4 0.1 ¡ 0.12 J180508.62-015058.5 -2.6 3.0 0.2 ¡ 0.12 J180554.92-570431.3 3.5 -6.7 0.3 ¡ 0.24 J180929.71-543054.2 5.2 -8.9 0.5 0.24 0.08 J181059.88-012322.4 -2.8 ¡ 0.33 J182054.20+022101.5 -2.4 2.3 0.2 ¡ 0.06 J182905.79+002232.2 -2.5 3.2 0.3 ¡ 0.06 J184204.85-555413.3 3.6 -5.9 0.3 ¡ 0.24 J191019.82-160534.8 1.8 -1.0 0.1 ¡ 0.09 J191036.02-650825.5 2.7 -4.4 0.3 ¡ 0.27 J191500.80-284759.1 4.7 -11.9 0.9 0.98 0.21 J191629.61-270707.2 3.5 -6.1 0.4 ¡ 0.18 J192434.97-344240.0 4.3 -12.2 0.6 ¡ 0.14

155 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J192600.77-533127.6 A 4.5 -1.9 J192600.77-533127.6 B 4.5 -1.9 J194309.89-601657.8 4.3 -9.2 0.4 ¡ 0.21 J194444.21-435903.0 4.9 -6.8 0.5 ¡ 0.54 J194834.58-760546.9 -0.2 -1.2 0.3 ¡ 0.15 J195331.72-070700.5 4.3 -4.6 0.4 ¡ 0.33 J195602.95-320719.3 4.0 -6.1 0.3 ¡ 0.33 J200137.19-331314.5 0.8 -3.8 0.4 100.6 0.6 0.13 0.02 J200409.19-672511.7 3.0 -5.2 0.2 ¡ 0.12 J200556.44-321659.7 1.0 -2.5 0.2 ¡ 0.09 J200837.87-254526.2 4.8 -11.4 0.4 0.35 0.09 J200853.72-351949.3 3.9 -6.9 0.3 ¡ 0.36 J201000.06-280141.6 3.9 -13.7 0.6 ¡ 0.08 J202716.80-254022.8 0.7 -1.1 0.2 ¡ 0.09 J203301.99-490312.6 5.0 -7.6 0.4 ¡ 0.39 J203337.63-255652.8 5.1 -12.3 0.3 74.1 2.0 0.52 0.02 J205131.01-154857.6 4.9 -42.1 3.8 ¡ 0.72 J205832.99-482033.8 4.3 -10.5 1.2 ¡ 0.60 J210131.13-224640.9 0.4 0.1 0.2 ¡ 0.12 J211031.49-271058.1 A 5.1 -30.5 2.9 78.9 3.7 0.48 0.01 J212007.84-164548.2 4.4 -6.6 0.5 60.5 3.7 ¡ 0.20 J212128.89-665507.1 -0.4 ¡ 0.06 J212230.56-333855.2 5.0 -18.3 0.5 ¡ 0.24 J212750.60-684103.9 4.7 -9.4 0.8 ¡ 0.10 J213520.34-142917.9 3.8 -6.2 0.3 ¡ 0.39 J213835.44-505111.0 4.6 -7.1 0.4 ¡ 0.15 J213847.58+050451.4 4.4 -6.3 0.6 ¡ 0.48 J214905.04-641304.8 4.9 -7.7 0.5 ¡ 0.24 J215128.95-023814.9 2.8 -3.3 0.3 ¡ 0.24 J215717.71-341834.0 3.9 -1.6 0.3 ¡ 0.27 J221217.17-681921.1 3.4 ¡ 0.39 J221559.00-014733.0 2.5 0.2 0.1 ¡ 0.12 J221833.85-170253.2 -0.1 0.2 0.2 ¡ 0.18 J222024.21-072734.5 2.1 -3.9 0.2 ¡ 0.27 J224111.08-684141.8 4.2 -9.9 0.9 ¡ 1.17

156 Table 4.6 (cont’d)

WISE Designation Comp2 SpT2 Hα EW err Hα 10-% err lim Li EW err A˚ A˚ km/s km/s A˚ A˚

J224221.02-410357.2 4.1 -5.3 0.4 ¡ 0.45 J224448.45-665003.9 5.2 -10.2 0.4 ¡ 0.48 J224500.20-331527.2 4.4 -8.1 0.2 ¡ 0.15 J225934.89-070447.1 3.2 -5.4 0.9 ¡ 1.05 J230327.73-211146.2 3.4 -5.6 0.4 ¡ 0.30 J232008.15-634334.9 4.5 -5.7 0.7 ¡ 0.66 J232917.64-675000.6 4.4 -7.4 0.4 ¡ 0.24 J232959.47+022834.0 4.1 -5.6 0.5 ¡ 0.36 J233647.87+001740.1 0.3 -0.1 0.2 ¡ 0.12 J234243.45-622457.1 5.0 -11.2 0.7 ¡ 0.39 J234326.88-344658.5 1.4 -2.3 0.2 ¡ 0.12 J234857.35+100929.3 -0.1 -0.1 0.2 ¡ 0.18 duPont B&C 600 J060329.60-260804.7 -1.9 -1.7 0.2 71.2 0.7 ¡ 0.07 J061740.43-475957.2 3.8 -10.9 0.4 ¡ 0.15 J062130.52-410559.1 3.8 -10.9 0.4 ¡ 0.15 J070657.72-535345.9 -1.1 -2.4 0.5 ¡ 0.27 J075233.22-643630.5 -0.9 -2.0 0.2 0.26 0.03 J104008.36-384352.1 0.3 -4.1 0.3 ¡ 0.06 J122813.57-431638.9 4.5 -6.0 0.4 ¡ 0.27 J123704.99-441919.5 5.8 -10.0 1.1 ¡ 0.39

Note. — 1 Component of binary system. In some cases, the binary system was widely separated in velocity space, and separate measurements were able to be made on the two components. In other cases, both components are blended together (in this case, we indicated “SB” in the component column). 2 SpT beginning with M (negative SpTs signify K-type stars). Spectral types are determined from TiO index whenever possible, then by CaH3 index, then by J-W2 colors (see Table 4.9).

157 Table 4.7. Photometry

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J000453.05-103220.0 17.08 15.47 10.53 9.96 9.68 37.0 12.63 6.84 11.39 1.25 0.38 0 J001527.62-641455.2 14.37 12.9 9.33 8.69 8.44 48.0 9.49 5.03 11.46 1.09 0.21 0.2 J001536.79-294601.2 15.84 14.27 9.78 9.25 8.90 30.2 11.87 6.5 11.58 1.22 0.3 0.46 J001552.28-280749.4 15.24 13.67 10.09 9.44 9.20 48.2 10.25 5.78 11.66 1.15 0.26 0.62 J001555.65-613752.2 16.2 14.71 10.59 10 9.77 53.0 11.09 6.15 11.36 1.17 0.28 0.62 J001709.96+185711.8 N 12.25 11.09 9.1 8.5 8.42 43.5 7.90 5.23 10.59 1.05 -0.18 -0.29 J001709.96+185711.8 S 12.25 11.09 9.1 8.5 8.42 43.5 7.90 5.23 10.59 1.05 -0.18 -0.29 J001723.69-664512.4 14.01 12.49 8.56 7.93 7.70 44.0 9.27 4.48 11.49 1.08 0.2 0.27 158 J002101.27-134230.7 11.37 9.58 8.96 8.68 22.9 9.57 6.88 11.69 1.26 -0.05 0.06 J003057.97-655006.4 15.88 14.27 9.82 9.24 8.95 32.3 11.72 6.4 11.46 1.22 0.32 J003234.86+072926.4 14.19 12.82 8.4 7.79 7.51 44.5 9.58 4.27 11.42 1.18 0.22 0.44 J003903.51+133016.0 17.44 15.71 10.94 10.37 10.06 33.6 13.08 7.43 11.4 1.3 0.28 J004210.98-425254.8 14.84 13.36 9.62 8.98 8.76 49.1 9.90 5.3 11.27 1.08 0.2 -0.3 J004524.84-775207.5 14.24 12.79 9.53 8.88 8.66 24.5 10.84 6.71 11.6 1.15 0.2 0.69 J004528.25-513734.4 B 13.45 11.97 8.48 7.87 7.62 43.5 8.78 4.43 12.44 1.05 0.18 0.19 J004528.25-513734.4 A 13.45 11.97 8.48 7.87 7.62 43.4 8.78 4.43 12.44 1.05 0.18 0.19 J004826.70-184720.7 10.75 10.14 9.86 59.5 5.99 12.1 1.25 0.3 J005633.96-225545.4 15.55 14.1 10.77 10.13 9.91 83.3 9.50 5.31 11.69 1.08 0.22 1.22 J010047.97+025029.0 16.25 14.61 10.32 9.67 9.39 65.0 10.55 5.33 10.86 1.19 0.27 1.32 J010126.59+463832.6 13.04 11.99 9.85 9.22 9.06 74.4 7.63 4.7 9.85 0.88 0.11 0.29 J010243.86-623534.8 15.6 14.04 9.64 9.04 8.80 46.0 10.73 5.49 12.11 1.21 0.32 0.42 J010251.05+185653.7 15.58 14.08 9.51 8.92 8.67 57.5 10.28 4.87 11.6 1.19 0.3 0.51 J010629.32-122518.4 16.04 14.51 10.5 9.84 9.64 64.5 10.46 5.59 11.3 1.13 0.29 J010711.99-193536.4 12.92 11.46 8.15 7.47 7.25 67.5 7.31 3.1 11.26 1.03 0.1 0.15 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J011440.20+205712.9 13.91 12.56 9.86 9.25 9.06 61.1 8.63 5.13 11.12 1.02 0.08 -0.05 J011846.91+125831.4 13.12 11.96 9.52 8.94 8.73 63.0 7.96 4.73 10.78 0.9 0.1 0.07 J012118.22-543425.1 12.49 11.2 8.62 7.97 7.81 49.5 7.73 4.34 12.25 0.96 0.05 0.2 J012245.24-631845.0 15.61 14.07 9.83 9.21 8.98 44.0 10.85 5.76 11.23 1.16 0.3 0.52 J012332.89-411311.4 17.15 15.55 10.8 10.19 9.92 40.6 12.51 6.88 12.25 1.28 0.34 1.17 J012532.11-664602.6 17.38 15.6 10.95 10.42 10.11 47.0 12.24 6.75 11.33 1.24 0.32 J013110.69-760947.7 15.85 14.28 10.47 9.85 9.62 59.5 10.41 5.75 11.58 1.1 0.23 0.14 J014156.94-123821.6 14.96 13.37 9.85 9.23 8.99 53.1 9.74 5.36 12.03 1.1 0.22 -0.32

159 J014431.99-460432.1 19.3 11.88 11.3 10.98 39.4 8 12.38 1.4 0.37 J015057.01-584403.4 15.08 13.54 9.54 8.87 8.64 45.5 10.25 5.35 11.16 1.12 0.26 0.16 J015257.41+083326.3 15.64 14.06 9.24 8.64 8.36 49.0 10.61 4.91 11.7 1.23 0.33 0.51 J015350.81-145950.6 13.49 12.01 7.94 7.3 7.07 40.6 8.97 4.03 11.28 1.21 0.14 0.21 J015455.24-295746.0 16.05 14.62 11.77 11.09 10.81 46.0 11.31 7.5 11.2 1.32 0.14 J020012.84-084052.4 13.87 12.44 8.77 8.14 7.87 55.7 8.71 4.14 11.23 1.09 0.19 0.24 J020302.74+221606.8 15.47 13.96 10.45 9.82 9.55 40.5 10.92 6.51 12.36 1.23 0.21 0.38 J020305.46-590146.6 16.47 13 12.43 12.13 38.0 13.57 9.23 10.82 1.31 0.11 J020805.55-474633.7 14.75 13.31 10.41 9.79 9.57 78.8 8.83 5.09 12.49 1.01 0.15 J021258.28-585118.3 14.41 12.93 9.33 8.65 8.44 37.3 10.07 5.58 10.92 1.13 0.2 0.32 J021330.24-465450.3 15.29 13.85 9.49 8.86 8.60 29.9 11.47 6.22 10.76 1.2 0.25 0.29 J021935.52-455106.2 W 17.3 J021935.52-455106.2 E 14.79 13.43 10.84 10.29 10.10 24.5 11.48 8.15 10.74 1.52 -0.04 0.41 J022240.88+305515.4 15.69 14.15 9.92 9.33 9.06 43.5 10.96 5.87 11.79 1.18 0.27 0.68 J022424.69-703321.2 16.66 15 10.37 9.75 9.49 35.8 12.23 6.72 11.47 1.24 0.36 0.63 J023005.14+284500.0 15.11 13.65 10.57 9.99 9.81 67.9 9.49 5.65 12.45 1.13 0.12 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J023139.36+445638.1 14.27 9.97 9.4 9.13 41.1 11.20 6.06 11.47 1.18 0.3 0.54 J024552.65+052923.8 15.11 13.6 10.08 9.38 9.17 59.0 9.75 5.32 12.19 1.15 0.15 0.92 J024746.49-580427.4 14.43 13 9.36 8.67 8.45 43.5 9.81 5.26 11.28 1.13 0.21 0.24 J024852.67-340424.9 15.18 13.63 9.31 8.63 8.40 44.5 10.39 5.16 10.84 1.26 0.28 0.48 J025154.17+222728.9 14.84 13.28 8.92 8.32 8.07 28.0 11.04 5.83 11.18 1.15 0.3 0.71 J025913.40+203452.6 13.81 12.36 9.74 9.34 9.14 83.8 7.74 4.52 11.42 0.82 0 0.38 J030002.98+550652.4 14.62 13.17 9.95 9.32 9.08 65.9 9.08 4.99 11.37 0.97 0.22 J030251.62-191150.0 10.54 9.98 9.68 42.5 6.54 11.62 1.27 0.36 0.7

160 J030444.10+220320.8 17.16 15.56 10.49 9.93 9.66 59.5 11.69 5.79 11.84 1.26 0.33 J030824.14+234554.2 14.62 13.12 9.71 9.06 8.85 50.9 9.59 5.32 11.37 1.08 0.19 J031650.45-350937.9 13.27 9.17 8.54 8.32 24.0 11.37 6.42 10.73 1.19 0.25 0.43 J032047.66-504133.0 14.42 12.96 9.41 8.79 8.56 44.6 9.71 5.31 12.2 1.08 0.18 0.58 J033235.82+284354.6 15.42 13.88 9.36 8.76 8.47 42.5 10.74 5.33 12.45 1.22 0.28 0.1 J033431.66-350103.3 16.78 15.21 10.73 10.1 9.87 90.5 10.43 5.09 10.69 1.16 0.32 1.08 J033640.91+032918.3 15.52 13.94 9.3 8.68 8.44 20.0 12.43 6.93 11.65 1.25 0.3 0.29 J034115.60-225307.8 14.36 12.94 9.91 9.27 9.02 66.5 8.83 4.91 10.97 1.02 0.18 -0.23 J034116.16-225244.0 14.6 13.18 9.98 9.3 9.11 69.0 8.99 4.92 10.7 1.04 0.18 0.06 J034236.95+221230.2 17.2 17.2 11.23 10.66 10.32 36.5 14.39 7.51 12.33 1.39 0.53 J034444.80+404150.4 14.95 13.44 10.03 9.36 9.13 55.8 9.71 5.4 10.63 1.1 0.17 0.03 J035100.83+141339.2 15.51 13.96 9.44 8.75 8.58 45.5 10.67 5.29 11.79 1.26 0.3 J035134.51+072224.5 16.55 14.86 10.75 10.12 9.85 21.1 13.24 8.23 10.86 1.55 0.19 0.4 J035223.52-282619.6 14.63 13.22 9.85 9.22 8.98 49.5 9.75 5.51 11.05 1.06 0.17 0.17 J035345.92-425018.0 15.57 14.1 10.55 9.96 9.75 91.5 9.29 4.94 11.79 1.08 0.2 0.37 J035716.56-271245.5 11.56 10.29 7.65 7.01 6.79 24.1 8.38 4.88 11.67 0.94 0.08 0.18 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J035733.95+244510.2 14.12 12.62 9.59 8.91 8.73 70.5 8.38 4.49 11.01 0.96 0.1 0.19 J035829.67-432517.2 15.94 14.42 10.26 9.6 9.41 78.0 9.96 4.95 11.03 1.17 0.27 0.24 J040539.68-401410.5 16 14.31 9.82 9.26 8.98 47.5 10.93 5.6 11.71 1.23 0.32 0.66 J040649.38-450936.3 15.45 13.87 9.95 9.32 9.08 67.0 9.74 4.95 11.42 1.15 0.25 0.39 J040711.50-291834.3 13.41 12.06 9.06 8.35 8.19 71.5 7.79 3.92 10.9 1 0.11 0.12 J040743.83-682511.0 16.11 14.6 10.41 9.78 9.52 54.6 10.91 5.83 10.15 1.16 0.29 0.37 J040809.80-611904.3 13.92 12.51 9.81 9.15 8.93 58.0 8.69 5.11 12.47 0.99 0.11 0.2 J040827.01-784446.7 13.58 12.2 9.28 8.59 8.40 54.5 8.52 4.72 10.64 1.02 0.13 0.2

161 J041050.04-023954.4 14.58 13.12 10.15 9.51 9.33 55.0 9.42 5.63 10.73 0.93 0.17 0.7 J041255.78-141859.2 14.22 12.76 9.51 8.83 8.62 54.0 9.10 4.96 11.23 1.09 0.15 0.07 J041336.14-441332.4 16.79 15.18 10.77 10.19 9.91 53.6 11.53 6.26 11.34 1.21 0.35 0.54 J041525.58-212214.5 16.79 15.25 11.13 10.5 10.32 34.0 12.59 7.66 12.05 1.33 0.23 J041749.66+001145.4 13.26 12.17 9.6 9.01 8.82 66.7 8.05 4.7 10.13 0.88 0.13 -0.21 J041807.76+030826.0 14.27 12.97 10.29 9.63 9.44 42.0 9.85 6.32 10.78 1.02 0.15 J042139.19-723355.7 15.2 13.7 9.87 9.25 8.99 54.0 10.04 5.33 11.89 1.09 0.23 0.01 J042500.91-634309.8 16.54 14.85 10.78 10.21 9.90 36.5 12.04 7.09 11.14 1.3 0.28 0.34 J042736.03-231658.8 16.98 15.37 10.47 9.86 9.58 43.5 12.18 6.39 11.64 1.28 0.46 1.31 J042739.33+171844.2 15.58 14.11 10.65 9.97 9.74 87.0 9.41 5.04 11.84 1.22 0.1 J043213.46-285754.8 15.79 11.91 11.32 11.03 35.0 13.07 8.31 10.99 1.22 0.34 J043257.29+740659.3 13.37 11.85 8.25 7.61 7.39 17.9 10.59 6.13 11.55 1.19 0.14 0.27 J043657.44-161306.7 14.55 13.13 9.12 8.47 8.26 54.4 9.45 4.58 10.61 1.15 0.23 0.41 J043726.87+185126.2 12.89 11.66 9.42 8.56 8.67 79.5 7.16 4.17 10.02 0.87 0.06 J043923.21+333149.0 15.81 14.34 9.92 9.28 9.05 89.5 9.58 4.29 10.76 1.16 0.31 0.92 J043939.24-050150.9 B 12.57 11.43 8.85 8.29 8.04 48.5 8.00 4.61 9.9 0.85 0.16 0.08 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J043939.24-050150.9 A 12.57 11.43 8.85 8.29 8.04 48.5 8.00 4.61 9.9 0.85 0.16 0.08 J044036.23-380140.8 12.03 10.41 7.69 6.95 6.73 36.0 7.63 3.95 12.21 1.03 0.16 0.27 J044120.81-194735.6 13.43 12.19 9.64 9.02 8.85 85.5 7.53 4.19 10.69 0.97 0.13 0.12 J044154.44+091953.1 15.76 11.45 10.84 10.58 64.5 11.71 6.53 11.21 1.21 0.29 1.86 J044336.19-003401.8 16.69 15.12 10.61 10.01 9.77 64.0 11.09 5.74 12.39 1.22 0.26 0.88 J044349.19+742501.6 15.89 14.42 10.78 10.1 9.89 56.2 10.67 6.14 11.57 1.19 0.13 J044356.87+372302.7 14.79 13.32 9.71 9.03 8.80 68.5 9.14 4.62 11.29 1.16 0.31 1.1 J044455.71+193605.3 14.19 12.9 10.24 9.6 9.42 76.5 8.48 5 10.89 0.98 0.13 0.52

162 J044530.77-285034.8 16.71 15.25 11.04 10.4 10.17 36.5 12.44 7.36 10.64 1.16 0.33 J044700.46-513440.4 15.27 13.84 10.06 9.43 9.21 52.0 10.26 5.63 11.9 1.09 0.24 -0.02 J044721.05+280852.5 15.51 13.97 9.73 9.12 8.87 63.5 9.96 4.86 11.25 1.16 0.28 0.64 J044800.86+143957.7 AB 17.65 16.65 11.68 11.06 10.73 70.5 12.41 6.49 10.39 1.91 2.24 4.04 J044802.59+143951.1 A 11.68 11.07 10.68 J045114.41-601830.5 14.69 13.25 10.38 9.73 9.52 97.0 8.32 4.59 11.13 0.98 0.13 0.22 J045420.20-400009.9 17.28 15.79 11.42 10.86 10.59 30.5 13.37 8.17 11.33 1.19 0.23 J045651.47-311542.7 10.53 9.3 6.98 6.34 6.16 18.2 8.00 4.86 12.09 0.94 0.07 0.14 J050333.31-382135.6 17 15.39 10.86 10.29 10.01 28.0 13.15 7.77 11.54 1.19 0.32 J050610.44-582828.5 14.6 13.12 9.65 9.02 8.77 51.5 9.56 5.21 11.68 1.12 0.19 0.45 J050827.31-210144.3 15.94 14.67 9.72 9.11 8.83 16.4 13.60 7.76 11.33 1.4 0.36 0.2 J051026.38-325307.4 15.76 14.18 10.71 10.01 9.70 25.5 12.15 7.67 11.37 1.54 0.23 0.27 J051255.82-212438.7 14.84 11.24 10.63 10.36 34.0 12.18 7.7 11.42 1.16 0.26 J051310.57-303147.7 12.3 11.2 9 8.38 8.18 47.6 7.81 4.79 9.95 0.92 0.13 0.02 J051403.20-251703.8 15.65 14.13 10.24 9.59 9.37 68.0 9.97 5.21 10.39 1.13 0.26 0.63 J051650.66+022713.0 17.17 15.55 10.74 10.15 9.87 47.5 12.17 6.49 11.71 1.21 0.26 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J051803.00-375721.2 16.02 14.47 10.75 10.12 9.87 81.9 9.90 5.3 10.4 1.08 0.23 0.86 J052419.14-160115.5 15.17 13.57 8.67 8.13 7.81 33.0 10.98 5.22 11.19 1.25 0.35 0.44 J052535.85-250230.2 15.52 14.09 10.93 10.3 10.11 30.0 11.70 7.72 10.94 1.19 0.08 J052944.69-323914.1 15.37 13.74 9.22 8.61 8.32 28.0 11.50 6.08 11.78 1.28 0.33 0.24 J053100.27+231218.3 16.8 15.15 10.58 9.94 9.69 101.5 10.12 4.66 11.39 1.24 0.26 J053311.32-291419.9 16.19 14.56 10.22 9.61 9.32 61.0 10.63 5.39 10.59 1.22 0.31 0.28 J053328.01-425720.1 A 14.19 12.56 8 7.4 7.12 13.5 11.91 6.47 11.92 1.22 0.3 0.48 J053328.01-425720.1 B 14.19 12.56 8 7.4 7.12 13.5 11.91 6.46 11.92 1.22 0.3 0.48

163 J053747.56-424030.8 17.38 15.53 10.24 9.67 9.35 26.5 13.41 7.23 11.63 1.3 0.43 0.65 J053925.08-424521.0 14.53 13.02 9.45 8.8 8.60 79.4 8.52 4.1 10.78 1.08 0.18 0.33 J054223.86-275803.3 17.22 15.83 11.41 10.8 10.55 31.5 13.34 8.06 10.96 1.17 0.32 J054433.76-200515.5 14.95 13.54 10.2 9.51 9.31 30.5 11.12 6.89 10.86 1.1 0.21 J054448.20-265047.4 13.95 12.69 10.13 9.55 9.35 31.0 10.23 6.89 11.4 0.88 0.07 J054709.88-525626.1 14.34 13.09 10.39 9.74 9.57 37.5 10.22 6.7 10.44 0.95 0.1 0.42 J054719.52-335611.2 17.21 15.62 11.31 10.72 10.48 22.0 13.91 8.77 11.38 1.16 0.31 J055008.59+051153.2 14.06 12.61 9.37 8.7 8.47 62.0 8.65 4.51 11.29 1.05 0.12 -0.57 J055041.58+430451.8 13.67 12.31 9.41 8.77 8.58 51.8 8.74 5.01 10.61 0.98 0.13 0.27 J055208.04+613436.6 13.1 11.98 9.33 8.73 8.56 58.3 8.15 4.73 11.47 0.9 0.13 0.17 J055941.10-231909.4 16.37 14.76 10.41 9.78 9.53 29.0 12.45 7.22 11.03 1.18 0.25 0.29 J060156.10-164859.9 B 16.16 14.7 10.66 10.06 9.81 78.6 10.22 5.33 10.68 1.09 0.37 1.54 J060156.10-164859.9 A 16.16 14.7 10.66 10.06 9.81 78.6 10.22 5.33 10.68 1.09 0.37 1.54 J060224.56-163450.0 13.51 12.1 8.99 8.38 8.17 45.2 8.82 4.89 11.18 0.95 0.16 0.25 J060329.60-260804.7 16.05 14.51 10.54 10.02 9.72 57.3 10.72 5.93 12.43 1.17 0.31 1.06 J061313.30-274205.6 13.77 12.26 8 7.43 7.15 31.0 9.80 4.69 11.62 1.15 0.28 0.37 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J061740.43-475957.2 14.12 10.44 9.85 9.61 78.5 9.65 5.14 10.3 1.15 0.3 0.36 J061851.01-383154.9 15.37 13.97 11.11 10.38 10.38 24.5 12.02 8.43 10.57 1.23 0.08 0.21 J062047.17-361948.2 13.46 12.29 10 9.37 9.20 75.2 7.91 4.82 9.6 0.92 0.1 0.54 J062130.52-410559.1 16.7 15.08 11.12 10.53 10.27 25.0 13.09 8.28 11.47 1.44 0.26 J062407.62+310034.4 9.33 8.67 8.45 27.1 6.29 10.17 1.21 0.19 0.12 J063001.84-192336.6 16.43 14.71 10.09 9.53 9.25 33.3 12.10 6.64 12.15 1.24 0.31 -0.1 J065846.87+284258.9 13.63 12.15 8.64 8 7.78 33.0 9.56 5.19 10.81 1.06 0.17 0.09 J070657.72-535345.9 12.78 11.42 8.54 7.9 7.67 54.5 7.74 3.99 11.1 0.97 0.11 0.2

164 J071036.50+171322.6 13.73 12.45 9.72 9.08 8.90 63.4 8.44 4.89 10.86 0.95 0.09 J072641.52+185034.0 15.35 13.83 9.98 9.4 9.13 57.0 10.05 5.35 10.97 1.09 0.26 0.29 J072821.16+334511.6 9.28 8.66 8.38 56.5 4.62 11.03 1.17 0.25 0.34 J072911.26-821214.3 14.35 12.89 9.75 9.13 8.89 61.5 8.95 4.95 11.72 1.03 0.17 0.37 J073138.47+455716.5 15.39 13.85 9.78 9.2 8.92 43.2 10.67 5.74 11.03 1.15 0.28 0.57 J075233.22-643630.5 13.51 12.32 9.7 9.11 8.87 56.6 8.56 5.11 10.64 1.02 0.07 -0.05 J075808.25-043647.5 15.2 13.66 10.17 9.56 9.31 62.4 9.68 5.33 12.24 1.09 0.29 0.92 J075830.92+153013.4 B 15.9 14.42 9.97 9.38 9.10 20.2 12.89 7.57 11.08 1.34 0.2 0.69 J075830.92+153013.4 A 15.9 14.42 9.97 9.38 9.10 20.2 12.89 7.57 11.08 1.34 0.2 0.69 J080352.54+074346.7 14.87 13.35 10.06 9.36 9.19 59.7 9.47 5.31 12.43 1.08 0.14 0.92 J080636.05-744424.6 15.08 13.52 10.03 9.36 9.13 68.0 9.36 4.97 11.99 1.08 0.2 0.41 J081443.62+465035.8 16.55 14.83 10.52 9.89 9.63 34.6 12.13 6.93 10.88 1.26 0.27 0.57 J081738.97-824328.8 13.11 11.85 7.47 6.84 6.59 28.5 9.58 4.32 11.09 1.18 0.26 0.48 J082105.04-090853.8 B 13.95 12.51 9.44 8.72 8.52 45.1 9.24 5.25 11.65 1.06 0.15 -0.28 J082105.04-090853.8 A 13.95 12.51 9.44 8.72 8.52 78.3 8.04 4.05 11.65 1.06 0.15 -0.28 J082558.91+034019.5 15.74 14.1 10.01 9.43 9.12 21.1 12.48 7.5 11.41 1.32 0.22 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J083528.87+181219.9 15.48 13.98 10.32 9.7 9.48 68.2 9.81 5.31 10.4 1.08 0.33 J090227.87+584813.4 14.59 13.3 9.85 9.23 8.95 48.2 9.88 5.53 10.8 1.12 0.21 0.5 J092216.12+043423.3 14.83 13.35 10.05 9.37 9.18 65.6 9.27 5.1 12.47 1.01 0.09 0.28 J093212.63+335827.3 15.41 13.85 9.9 9.26 9.02 38.1 10.95 6.12 11.18 1.19 0.24 0.27 J094317.05-245458.3 13.82 12.58 10.09 9.49 9.31 79.3 8.08 4.81 11.73 0.92 0.1 0.62 J094508.15+714450.1 16.6 15.63 10.68 10.07 9.77 23.5 13.77 7.91 12.09 1.33 0.41 0.25 J100146.28+681204.1 16.45 14.92 11.92 11.27 11.05 68.9 10.73 6.86 12.1 1.25 0.12 J100230.94-281428.2 15.92 14.21 9.89 9.32 9.03 31.6 11.71 6.53 10.84 1.23 0.31 0.53

165 J101543.44+660442.3 13.14 11.66 8.71 8.04 7.87 41.0 8.60 4.81 10.55 1.02 0.14 0.04 J101905.68-304920.3 15.44 13.98 10.81 10.16 9.93 53.0 10.36 6.31 11.04 1.06 0.15 J101917.57-443736.0 15.22 13.74 9.67 9.02 8.80 54.0 10.08 5.14 11.71 1.15 0.23 0.17 J102602.07-410553.8 B 13.97 12.55 9.18 8.49 8.27 56.6 8.79 4.51 10.61 1.11 0.21 0.08 J102602.07-410553.8 A 13.97 12.55 9.18 8.49 8.27 36.3 9.75 5.47 10.61 1.11 0.21 0.08 J102636.95+273838.4 15.35 13.94 10.88 10.25 10.01 66.1 9.84 5.91 10.89 1.17 0.13 J103016.11-354626.3 15.11 13.7 10.56 9.96 9.72 81.9 9.13 5.15 10.83 1.03 0.13 0.71 J103137.59-374915.9 16.45 14.94 10.88 10.3 10.02 56.0 11.20 6.28 12.46 1.13 0.3 0.93 J103557.17+285330.8 14.75 13.17 9.25 8.62 8.37 33.7 10.53 5.73 12.25 1.14 0.25 0.25 J103952.70-353402.5 14.19 12.75 9.78 9.2 9.04 52.5 9.15 5.44 10.86 1.04 0.12 J104008.36-384352.1 15.12 13.68 10.69 9.99 9.82 85.6 9.02 5.16 10.38 1.03 0.14 J104044.98-255909.2 15.26 13.76 10.44 9.77 9.58 69.3 9.56 5.38 12.4 1.1 0.11 0.53 J104551.72-112615.4 15.58 14.08 9.6 9 8.74 38.5 11.15 5.81 11.31 1.23 0.31 0.53 J105515.87-033538.2 14.25 12.77 9.56 8.96 8.68 20.1 11.25 7.16 11.47 1.28 0.18 0.18 J105518.12-475933.2 13.57 12.48 10.29 9.65 9.50 57.0 8.70 5.72 9.98 0.93 0.05 J105524.25-472611.7 A 15.4 13.87 10.64 10.04 9.81 80.0 9.35 5.29 11.39 1.07 0.15 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J105524.25-472611.7 B 60.6 J105711.36+054454.2 14.13 12.79 9.83 9.21 9.02 62.5 8.81 5.04 10.56 0.99 0.18 0.35 J105850.47-234620.8 17.2 15.58 10.3 9.71 9.43 43.0 12.41 6.26 12.12 1.33 0.43 0.77 J110119.22+525222.9 13.48 11.91 9.2 8.54 8.37 46.9 8.55 5.01 11.7 0.98 0.05 -0.03 J110335.71-302449.5 9.81 9.19 8.97 J110335.71-302449.5 13.67 12.45 9.81 9.19 8.97 73.8 8.11 4.63 10.19 0.86 0.18 0.02 J110551.56-780520.7 15.42 14.01 11.16 10.53 10.26 80.0 9.49 5.74 12.11 1.27 0 J111052.06-725513.0 16.89 15.36 10.95 10.37 10.07 58.5 11.52 6.23 11.46 1.29 0.37 0.36

166 J111103.54-313459.0 16.05 14.41 10.34 9.76 9.49 54.7 10.72 5.8 11.56 1.15 0.29 0.15 J111128.13-265502.9 10.33 9.81 9.45 22.9 7.65 10.46 1.36 0.47 0.93 J111229.74-461610.1 14.51 13.13 10.4 9.72 9.54 86.1 8.45 4.86 11.05 0.94 0.12 J111309.15+300338.4 15.15 13.65 10.15 9.52 9.27 60.0 9.76 5.38 11.32 1.1 0.21 0.15 J111707.56-390951.3 14.06 12.84 10.43 9.77 9.60 84.6 8.20 4.96 10.39 0.97 0.17 0.67 J112047.03-273805.8 11.82 11.22 10.93 50.0 7.44 10.36 1.29 0.37 J112105.43-384516.6 14.38 12.85 9 8.33 8.05 60.6 8.94 4.14 J112512.28-002438.2 15.81 14.25 10.29 9.76 9.50 55.9 10.51 5.76 10.97 1.15 0.25 0.73 J112547.46-441027.4 16.25 14.63 10.34 9.75 9.48 50.5 11.11 5.96 11.18 1.2 0.34 0.52 J112651.28-382455.5 15.79 14.39 10.02 9.36 9.12 53.5 10.75 5.48 11.48 1.18 0.31 0.22 J112816.27-261429.6 17.5 15.7 12.54 11.82 11.56 51.9 12.12 7.98 10.72 1.47 -0.2 J112955.84+520213.2 14.82 13.3 10.21 9.55 9.34 68.7 9.12 5.16 12.18 1.03 0.16 J113105.57+542913.5 15.85 14.25 10.62 9.94 9.74 67.8 10.09 5.58 11.71 1.13 0.22 0.53 J113114.81-482628.0 15.74 14.22 10.48 9.86 9.61 64.1 10.19 5.58 10.02 1.12 0.28 0.49 J113120.31+132140.0 15.63 14.12 10.47 9.85 9.61 74.6 9.76 5.25 10.89 1.06 0.23 J114623.01-523851.8 15.3 11.08 10.47 10.19 64.0 11.27 6.16 10.95 1.25 0.34 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J114728.37+664402.7 16.2 14.59 9.68 9.06 8.75 20.1 13.07 7.23 11.04 1.28 0.35 0.78 J115156.73+073125.7 13.82 12.42 8.81 8.14 7.89 33.1 9.82 5.29 10.69 1.07 0.12 0.29 J115438.73-503826.4 16.38 15 10.92 10.31 10.02 57.0 11.22 6.24 11.06 1.2 0.34 0.61 J115927.82-451019.3 16.1 14.52 9.93 9.35 9.07 56.5 10.76 5.31 11.18 1.23 0.35 0.56 J115949.51-424426.0 13.91 12.5 9.64 9.03 8.83 54.0 8.84 5.17 12.21 0.96 0.19 0.55 J115957.68-262234.1 15.1 13.63 10.19 9.48 9.33 50.0 10.14 5.84 10.16 1.05 0.21 0.15 J120001.54-173131.1 15.35 13.84 9.4 8.69 8.47 43.0 10.67 5.3 11.25 1.21 0.3 0.48 J120237.94-332840.4 16.57 15.77 10.69 10.12 9.85 51.0 12.23 6.31 12.01 1.24 0.32 0.46

167 J120647.40-192053.1 12.39 12.21 9.73 9.1 8.96 J120929.80-750540.2 13.6 9.91 9.24 9.01 82.0 9.03 4.44 9.7 1.16 0.26 0.63 J121153.04+124912.9 14.02 12.55 9.46 8.83 8.66 48.4 9.13 5.24 11.52 1.06 0.09 -0.07 J121341.59+323127.7 B 13.61 12.07 9.49 8.88 8.67 51.0 8.53 5.13 12 1.02 0.15 0.15 J121341.59+323127.7 A 13.61 12.07 9.49 8.88 8.67 51.0 8.53 5.13 12 1.02 0.15 0.15 J121429.15-425814.8 13.81 12.65 10 9.33 9.16 71.7 8.37 4.88 9.66 0.94 0.08 0.44 J121511.25-025457.1 15.57 14.13 10.87 10.23 9.96 53.3 10.50 6.33 11.53 1.21 0.22 J121558.37-753715.7 11.41 10.84 10.56 37.0 7.72 11.02 1.26 0.39 J122643.99-122918.3 14.22 12.66 8.87 8.12 7.87 12.0 12.26 7.47 11.74 1.31 0.21 0.38 J122725.27-454006.6 13.25 12.17 9.86 9.24 9.10 58.0 8.35 5.28 9.81 0.94 0.12 -0.28 J122813.57-431638.9 15.97 11.67 11.09 10.81 84.3 11.34 6.18 10.6 1.3 0.4 J123005.17-440236.1 16.49 14.99 10.45 9.84 9.57 56.0 11.25 5.83 11.55 1.19 0.3 0.38 J123234.07-414257.5 17.26 15.72 10.96 10.35 10.12 55.0 12.02 6.42 10.63 1.21 0.42 1.08 J123425.84-174544.4 12.35 11.23 8.87 8.28 8.10 50.6 7.71 4.58 9.65 0.84 0.12 0.39 J123704.99-441919.5 17.73 12.17 11.58 11.28 57.0 13.95 7.5 10.98 1.35 0.45 J124054.09-451625.4 15.64 14.15 10.62 9.92 9.71 58.0 10.33 5.89 11.91 1.07 0.22 0.1 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J124612.32-384013.5 16.81 15.29 10.98 10.38 10.10 56.0 11.55 6.36 11.46 1.15 0.17 J124955.67-460737.3 15.08 13.62 10.26 9.59 9.38 58.0 9.80 5.56 10.97 1.08 0.21 0.09 J125049.12-423123.6 10.78 10.17 9.91 55.5 6.19 11.54 1.3 0.26 0.44 J125326.99-350415.3 15.56 14.11 10.26 9.64 9.39 53.5 10.47 5.75 11.41 1.13 0.27 0.13 J125902.99-314517.9 16.37 14.78 10.32 9.73 9.49 51.0 11.24 5.95 11.96 1.16 0.31 0.91 J130501.18-331348.7 15.66 14.17 10.7 10 9.83 53.0 10.55 6.21 12.48 1.1 0.15 J130522.37-405701.2 16.03 14.38 10.53 9.92 9.70 56.5 10.62 5.94 10.64 1.13 0.28 J130530.31-405626.0 13.92 12.66 10.07 9.44 9.25 56.0 8.92 5.51 10.7 0.9 0.11 0.47

168 J130618.16-342857.0 16.89 15.32 10.5 9.9 9.63 53.0 11.70 6.01 12.05 1.27 0.38 0.75 J130650.27-460956.1 13.03 11.98 9.67 9.06 8.83 57.5 8.18 5.03 9.81 1 0.14 0.37 J130731.03-173259.9 16.18 14.55 10.24 9.68 9.41 41.5 11.46 6.32 10.97 1.16 0.3 0.78 J131129.00-425241.9 15.07 13.6 10.14 9.42 9.24 57.0 9.82 5.46 11.5 1.07 0.13 -0.03 J132112.77-285405.1 13.98 12.8 10.32 9.68 9.53 84.3 8.17 4.9 10.24 0.95 0.08 0.75 J133238.94+305905.8 14.28 9.62 9.08 8.76 21.7 12.60 7.08 11.6 1.27 0.32 0.62 J133509.40+503917.5 14.1 12.72 9.31 8.58 8.37 42.0 9.60 5.25 10.97 1.52 0.12 0.32 J133901.87-214128.0 15.99 14.49 10.4 9.73 9.51 53.9 10.83 5.85 11.35 1.16 0.36 J134146.41+581519.2 14.36 12.55 8.73 8.17 7.88 23.2 10.72 6.05 12.45 1.18 0.24 0.43 J134907.28+082335.8 13.54 12.18 9.34 8.76 8.55 53.5 8.54 4.91 12.18 0.95 0.1 0.11 J135145.65-374200.7 10.08 9.35 9.16 J135511.38+665207.0 16.57 11.7 11.06 10.81 61.1 12.64 6.88 11.91 1.26 0.33 J135913.33-292634.2 14.02 12.57 9.59 8.96 8.70 50.4 9.06 5.19 12.38 1.04 0.11 0 J140337.56-501047.9 14.43 10.66 9.99 9.80 68.7 10.25 5.62 11.53 1.13 0.25 0.83 J141045.24+364149.8 15.51 13.93 10.05 9.47 9.17 54.8 10.24 5.48 11.83 1.11 0.2 0.03 J141332.23-145421.1 16.18 14.56 10.29 9.67 9.42 45.5 11.27 6.13 11.36 1.19 0.31 1.13 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J141510.77-252012.0 15.59 14.04 10.2 9.57 9.34 64.2 10.00 5.3 11.3 1.08 0.2 0.08 J141842.36+475514.9 13.77 12.54 9.63 8.96 8.79 57.3 8.75 5 10.81 0.98 0.11 0.19 J141903.13+645146.4 15.91 14.15 10.39 9.77 9.56 35.0 11.43 6.84 10.58 1.12 0.25 0.39 J143517.80-342250.4 13.49 10.08 9.43 9.21 59.0 9.64 5.36 11.54 1.08 0.14 -0.08 J143648.16+090856.5 16.04 14.44 10.29 9.69 9.43 45.4 11.15 6.14 11.4 1.19 0.28 0.55 J143713.21-340921.1 16.44 14.91 10.69 10.03 9.79 52.7 11.30 6.18 10.85 1.2 0.3 0.32 J143753.36-343917.8 12.92 8.67 8 7.76 24.5 10.97 5.81 11.85 1.19 0.23 0.39 J145014.12-305100.6 15.2 13.67 10.38 9.71 9.48 74.3 9.32 5.13 11.81 1.02 0.16

169 J145731.11-305325.0 16.79 15.18 11.03 10.35 10.08 45.5 11.89 6.79 11.55 1.25 0.3 0.89 J145949.90+244521.9 15.79 14.19 10.3 9.7 9.49 66.5 10.08 5.38 11.54 1.1 0.26 0.32 J150119.48-200002.1 16.52 14.89 10.38 9.79 9.50 50.7 11.36 5.97 11.03 1.17 0.3 J150230.94-224615.4 16.81 15.47 11.06 10.42 10.14 46.5 12.13 6.8 10.64 1.25 0.27 J150355.37-214643.1 15.61 14.13 10.44 9.75 9.53 67.6 9.98 5.38 11.17 1.1 0.24 0.96 J150601.66-240915.0 15.86 11.76 11.15 10.91 82.1 11.29 6.34 10.25 1.21 0.28 J150723.91+433353.6 15.41 13.73 9.6 9.05 8.78 37.1 10.88 5.93 12.26 1.17 0.32 0.64 J150820.15-282916.6 16.74 15.35 10.8 10.2 9.94 51.0 11.81 6.4 11.95 1.27 0.28 1.26 J150836.69-294222.9 16.64 15.13 10.91 10.28 10.05 56.8 11.36 6.28 11.39 1.21 0.35 1.14 J150939.16-133212.4 15.72 14.22 9.79 9.2 8.90 29.3 11.89 6.57 11.21 1.23 0.31 -0.06 J151212.18-255708.3 14.24 12.81 9.66 9.01 8.76 52.4 9.21 5.16 11.87 1.03 0.13 0.39 J151242.69-295148.0 15.77 14.28 10.8 10.11 9.88 80.2 9.76 5.36 11.24 1.1 0.09 J151411.31-253244.1 13.1 12.05 9.88 9.28 9.10 73.6 7.72 4.77 10.2 0.91 0.07 0.93 J152150.76-251412.1 14.94 13.36 9.51 8.9 8.65 42.6 10.21 5.5 11.27 1.12 0.24 0.33 J153248.80-230812.4 15.16 13.67 10.64 9.94 9.73 78.7 9.19 5.25 11.13 1.06 0.19 0.75 J153549.35-065727.8 14.14 12.67 9.79 9.07 8.90 51.2 9.12 5.35 11.01 1.09 0.17 0.13 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J154220.24+593653.0 16.58 14.86 10.6 9.98 9.72 46.1 11.54 6.4 10.86 1.22 0.27 -0.13 J154227.07-042717.1 14.24 12.85 9.94 9.26 9.03 55.2 9.14 5.32 11.46 1.08 0.06 0.41 J154349.42-364838.7 16.77 15.15 10.92 10.32 10.07 71.8 10.87 5.79 10.64 1.15 0.22 J154435.17+042307.5 14.43 13.01 9.69 9 8.81 58.0 9.19 4.99 11.17 0.98 0.2 0.38 J154656.43+013650.8 14.17 12.78 9.75 9.1 8.89 63.3 8.77 4.88 11.45 0.94 0.11 -0.19 J155046.47+305406.9 14.32 12.92 9.6 8.94 8.74 50.3 9.41 5.23 10.91 1.05 0.22 0.39 J155515.35+081327.9 10.35 9.51 6.89 6.24 6.10 20.5 7.95 4.54 11.97 0.83 0.05 0.14 J155759.01-025905.8 14.2 12.86 10.26 9.56 9.33 48.3 9.44 5.91 11.9 1.17 0.1 0.47

170 J155947.24+440359.6 13.4 11.83 8.51 7.84 7.62 33.5 9.20 4.99 11.08 1.07 0.16 0.22 J160116.86-345502.7 12.06 11.51 11.14 45.0 7.87 10.01 1.36 0.23 J160549.19-311521.6 14.57 13.16 9.97 9.26 9.08 56.9 9.38 5.3 11.1 1.08 0.13 0.61 J160828.45-060734.6 15.22 13.64 9.66 9.03 8.78 42.6 10.49 5.63 11.53 1.13 0.3 0.84 J160954.85-305858.4 14.64 13.18 10.24 9.52 9.34 70.8 8.93 5.09 11.46 1.01 0.13 0.74 J161410.76-025328.8 AB 13.74 12.7 10.11 9.47 9.31 85.4 8.04 4.65 9.51 0.87 0.21 0.65 J161743.18+261815.2 13.86 12.36 8.98 8.39 8.14 40.2 9.34 5.12 12.16 1.02 0.15 0.23 J162422.68+195922.0 14.83 13.28 9.32 8.77 8.48 35.2 10.55 5.75 11.25 1.15 0.25 0.27 J162548.69-135912.0 13.7 12.53 9.86 9.26 9.11 75.2 8.15 4.73 10.84 0.89 0.03 0.32 J162602.80-155954.5 13.95 12.73 9.91 9.44 9.24 87.7 8.02 4.53 10.56 0.82 0.24 1.51 J163051.34+472643.8 17.19 15.73 10.94 10.35 10.08 30.0 13.34 7.69 11.77 1.25 0.34 0.67 J163632.90+635344.9 15.13 13.63 10.19 9.5 9.13 20.6 12.06 7.56 12.33 1.34 0.13 0.17 J164539.37+702400.1 14.68 11.86 10.98 10.83 34.5 11.99 8.14 12.13 1.52 0.18 J170415.15-175552.5 13.01 11.81 9.18 8.48 8.32 45.7 8.51 5.02 11.4 0.99 0.02 0.25 J171038.44-210813.0 12.97 11.69 8.85 8.22 8.03 38.7 8.75 5.09 10.05 1.01 0.13 0.02 J171117.68+124540.4 15.44 13.99 10.29 9.67 9.47 71.6 9.72 5.2 11.15 1.04 0.13 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J171426.13-214845.0 16.76 15.25 11.39 10.64 10.28 60.0 11.36 6.39 12.29 1.36 -0.15 J171441.70-220948.8 15.31 13.88 10.02 9.33 9.10 56.8 10.11 5.33 11.34 1.08 0.06 J172130.71-150617.8 15.4 11.26 10.67 10.42 39.0 12.44 7.46 11.76 1.19 0.33 J172131.73-084212.3 15.01 11.29 10.62 10.37 29.5 12.66 8.02 11.37 1.26 0.23 J172309.67-095126.2 15.39 13.79 10.35 9.64 9.42 49.4 10.32 5.95 12.39 1.17 0.16 J172454.26+502633.0 14.08 12.67 9.76 9.15 8.95 29.6 10.31 6.59 12.29 1.23 0.09 0.45 J172615.23-031131.9 14.91 10.38 9.79 9.50 44.8 11.65 6.24 11.97 1.3 0.35 0.81 J172951.38+093336.9 16.5 15 10.41 9.81 9.47 27.0 12.84 7.31 11.45 1.29 0.32

171 J173353.07+165511.7 16.13 14.38 8.9 8.3 8.00 6.5 15.32 8.94 11.69 1.33 0.38 0.53 J173544.26-165209.9 13.67 12.18 8.91 8.21 7.98 40.5 9.14 4.94 12.01 1.12 0.15 0.55 J173623.80+061853.0 10.79 9.62 7.19 6.54 6.40 23.2 7.79 4.57 12.03 0.84 0.08 0.15 J173826.94-055628.0 14.04 12.78 10.25 9.99 9.60 39.5 9.80 6.62 11.22 0.98 -0.06 J174203.85-032340.4 16.06 11.62 11.05 10.74 21.0 14.45 9.13 10.87 1.23 0.49 J174426.59-074925.3 15.22 13.89 11.32 10.7 10.47 38.6 10.96 7.54 11.53 1.33 0.35 J174439.27+483147.1 10.47 9.4 7.11 6.53 6.41 13.0 8.83 5.84 11.1 0.8 0.1 0.21 J174536.31-063215.3 13.56 12.42 10.16 9.74 9.55 34.0 9.76 6.89 10.06 0.96 -0.05 0.7 J174735.31-033644.4 15.8 14.53 12.24 11.84 11.68 33.5 11.90 9.05 10.4 1.53 1.27 2.86 J174811.33-030510.2 16.42 14.67 10.23 9.67 9.38 39.6 11.68 6.39 11.98 1.22 0.35 0.18 J174936.01-010808.7 17.31 16.28 11.7 11.05 10.77 13.5 15.63 10.12 11.61 1.28 0.15 J175022.27-094457.8 15.71 14.23 10.85 10.11 9.90 28.0 11.99 7.66 12.28 1.09 0.09 J175839.30+155208.6 15.81 14.23 10.29 9.77 9.58 22.8 12.44 7.79 11.94 1.4 0.23 0.47 J175942.12+784942.1 11.9 11.18 10.84 38.5 7.91 11.76 1.44 0.16 J180508.62-015058.5 14.38 12.99 9.85 9.42 9.17 23.0 11.18 7.36 11.85 0.88 -0.04 J180554.92-570431.3 15.14 13.63 9.56 8.88 8.63 56.1 9.89 4.89 10.58 1.19 0.26 0.09 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J180658.07+161037.9 13.47 12.25 9.28 8.67 8.44 23.0 10.44 6.63 10.19 1.05 0.19 0.05 J180733.00+613153.6 14.38 13.08 10.32 9.68 9.51 40.5 10.04 6.47 10.46 0.94 0.15 J180929.71-543054.2 17.02 15.21 10 9.41 9.12 43.5 12.02 5.93 12.32 1.32 0.4 -0.02 J181059.88-012322.4 17.32 12.66 11.74 11.45 24.5 15.37 9.5 11.29 1.4 0.26 J181725.08+482202.8 12.81 11.37 7.77 7.17 6.95 23.0 9.56 5.14 11.86 1.03 0.16 0.28 J182054.20+022101.5 13.27 11.92 9.18 8.71 8.52 21.0 10.31 6.91 11.82 0.8 -0.01 0.1 J182905.79+002232.2 14.59 13.49 10.5 10 9.78 32.5 10.93 7.22 10.22 1.12 0.7 2.58 J184204.85-555413.3 16.83 15.41 10.68 10.08 9.85 80.2 10.89 5.33 11.51 1.23 0.29

172 J184206.97-555426.2 15.16 13.6 9.49 8.83 8.58 55.0 9.90 4.88 11.16 1.13 0.25 0.38 J184536.02-205910.8 14.26 12.85 9.83 9.33 9.01 70.0 8.62 4.78 12.28 1.2 0.03 0.84 J190453.69-140406.0 13.85 12.38 9.24 8.59 8.37 30.0 9.99 5.98 11.8 1.07 0.16 J191019.82-160534.8 13 9.58 8.95 8.75 57.5 9.20 4.95 11.83 1.08 0.18 0.15 J191036.02-650825.5 10.2 10.48 9.8 9.59 111.6 4.96 4.35 10.99 1.12 0.18 J191235.95+630904.7 15.23 13.73 10.09 9.42 9.20 61.4 9.79 5.26 11.28 1.06 0.18 0.46 J191500.80-284759.1 15.06 10.86 10.28 9.96 74.5 10.70 5.6 12.06 1.29 0.29 1.21 J191534.83-083019.9 12.7 11.73 9.18 8.58 8.45 60.4 7.82 4.54 10.02 0.83 0.06 -0.4 J191629.61-270707.2 16.63 15.12 10.67 10.06 9.81 73.0 10.80 5.49 12.1 1.2 0.34 J192240.05-061208.0 15.8 14.26 10.59 9.91 9.69 63.2 10.26 5.69 11.22 1.14 0.26 J192242.80-051553.8 15.6 14.05 9.92 9.31 9.07 47.5 10.67 5.69 10.46 1.15 0.22 0.06 J192250.70-631058.6 14.81 13.29 9.46 8.82 8.58 64.0 9.26 4.55 11.4 1.16 0.23 0.3 J192323.20+700738.3 13.19 12.09 9.7 9.14 8.92 64.3 8.05 4.88 10.86 0.94 0.1 0.26 J192434.97-344240.0 15.88 14.3 9.67 9.06 8.79 56.0 10.56 5.05 11.36 1.25 0.3 -0.38 J192600.77-533127.6 A 15.65 13.98 9.6 8.98 8.68 21.3 12.34 7.04 12.37 1.27 0.27 -0.09 J192600.77-533127.6 B 15.65 13.98 9.6 8.98 8.68 21.3 12.34 7.04 12.37 1.27 0.27 -0.09 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J192659.33-710923.8 14.83 13.34 10.05 9.45 9.22 72.3 9.04 4.92 10.66 0.96 0.08 -0.08 J193052.51-545325.4 14.81 13.4 10.34 9.69 9.47 78.0 8.94 5.01 10.42 0.98 0.12 J193411.46-300925.3 11.72 11.15 10.81 67.0 6.68 11.53 1.36 0.53 J193711.26-040126.7 12.03 10.77 8.58 8.04 7.87 25.4 8.75 5.85 11.14 1.16 -0.11 -0.03 J194309.89-601657.8 15.96 14.7 10.41 9.8 9.54 58.5 10.86 5.7 10.93 1.16 0.26 0.14 J194444.21-435903.0 10.66 10.14 9.71 40.0 6.7 11.11 1.37 0.31 J194539.01+704445.9 13.75 12.57 10.1 9.46 9.28 76.0 8.17 4.88 10.55 0.94 0.13 0.08 J194714.54+640237.9 13.75 12.43 9.25 8.62 8.44 25.5 10.40 6.41 11.69 0.95 0.1 -0.01

173 J194816.54-272032.3 14.63 13.16 9.67 9 8.80 72.0 8.87 4.51 11.91 1.1 0.19 J194834.58-760546.9 13.96 12.5 9.84 9.17 9.00 54.5 8.82 5.32 11.12 1.03 0.21 0.72 J195227.23-773529.4 B 15.37 13.75 9.64 9.03 8.77 41.5 10.66 5.68 11.49 1.17 0.29 0.2 J195227.23-773529.4 A 15.37 13.75 9.64 9.03 8.77 36.8 10.92 5.94 11.49 1.17 0.29 0.2 J195315.67+745948.9 14.13 12.66 9.62 8.87 8.63 39.5 9.68 5.65 11.55 1.06 0.15 0.4 J195331.72-070700.5 15.01 10.82 10.2 9.93 55.5 11.29 6.21 11.25 1.25 0.21 J195340.71+502458.2 15.45 14 9.61 9.04 8.80 38.7 11.06 5.86 11.35 1.16 0.28 0.39 J195602.95-320719.3 14.79 13.23 8.96 8.34 8.11 60.0 9.34 4.22 11.41 1.21 0.26 0.29 J200137.19-331314.5 13.85 12.37 9.16 8.46 8.24 63.5 8.36 4.23 11.13 1.06 0.11 0.27 J200311.61-243959.2 15.1 13.64 10.01 9.41 9.21 58.6 9.80 5.37 11.99 1.1 0.2 J200409.19-672511.7 13.39 9.36 8.72 8.48 57.5 9.59 4.68 10.88 1.19 0.22 0.47 J200423.80-270835.8 14.47 13.51 10.04 9.34 9.18 68.2 9.34 5.01 11.1 0.98 0.1 J200556.44-321659.7 12.38 8.81 8.16 7.94 54.0 8.72 4.28 11.28 1.03 0.11 -0.09 J200837.87-254526.2 17.23 15.84 10.9 10.36 10.07 59.5 11.97 6.2 11.01 1.24 0.47 J200853.72-351949.3 13.05 9.17 8.48 8.32 47.5 9.67 4.94 12.09 1.27 0.26 0.35 J201000.06-280141.6 14.49 12.99 8.65 8.01 7.73 55.5 9.27 4.01 10.78 1.21 0.24 0.38 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J201931.84-081754.3 14.05 12.7 9.7 9.04 8.89 60.5 8.79 4.98 10.95 0.98 0.13 0.56 J202505.36+835954.2 16.38 14.88 11.13 10.35 10.11 28.8 12.58 7.81 11.32 1.41 0.26 1.01 J202716.80-254022.8 12.65 9.75 9.08 8.86 50.8 9.12 5.33 12.14 1.09 0.13 0.47 J203023.10+711419.8 16.03 14.53 11.67 10.91 10.74 81.0 9.99 6.2 12.03 1.2 0.42 1.23 J203301.99-490312.6 15.26 10.11 9.52 9.19 28.5 12.99 6.92 12.42 1.35 0.41 0.52 J203337.63-255652.8 14.87 9.71 9.15 8.88 45.0 11.60 5.61 11.68 1.26 0.31 0.6 J204406.36-153042.3 16.98 15.28 11.73 11.13 10.83 37.6 12.40 7.95 12.03 1.46 0.12 J204714.59+110442.2 16.61 14.89 10.66 10.07 9.84 49.9 11.40 6.35 11.92 1.21 0.3

174 J205131.01-154857.6 16.07 11.22 10.63 10.34 28.6 13.79 8.06 10.12 1.49 2.2 4.05 J205136.27+240542.9 10.41 9.89 9.59 25.5 7.56 11.54 1.33 0.26 0.49 J205832.99-482033.8 12.52 11.91 11.64 66.0 7.54 10.62 1.31 0.07 J210131.13-224640.9 12.59 11.16 8.19 7.51 7.31 46.9 7.80 3.95 12.49 1.03 0.05 -0.03 J210338.46+075330.3 13.19 12.17 9.96 9.43 9.24 74.1 7.82 4.89 9.84 0.95 0.11 0.51 J210708.43-113506.0 12.92 11.36 9.24 8.56 8.42 J210722.53-705613.4 15.33 13.8 9.76 9.12 8.90 44.7 10.55 5.65 10.95 1.13 0.26 0.62 J210736.82-130458.9 14.23 12.64 8.73 8.1 7.84 23.5 10.78 5.98 11.12 1.18 0.21 J210957.48+032121.1 9.45 8.62 8.57 27.0 6.41 12.19 1.31 0.1 0.03 J211004.67-192031.2 14.67 13.14 8.43 7.88 7.55 32.5 10.58 4.99 12.01 1.26 0.27 0.48 J211005.41-191958.4 13.17 11.75 8.11 7.45 7.20 33.5 9.12 4.57 11.5 1.12 0.11 0.15 J211031.49-271058.1 A 16.84 15.15 10.3 9.71 9.41 54.5 11.47 5.73 11.89 1.48 0.26 0.39 J211031.49-271058.1 B 16.84 15.15 10.3 9.71 9.41 18.9 13.77 8.03 11.89 1.48 0.26 0.39 J211635.34-600513.4 16.03 14.49 10.19 9.56 9.32 49.0 11.04 5.87 10.48 1.21 0.33 0.76 J212007.84-164548.2 16.03 14.56 10.15 9.57 9.30 50.0 11.07 5.81 11.85 1.2 0.29 0.47 J212128.89-665507.1 11.96 10.6 7.88 7.26 7.01 30.5 8.18 4.59 12.08 0.95 0.09 0.2 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J212230.56-333855.2 15.25 10.46 9.87 9.57 53.0 11.63 5.95 11.18 1.29 0.32 J212750.60-684103.9 16.9 15.16 10.42 9.83 9.58 53.5 11.52 5.94 11.5 1.24 0.37 J213507.39+260719.4 13.51 12.14 9.41 8.73 8.56 49.8 8.65 5.07 12.02 1 0.04 0.31 J213520.34-142917.9 15.34 11.72 11.27 10.66 68.5 11.16 6.48 11.85 1.58 0.24 J213644.54+670007.1 J213708.89-603606.4 15.2 13.7 9.64 9.01 8.76 50.0 10.21 5.27 10.82 1.19 0.27 0.44 J213740.24+013713.2 14.91 13.14 8.8 8.14 7.88 38.0 10.24 4.98 10.97 1.27 0.29 0.32 J213835.44-505111.0 17.14 15.47 10.73 10.13 9.82 28.2 13.22 7.57 12.19 1.34 0.34 0.49

175 J213847.58+050451.4 16.84 15.28 10.72 10.19 9.87 50.0 11.79 6.38 11.78 1.21 0.33 J214101.48+723026.7 15.36 13.9 10.67 10.01 9.82 79.7 9.39 5.31 11.29 1.08 0.15 0.32 J214126.66+204310.5 14.95 13.43 9.43 8.82 8.61 73.5 9.10 4.28 11.68 1.12 0.23 0.27 J214414.73+321822.3 15.11 13.68 10.93 10.27 10.04 29.5 11.33 7.69 12.26 1.38 -0.02 0.63 J214905.04-641304.8 16.83 15.22 10.35 9.8 9.47 46.0 11.91 6.16 11.75 1.3 0.36 0.73 J215053.68-055318.9 14.04 12.65 9.38 8.68 8.51 45.4 9.36 5.22 11.09 1.05 0.18 0.66 J215128.95-023814.9 14.94 13.5 9.8 9.22 8.86 31.7 10.99 6.35 11.58 1.21 0.17 0.47 J215717.71-341834.0 14.91 11.29 10.74 10.46 53.5 11.27 6.82 11.9 1.21 0.26 J220216.29-421034.0 13.55 12.15 8.93 8.23 7.99 45.5 8.86 4.7 11.24 1.07 0.14 0.23 J220254.57-644045.0 14.13 12.68 9.06 8.41 8.16 46.0 9.37 4.85 11.09 1.09 0.18 -0.03 J220306.98-253826.6 16.5 14.91 10.58 10.03 9.69 50.0 11.42 6.2 11.38 1.29 0.27 0.9 J220730.16-691952.6 16.16 14.68 10.65 10.03 9.81 47.7 11.29 6.42 11.92 1.22 0.26 J220850.39+114412.7 16.18 14.54 9.9 9.34 9.04 37.0 11.70 6.2 11.54 1.24 0.37 0.56 J221217.17-681921.1 15.99 14.63 10.67 10 9.77 98.0 9.67 4.81 12.37 1.18 0.22 0.63 J221559.00-014733.0 15.19 14.06 11.11 10.41 10.17 58.2 10.24 6.35 11.91 1.21 0.13 J221833.85-170253.2 14.28 12.83 10.01 9.37 9.18 69.0 8.64 4.99 12.12 0.98 0.06 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J221842.70+332113.5 14.47 12.95 9.33 8.69 8.44 37.6 10.07 5.56 11.82 1.12 0.22 0.42 J222024.21-072734.5 14.82 13.35 9.81 9.15 8.94 52.1 9.77 5.36 11.27 1.09 0.15 0.34 J224111.08-684141.8 16.69 12.61 11.96 11.61 70.5 12.45 7.37 10.56 1.44 0.29 2.08 J224221.02-410357.2 11.43 10.85 10.57 45.0 7.3 11.63 1.25 0.29 1.14 J224448.45-665003.9 11.03 10.41 10.14 46.0 6.83 11.95 1.34 0.41 0.89 J224500.20-331527.2 13.37 8.68 8.06 7.79 20.9 11.77 6.19 12.05 1.25 0.34 0.44 J224634.82-735351.0 14.9 13.42 9.66 9.05 8.81 51.0 9.88 5.27 10.83 1.12 0.26 -0.07 J225914.87+373639.3 16.94 15.36 10.38 9.89 9.54 25.6 13.32 7.5 11.42 1.32 0.33 0.75

176 J225934.89-070447.1 14.87 11.01 10.38 10.13 31.1 12.41 7.67 11.84 1.37 0.48 J230209.10-121522.0 16.53 14.87 10.48 9.91 9.65 43.5 11.68 6.46 11.11 1.18 0.3 J230327.73-211146.2 17.57 15.86 11.91 11.2 11.03 71.9 11.58 6.75 10.01 1.24 0.31 J230740.98+080359.7 13.92 12.67 9.56 8.9 8.71 54.2 9.00 5.04 12.08 0.99 0.11 0.25 J231021.75+685943.6 14.74 13.22 9.92 9.39 9.14 61.0 9.29 5.21 12.29 1.05 0.11 J231211.37+150329.7 15.22 13.83 10.18 9.54 9.31 63.8 9.81 5.29 11.38 1.07 0.17 J231246.53-504924.8 15.09 13.5 9.12 8.53 8.30 23.3 11.66 6.46 11.51 1.22 0.32 0.22 J231457.86-633434.0 B 10.18 9.52 9.28 33.0 6.69 10.41 1.1 0.22 -0.13 J231457.86-633434.0 A 10.18 9.52 9.28 60.8 5.36 10.41 1.1 0.22 -0.13 J231543.66-140039.6 12.93 11.59 9.09 8.41 8.28 47.8 8.19 4.88 12.41 0.94 0.07 -0.18 J231933.16-393924.3 13.44 12.1 9.07 8.41 8.25 31.0 9.64 5.79 J232008.15-634334.9 11.83 11.21 10.92 30.1 8.53 11.91 1.29 0.3 J232151.23+005037.3 13.33 11.98 9.33 8.55 8.51 31.6 9.48 6.01 12.48 1.18 0 -0.01 J232656.43+485720.9 13.54 12.55 9.75 9.1 8.94 61.7 8.60 4.99 9.84 0.98 0.12 0.13 J232857.75-680234.5 14.51 13.05 9.26 8.64 8.38 49.5 9.58 4.91 10.82 1.11 0.23 0.21 J232904.42+032910.8 15.75 11.11 10.55 10.19 59.6 11.87 6.31 12.21 1.32 0.41 Table 4.7 (cont’d)

WISE Designation Comp B V J H K dist MV MK NUV-W1 J-W2 W1-W3 W1-W4 [mag] [mag] [mag] [mag] [mag] [pc] [mag] [mag] [mag] [mag] [mag] [mag]

J232917.64-675000.6 17.02 15.47 10.79 10.19 9.89 48.0 12.06 6.48 11.46 1.24 0.35 J232959.47+022834.0 11.36 10.81 10.53 67.3 6.39 11.88 1.22 0.33

177 J233647.87+001740.1 14.02 12.57 9.54 8.83 8.65 48.5 9.14 5.22 12.3 1.05 0.1 J234243.45-622457.1 11.3 10.76 10.42 45.5 7.13 11.16 1.31 0.45 1.33 J234326.88-344658.5 13.29 11.81 8.47 7.86 7.63 40.5 8.77 4.59 11.66 1.09 0.17 0.19 J234333.91-192802.8 13.06 11.8 9.22 8.55 8.36 49.1 8.34 4.9 10.4 0.95 0.14 0.27 J234347.83-125252.1 15.4 13.87 10.26 9.67 9.41 60.4 9.96 5.5 11.81 1.12 0.18 J234857.35+100929.3 14.37 13.06 9.94 9.29 9.12 70.8 8.81 4.87 12.26 0.94 0.07 J234924.87+185926.7 15.71 13.96 10.2 9.57 9.34 58.0 10.14 5.52 11.36 1.12 0.22 0.42 J234926.23+185912.4 13.44 12.04 9.17 8.53 8.32 43.6 8.84 5.12 11.4 1.02 0.07 0.03 J235250.70-160109.7 15.91 14.31 10.1 9.55 9.23 48.5 10.88 5.8 10.23 1.15 0.3 0.65 2M 12182363-3515098 9.41 8.78 8.69 62.2 4.72 Table 4.8. Kinematics

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J000453.05-103220.0 62.4 -20.7 65.7 PPMXL 37 7.7 13.4 YF? J001527.62-641455.2 80.5 -51.7 95.7 UCAC4 48 6.3 0.9 -9.8 -20.5 -0.6 TH J001536.79-294601.2 102.5 -76.7 128.0 UCAC4 30.2 -28.8 4.9 OF J001552.28-280749.4 58.8 2.0 58.8 UCAC4 48.2 OF J001555.65-613752.2 70.6 -41.5 81.9 UCAC4 53 TH J001709.96+185711.8 N 32.8 -31.6 45.5 PPMXL 43.5 32.7 1.0 OF J001709.96+185711.8 S 32.8 -31.6 45.5 PPMXL 43.5 34.6 1.0 OF J001723.69-664512.4 102.9 -15.0 104.0 UCAC4 44 23.1 1.1 -8.5 -24.3 -18.6 AB? 178 J002101.27-134230.7 204.8 -37.9 208.2 PPMXL 22.9 OF J003057.97-655006.4 82.5 -51.2 97.1 UCAC4 32.3 -10.9 4.7 OF J003234.86+072926.4 98.8 -64.2 117.8 UCAC4 44.5 -4.6 0.7 -10.6 -22.3 -5.5 CO J003903.51+133016.0 85.5 -68.0 109.2 UCAC4 33.6 -7.0 1.5 OF J004210.98-425254.8 83.9 -43.6 94.6 UCAC4 49.1 -18.7 4.0 OF J004524.84-775207.5 218.8 11.7 219.1 PPMXL 24.5 3.6 2.1 -20.4 -15.1 -3.9 AR J004528.25-513734.4 B 100.3 -57.1 115.4 UCAC4 43.5 -8.0 1.3 -13.8 -17.5 11.7 AB J004528.25-513734.4 A 100.3 -57.1 115.4 UCAC4 43.4 17.2 0.7 -7.7 -25.9 -11.2 AB? J004826.70-184720.7 75.2 -44.0 87.1 UCAC4 59.5 5.6 1.4 -11.6 -21.0 -7.6 CO? J005633.96-225545.4 44.2 -5.8 44.6 UCAC4 83.3 OF J010047.97+025029.0 63.7 -76.5 99.6 PPMXL 65 AB J010126.59+463832.6 48.7 -19.2 52.4 UCAC4 74.4 -152.4 7.1 OF J010243.86-623534.8 88.9 -39.3 97.2 UCAC4 46 3.3 1.0 -10.9 -18.2 -3.2 TH J010251.05+185653.7 97.0 -58.3 113.2 UCAC4 57.5 YF J010629.32-122518.4 71.1 -37.7 80.5 UCAC4 64.5 2.7 1.5 -12.2 -21.1 -4.3 CO J010711.99-193536.4 64.4 -39.5 75.6 UCAC4 67.5 7.1 1.1 -10.7 -21.6 -7.4 CO? Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J011440.20+205712.9 48.5 -36.8 60.9 PPMXL 61.1 OF J011846.91+125831.4 66.0 -28.6 71.9 PPMXL 63 OF J012118.22-543425.1 81.6 -42.7 92.1 UCAC4 49.5 25.8 1.3 -4.7 -29.2 -16.0 AB J012245.24-631845.0 94.6 -28.9 98.9 UCAC4 44 18.3 5.3 -7.6 -25.0 -8.8 AB J012332.89-411311.4 106.4 -46.5 116.1 UCAC4 40.6 TH J012532.11-664602.6 88.4 -29.4 93.2 UCAC4 47 TH J013110.69-760947.7 59.8 -23.7 64.3 UCAC4 59.5 11.3 4.1 -5.7 -20.6 0.2 TH J014156.94-123821.6 43.1 -10.4 44.3 UCAC4 53.1 OF

179 J014431.99-460432.1 112.3 -47.1 121.8 SuperCosmos 39.4 TH J015057.01-584403.4 92.2 -24.3 95.4 UCAC4 45.5 9.3 1.5 -9.9 -20.3 -0.6 TH J015257.41+083326.3 90.8 -57.7 107.6 PPMXL 49 2.8 4.1 -11.7 -21.7 -5.0 CO J015350.81-145950.6 111.7 -47.2 121.3 UCAC4 40.6 TH? J015455.24-295746.0 78.7 -23.6 82.2 UCAC4 46 37.7 2.0 OF J020012.84-084052.4 112.1 -63.3 128.7 UCAC4 55.7 5.5 1.4 YF J020302.74+221606.8 26.5 -11.4 28.9 UCAC4 40.5 OF J020305.46-590146.6 78.6 12.6 79.6 SuperCosmos 38 BP J020805.55-474633.7 66.0 7.6 66.4 UCAC4 78.8 20.6 0.7 OF J021258.28-585118.3 87.7 -15.9 89.1 UCAC4 37.3 -16.2 3.8 OF J021330.24-465450.3 42.5 4.9 42.8 UCAC4 29.9 11.2 1.2 OF J021935.52-455106.2 W 166.3 -24.1 PPMXL 17.3 13.2 0.7 -8.3 -15.7 -6.8 BP? J021935.52-455106.2 E 147.1 102.8 PPMXL 24.5 30.9 2.5 OF J022240.88+305515.4 75.3 -67.5 101.1 UCAC4 43.5 BP? J022424.69-703321.2 92.5 -3.6 92.6 UCAC4 35.8 -8.8 5.1 OF J023005.14+284500.0 65.2 -17.2 67.4 UCAC4 67.9 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J023139.36+445638.1 109.2 -61.5 125.3 SuperCosmos 41.1 OF J024552.65+052923.8 71.9 -41.5 83.0 UCAC4 59 CO? J024746.49-580427.4 95.5 -5.2 95.6 UCAC4 43.5 12.2 1.0 -10.3 -20.8 -0.8 TH J024852.67-340424.9 90.2 -23.7 93.3 UCAC4 44.5 12.5 2.0 -11.0 -20.4 -2.6 TH J025154.17+222728.9 108.7 -109.4 154.2 PPMXL 28 11.4 2.6 -14.5 -15.4 -10.1 BP J025913.40+203452.6 10.9 -17.2 20.4 UCAC4 83.8 -18.3 3.9 OF J030002.98+550652.4 65.6 -52.3 83.9 UCAC4 65.9 17.9 4.2 OF J030251.62-191150.0 95.8 -35.3 102.1 UCAC4 42.5 12.3 1.2 -12.0 -20.6 -2.5 TH

180 J030444.10+220320.8 44.2 -49.4 66.3 UCAC4 59.5 11.3 3.4 -13.3 -14.4 -9.5 BP J030824.14+234554.2 49.3 -39.8 63.4 UCAC4 50.9 OF J031650.45-350937.9 92.3 -38.3 99.9 UCAC4 24 17.0 2.7 -7.0 -17.1 -8.7 BP? J032047.66-504133.0 82.6 7.8 83.0 UCAC4 44.6 -13.8 4.0 OF J033235.82+284354.6 58.8 -81.0 100.1 UCAC4 42.5 BP J033431.66-350103.3 36.3 -5.5 36.7 UCAC4 90.5 CO J033640.91+032918.3 116.5 -123.0 169.4 PPMXL 20 13.9 4.8 -10.8 -16.4 -8.2 BP J034115.60-225307.8 51.9 -14.2 53.8 UCAC4 66.5 19.2 1.7 -13.7 -20.8 -5.9 CO J034116.16-225244.0 50.0 -11.5 51.3 UCAC4 69 CO? J034236.95+221230.2 63.7 -89.7 110.0 SuperCosmos 36.5 10.6 1.4 -11.7 -16.4 -8.3 BP J034444.80+404150.4 59.4 -32.8 67.9 UCAC4 55.8 7.7 17.0 OF J035100.83+141339.2 68.8 -77.1 103.3 UCAC4 45.5 CO? J035134.51+072224.5 161.6 -2.4 161.6 PPMXL 21.1 33.2 1.0 OF J035223.52-282619.6 70.5 -1.7 70.5 UCAC4 49.5 13.9 4.6 12.8 -17.4 -0.3 TH J035345.92-425018.0 32.9 -1.8 33.0 UCAC4 91.5 20.1 1.3 -10.0 -21.7 -6.3 CO? J035716.56-271245.5 82.3 21.3 85.0 UCAC4 24.1 1.0 1.6 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J035733.95+244510.2 28.7 -46.4 54.6 UCAC4 70.5 BP? J035829.67-432517.2 39.5 2.6 39.6 UCAC4 78 CO J040539.68-401410.5 71.6 -0.8 71.6 UCAC4 47.5 16.6 1.5 -10.7 -20.5 -1.6 TH J040649.38-450936.3 45.4 7.4 46.0 UCAC4 67 20.6 0.6 -11.9 -21.6 -5.8 CO J040711.50-291834.3 42.0 -6.9 42.6 UCAC4 71.5 19.4 1.2 -12.2 -20.3 -4.9 CO J040743.83-682511.0 56.6 22.2 60.8 UCAC4 54.6 -9.0 4.4 OF J040809.80-611904.3 52.1 10.2 53.1 UCAC4 58 10.6 0.8 -7.3 -16.4 1.6 TH? J040827.01-784446.7 54.7 42.1 69.0 UCAC4 54.5 16.1 1.2 -9.5 -21.6 -4.8 CA?

181 J041050.04-023954.4 22.0 -35.2 41.5 UCAC4 55 16.9 2.5 -10.4 -13.9 -10.1 BP J041255.78-141859.2 60.0 -33.6 68.8 UCAC4 54 16.4 1.1 -10.4 -21.5 -2.9 TH? J041336.14-441332.4 56.2 0.7 56.2 UCAC4 53.6 -22.4 3.3 OF J041525.58-212214.5 38.6 -30.5 49.2 PPMXL 34 20.5 0.5 -10.3 -16.1 -10.9 BP J041749.66+001145.4 33.7 -26.2 42.7 UCAC4 66.7 8.1 6.8 YF? J041807.76+030826.0 34.1 -60.2 69.2 UCAC4 42 15.7 1.7 -10.1 -15.7 -9.3 BP J042139.19-723355.7 62.2 26.6 67.7 UCAC4 54 14.2 0.8 -8.2 -20.9 0.2 TH J042500.91-634309.8 36.4 55.7 66.5 UCAC4 36.5 BP J042736.03-231658.8 64.8 -19.1 67.6 UCAC4 43.5 20.0 1.4 -12.2 -20.6 -4.4 CO? J042739.33+171844.2 16.2 -33.4 37.1 UCAC4 87 17.6 0.5 -15.4 -14.6 -9.7 BP? J043213.46-285754.8 26.8 -14.5 30.5 UCAC4 35 BP J043257.29+740659.3 82.2 -123.7 148.5 UCAC4 17.9 OF J043657.44-161306.7 109.8 -21.9 112.0 UCAC4 54.4 16.4 2.3 YF J043726.87+185126.2 18.9 -38.2 42.6 PPMXL 79.5 9.3 1.5 -7.9 -15.6 -6.2 BP J043923.21+333149.0 14.0 -42.6 44.8 SuperCosmos 89.5 7.7 1.1 -10.0 -15.8 -8.4 BP J043939.24-050150.9 B 26.2 -13.1 29.3 PPMXL 48.5 -12.2 2.8 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J043939.24-050150.9 A 26.2 -13.1 29.3 PPMXL 48.5 50.7 4.6 OF J044036.23-380140.8 12.3 5.1 13.3 UCAC4 36 BP? J044120.81-194735.6 27.7 -10.3 29.6 UCAC4 85.5 23.6 1.2 -14.4 -21.0 -6.9 CO? J044154.44+091953.1 23.5 -38.2 44.9 UCAC4 64.5 BP? J044336.19-003401.8 19.0 -25.1 31.5 PPMXL 64 20.9 1.1 -15.1 -14.8 -9.0 BP? J044349.19+742501.6 9.3 -56.4 57.2 UCAC4 56.2 OF J044356.87+372302.7 24.1 -56.0 61.0 SuperCosmos 68.5 7.1 1.1 -11.0 -16.7 -6.6 BP J044455.71+193605.3 17.6 -32.8 37.2 UCAC4 76.5 26.0 1.6 OF

182 J044530.77-285034.8 18.9 -2.5 19.1 UCAC4 36.5 BP J044700.46-513440.4 53.9 16.2 56.3 UCAC4 52 18.3 0.7 -9.5 -20.8 -2.0 TH J044721.05+280852.5 27.1 -55.3 61.6 UCAC4 63.5 BP? J044800.86+143957.7 AB 15.6 -42.8 45.6 SuperCosmos 70.5 13.7 0.6 -10.4 -15.5 -8.4 BP J044802.59+143951.1 A 18.7 -43.4 PPMXL 15.3 0.4 YF? J045114.41-601830.5 23.7 18.9 30.3 UCAC4 97 20.0 1.8 -10.8 -21.2 -5.3 CO J045420.20-400009.9 4.5 21.4 21.9 UCAC4 30.5 BP? J045651.47-311542.7 11.4 -10.9 15.8 PPMXL 18.2 255.7 1.1 OF J050333.31-382135.6 -0.6 14.0 14.0 UCAC4 28 BP? J050610.44-582828.5 48.7 32.0 58.3 UCAC4 51.5 18.0 1.6 -10.2 -20.5 -2.0 TH J050827.31-210144.3 32.9 -15.0 36.2 UCAC4 16.4 28.9 3.0 YF? J051026.38-325307.4 20.6 23.4 31.2 UCAC4 25.5 23.1 0.4 -13.5 -15.9 -10.6 BP J051255.82-212438.7 2.8 -1.2 3.1 UCAC4 34 BP? J051310.57-303147.7 -1.4 -0.7 1.6 UCAC4 47.6 12.4 1.5 OF J051403.20-251703.8 28.1 -5.6 28.7 UCAC4 68 23.7 1.7 -13.3 -21.0 -5.6 CO J051650.66+022713.0 20.9 -47.5 51.9 UCAC4 47.5 BP Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J051803.00-375721.2 0.5 2.0 2.1 UCAC4 81.9 16.4 1.0 OF J052419.14-160115.5 16.0 -34.8 38.3 UCAC4 33 25.4 2.5 -14.2 -18.9 -11.1 BP J052535.85-250230.2 6.8 5.8 8.9 UCAC4 30 BP J052944.69-323914.1 12.5 13.4 18.3 UCAC4 28 22.2 0.8 -12.2 -16.2 -9.5 BP J053100.27+231218.3 2.7 -34.3 34.4 SuperCosmos 101.5 15.2 3.2 -13.5 -15.4 -9.4 BP J053311.32-291419.9 25.4 1.9 25.5 UCAC4 61 23.5 1.5 -13.2 -20.2 -5.0 CO J053328.01-425720.1 A -18.6 43.1 46.9 UCAC4 13.5 -43.8 4.2 OF J053328.01-425720.1 B -28.1 41.0 PPMXL 13.5 -0.2 2.3 OF

183 J053747.56-424030.8 15.6 33.2 36.7 UCAC4 26.5 18.5 3.3 -9.8 -14.6 -7.3 BP J053925.08-424521.0 40.8 17.5 44.4 UCAC4 79.4 21.6 0.5 YF J054223.86-275803.3 2.0 -3.1 3.7 UCAC4 31.5 BP J054433.76-200515.5 13.4 -3.6 13.9 UCAC4 30.5 22.4 2.5 -14.3 -15.7 -7.4 BP? J054448.20-265047.4 3.9 0.5 3.9 UCAC4 31 17.8 0.6 -10.1 -12.8 -7.2 BP J054709.88-525626.1 7.2 9.2 11.7 UCAC4 37.5 27.4 6.6 -5.5 -23.7 -12.8 AB J054719.52-335611.2 7.4 -16.6 18.2 UCAC4 22 BP J055008.59+051153.2 16.3 -49.3 51.9 UCAC4 62 CO? J055041.58+430451.8 7.4 -35.6 36.4 UCAC4 51.8 OF J055208.04+613436.6 21.7 -81.4 84.2 UCAC4 58.3 OF J055941.10-231909.4 6.8 0.3 6.8 PPMXL 29 BP J060156.10-164859.9 B -3.8 -14.9 15.4 UCAC4 78.6 -87.6 4.6 OF J060156.10-164859.9 A -3.8 -14.9 15.4 UCAC4 78.6 51.8 2.9 OF J060224.56-163450.0 -8.3 -63.2 63.7 UCAC4 45.2 -10.4 0.9 OF J060329.60-260804.7 -9.6 24.5 26.3 PPMXL 57.3 -3.0 1.0 OF J061313.30-274205.6 -13.1 -0.3 13.1 UCAC4 31 22.7 0.6 -12.5 -16.5 -9.5 BP Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J061740.43-475957.2 9.7 18.6 21.0 UCAC4 78.5 CO J061851.01-383154.9 -6.5 36.5 37.1 UCAC4 24.5 16.8 7.9 -10.3 -12.7 -5.9 BP? J062047.17-361948.2 -15.5 12.6 20.0 UCAC4 75.2 13.4 3.0 YF? J062130.52-410559.1 -7.5 -33.4 34.2 UCAC4 25 AB J062407.62+310034.4 -1.3 45.3 45.3 SuperCosmos 27.1 31.0 0.6 OF J063001.84-192336.6 -28.3 -26.5 38.8 UCAC4 33.3 44.5 6.3 OF J065846.87+284258.9 -33.7 -116.4 121.2 PPMXL 33 BP? J070657.72-535345.9 -7.4 39.7 40.4 UCAC4 54.5 CO

184 J071036.50+171322.6 -1.3 -28.6 28.6 UCAC4 63.4 OF J072641.52+185034.0 -16.7 -59.6 61.9 UCAC4 57 OF J072821.16+334511.6 -12.3 -112.3 113.0 UCAC4 56.5 4.9 2.7 -6.8 -28.1 -10.1 AB? J072911.26-821214.3 -29.8 51.8 59.8 UCAC4 61.5 26.1 0.7 -6.4 -26.4 -15.8 AB J073138.47+455716.5 -15.3 -101.6 102.8 UCAC4 43.2 OF J075233.22-643630.5 -5.4 27.0 27.5 UCAC4 56.6 YF? J075808.25-043647.5 -22.4 -23.8 32.7 SuperCosmos 62.4 29.7 0.8 OF J075830.92+153013.4 B -87.9 -112.9 143.1 PPMXL 20.2 21.3 2.4 OF J075830.92+153013.4 A -87.9 -112.9 143.1 PPMXL 20.2 24.1 4.1 OF J080352.54+074346.7 -32.4 -46.2 56.4 UCAC4 59.7 OF J080636.05-744424.6 -12.5 51.3 52.8 UCAC4 68 18.3 0.8 -10.4 -22.5 -3.5 CA J081443.62+465035.8 -47.3 -68.9 83.6 UCAC4 34.6 OF J081738.97-824328.8 -80.3 102.5 130.2 UCAC4 28.5 13.4 0.7 -10.9 -16.9 -9.2 BP J082105.04-090853.8 B -40.0 -34.3 UCAC4 45.1 OF J082105.04-090853.8 A -40.0 -34.3 52.7 UCAC4 78.3 18.4 1.2 YF J082558.91+034019.5 -76.1 -30.4 82.0 UCAC4 21.1 32.3 15.2 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J083528.87+181219.9 -5.1 -32.8 33.2 UCAC4 68.2 OF J090227.87+584813.4 -45.7 -84.1 95.7 PPMXL 48.2 OF J092216.12+043423.3 -44.2 -70.3 83.0 PPMXL 65.6 OF J093212.63+335827.3 -64.6 -99.0 118.2 PPMXL 38.1 OF J094317.05-245458.3 -22.5 -18.7 29.3 UCAC4 79.3 -7.1 1.5 OF J094508.15+714450.1 -186.0 -104.0 213.1 UCAC4 23.5 1.7 2.1 -19.8 -11.1 -7.3 AR? J100146.28+681204.1 -25.2 -31.8 40.6 PPMXL 68.9 OF J100230.94-281428.2 -68.3 -41.5 79.9 UCAC4 31.6 6.7 1.4 OF

185 J101543.44+660442.3 -92.1 -95.9 133.0 UCAC4 41 AB? J101905.68-304920.3 -41.7 -4.8 42.0 UCAC4 53 19.3 1.6 -8.4 -20.4 0.5 TWA J101917.57-443736.0 -50.3 -0.8 50.3 UCAC4 54 15.7 0.9 -8.6 -17.9 -4.4 TWA J102602.07-410553.8 B -45.3 -2.5 45.4 UCAC4 56.6 7.1 11.0 -9.0 -9.6 -5.2 TWA? J102602.07-410553.8 A -45.3 -2.5 45.4 UCAC4 36.3 7.1 11.0 YF? J102636.95+273838.4 -40.2 -25.1 47.4 UCAC4 66.1 OF J103016.11-354626.3 -38.6 3.9 38.8 UCAC4 81.9 -3.4 3.2 OF J103137.59-374915.9 -32.6 -2.0 32.7 UCAC4 56 18.8 5.1 -5.4 -20.0 0.7 TWA J103557.17+285330.8 -113.4 -79.0 138.2 PPMXL 33.7 OF J103952.70-353402.5 -57.4 6.0 57.7 UCAC4 52.5 TWA J104008.36-384352.1 -43.7 -91.3 101.2 UCAC4 85.6 OF J104044.98-255909.2 -31.7 -23.2 39.3 UCAC4 69.3 -6.7 0.7 OF J104551.72-112615.4 -85.5 -53.8 101.0 UCAC4 38.5 12.2 8.9 -9.6 -19.2 -5.1 TWA J105515.87-033538.2 -149.4 -27.3 151.9 WISE-2M 20.1 OF J105518.12-475933.2 -26.2 0.0 26.2 UCAC4 57 17.3 1.7 -2.9 -18.5 0.1 TWA? J105524.25-472611.7 A -56.4 4.1 56.6 UCAC4 80 -30.9 3.2 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J105524.25-472611.7 B -62.9 -6.4 PPMXL 60.6 7.6 3.1 -12.8 -12.7 -8.0 TWA? J105711.36+054454.2 -55.3 -40.4 68.5 UCAC4 62.5 OF J105850.47-234620.8 -97.9 -20.7 100.1 UCAC4 43 TWA J110119.22+525222.9 -102.3 -20.1 104.3 UCAC4 46.9 OF J110335.71-302449.5 -29.9 -4.0 PPMXL 50.2 2.2 OF J110335.71-302449.5 -13.2 -5.9 UCAC4 73.8 OF J110551.56-780520.7 -62.7 15.8 64.7 UCAC4 80 AR? J111052.06-725513.0 -58.8 3.2 58.9 UCAC4 58.5 BP?

186 J111103.54-313459.0 -45.2 1.3 45.2 UCAC4 54.7 21.2 5.4 OF J111128.13-265502.9 -87.6 -17.7 89.4 UCAC4 22.9 1.2 10.3 YF? J111229.74-461610.1 -49.5 9.9 50.5 UCAC4 86.1 -9.5 0.7 OF J111309.15+300338.4 -58.0 -9.5 58.8 UCAC4 60 OF J111707.56-390951.3 -27.3 -6.7 28.1 UCAC4 84.6 -7.7 1.7 YF? J112047.03-273805.8 -52.1 -26.0 58.2 PPMXL 50 10.6 4.4 -6.4 -15.8 -3.6 TWA J112105.43-384516.6 -50.2 -0.2 PPMXL 60.6 12.0 0.8 -9.8 -16.0 -0.7 TWA J112512.28-002438.2 -52.6 -23.9 57.8 UCAC4 55.9 OF J112547.46-441027.4 -83.9 -57.0 101.4 UCAC4 50.5 20.4 2.6 -6.3 -28.1 -13.2 AB J112651.28-382455.5 -60.9 -17.7 63.4 UCAC4 53.5 11.4 0.6 -8.8 -17.0 -4.7 TWA J112816.27-261429.6 -25.6 -16.8 30.6 UCAC4 51.9 -87.8 7.3 OF J112955.84+520213.2 -71.5 -15.5 73.2 UCAC4 68.7 OF J113105.57+542913.5 -31.1 -4.6 31.4 UCAC4 67.8 OF J113114.81-482628.0 -38.1 -5.3 38.5 UCAC4 64.1 2.4 4.8 OF J113120.31+132140.0 -30.5 -25.4 39.7 UCAC4 74.6 OF J114623.01-523851.8 -79.8 8.2 80.2 UCAC4 64 AR Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J114728.37+664402.7 -130.8 3.7 130.9 PPMXL 20.1 OF J115156.73+073125.7 -126.1 110.4 167.6 PPMXL 33.1 OF J115438.73-503826.4 -47.8 -9.3 48.7 UCAC4 57 TWA J115927.82-451019.3 -52.8 -12.8 54.3 UCAC4 56.5 11.4 1.2 -7.0 -16.9 -2.8 TWA J115949.51-424426.0 -65.1 -16.5 67.2 UCAC4 54 9.4 0.7 -9.8 -16.5 -4.1 TWA J115957.68-262234.1 -31.9 -16.7 36.0 UCAC4 50 10.6 3.3 -2.2 -13.4 1.5 TWA J120001.54-173131.1 -81.0 -24.6 84.7 UCAC4 43 6.6 5.3 -10.9 -14.8 -2.2 TWA J120237.94-332840.4 -64.3 -24.3 68.7 UCAC4 51 8.1 5.2 -8.8 -15.7 -4.1 TWA

187 J120647.40-192053.1 -55.9 -2.9 PPMXL 14.6 0.9 OF J120929.80-750540.2 -62.8 -0.4 62.8 UCAC4 82 AR J121153.04+124912.9 -70.1 -60.1 92.3 PPMXL 48.4 OF J121341.59+323127.7 B 51 OF J121341.59+323127.7 A -17.3 -17.4 24.5 UCAC4 51 OF J121429.15-425814.8 -60.7 -13.1 62.1 UCAC4 71.7 -14.4 4.8 YF? J121511.25-025457.1 -42.4 -51.5 66.7 UCAC4 53.3 OF J121558.37-753715.7 -143.1 -11.2 143.5 UCAC4 37 AR J122643.99-122918.3 -164.4 -82.7 184.0 UCAC4 12 -6.2 1.4 OF J122725.27-454006.6 -29.7 -12.3 32.2 UCAC4 58 13.8 1.3 0.0 -16.4 0.1 TWA? J122813.57-431638.9 -105.1 -10.9 105.7 UCAC4 84.3 YF J123005.17-440236.1 -56.8 -12.8 58.2 UCAC4 56 8.5 1.8 -8.3 -15.5 -1.7 TWA J123234.07-414257.5 -49.4 -28.5 57.0 UCAC4 55 TWA J123425.84-174544.4 -50.5 -33.9 60.8 UCAC4 50.6 19.8 2.2 OF J123704.99-441919.5 -46.2 -15.8 48.8 SuperCosmos 57 TWA J124054.09-451625.4 -32.3 -13.7 35.1 UCAC4 58 11.5 1.3 -1.2 -14.9 -0.5 TWA Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J124612.32-384013.5 -35.1 -14.5 38.0 UCAC4 56 TWA? J124955.67-460737.3 -35.3 -17.7 39.5 UCAC4 58 9.5 0.8 -2.5 -14.1 -2.0 TWA J125049.12-423123.6 -16.1 -24.0 28.9 UCAC4 55.5 8.7 12.9 2.1 -11.0 -2.9 TWA? J125326.99-350415.3 -47.3 -23.1 52.6 UCAC4 53.5 5.6 1.7 -5.9 -13.0 -2.5 TWA J125902.99-314517.9 -53.8 -30.2 61.7 UCAC4 51 4.3 2.0 -6.8 -13.5 -3.7 TWA J130501.18-331348.7 -44.2 -13.3 46.2 UCAC4 53 TWA? J130522.37-405701.2 -34.4 -22.0 40.8 UCAC4 56.5 6.3 1.0 -3.1 -12.0 -2.6 TWA J130530.31-405626.0 -34.5 -26.8 43.7 UCAC4 56 9.0 1.5 -1.4 -14.4 -2.7 TWA

188 J130618.16-342857.0 -47.6 -27.7 55.1 UCAC4 53 TWA J130650.27-460956.1 -37.3 -23.4 44.0 UCAC4 57.5 TWA? J130731.03-173259.9 -55.2 -59.2 80.9 UCAC4 41.5 TWA? J131129.00-425241.9 -38.1 -22.9 44.5 UCAC4 57 TWA? J132112.77-285405.1 -48.4 -45.6 66.5 UCAC4 84.3 94.2 4.7 OF J133238.94+305905.8 -168.8 -69.6 182.6 WISE-2M 21.7 OF J133509.40+503917.5 -95.8 -45.9 106.3 PPMXL 42 AB? J133901.87-214128.0 -44.1 -34.5 56.0 UCAC4 53.9 OF J134146.41+581519.2 72.4 -60.9 94.6 PPMXL 23.2 OF J134907.28+082335.8 -93.5 -41.9 102.5 PPMXL 53.5 OF J135145.65-374200.7 -43.3 20.3 PPMXL 4.8 1.3 YF? J135511.38+665207.0 -97.4 26.3 100.9 UCAC4 61.1 OF J135913.33-292634.2 -74.5 -48.3 88.8 UCAC4 50.4 -21.1 0.5 OF J140337.56-501047.9 -31.7 -17.4 UCAC4 68.7 YF? J141045.24+364149.8 -76.0 6.9 76.3 PPMXL 54.8 OF J141332.23-145421.1 -58.9 -29.3 65.8 UCAC4 45.5 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J141510.77-252012.0 -37.5 -32.6 49.7 UCAC4 64.2 OF J141842.36+475514.9 -26.1 10.0 28.0 UCAC4 57.3 OF J141903.13+645146.4 -104.4 9.8 104.9 PPMXL 35 AB? J143517.80-342250.4 -66.1 -34.8 74.7 UCAC4 59 AR? J143648.16+090856.5 -85.9 -44.4 96.7 UCAC4 45.4 OF J143713.21-340921.1 -31.1 -27.8 UCAC4 52.7 OF J143753.36-343917.8 -162.8 -91.8 186.9 WISE-2M 24.5 AR J145014.12-305100.6 -16.5 -18.7 24.9 UCAC4 74.3 OF

189 J145731.11-305325.0 -27.8 -29.6 40.6 UCAC4 45.5 OF J145949.90+244521.9 -51.4 -23.8 56.6 UCAC4 66.5 OF J150119.48-200002.1 -37.2 -35.2 51.2 UCAC4 50.7 OF J150230.94-224615.4 -61.0 -51.2 79.7 PPMXL 46.5 OF J150355.37-214643.1 -27.2 -28.7 39.5 UCAC4 67.6 -2.2 1.4 YF? J150601.66-240915.0 -11.3 -15.3 19.0 UCAC4 82.1 OF J150723.91+433353.6 80.8 38.7 89.6 PPMXL 37.1 OF J150820.15-282916.6 -67.0 -41.3 78.7 UCAC4 51 AR? J150836.69-294222.9 -25.6 -23.0 34.4 UCAC4 56.8 OF J150939.16-133212.4 -47.6 -52.0 70.5 UCAC4 29.3 -7.3 10.3 YF? J151212.18-255708.3 -18.8 -31.4 36.6 UCAC4 52.4 YF? J151242.69-295148.0 -14.6 -25.9 29.7 UCAC4 80.2 YF? J151411.31-253244.1 -10.2 -18.0 20.7 UCAC4 73.6 YF? J152150.76-251412.1 -32.4 -56.2 64.9 UCAC4 42.6 OF J153248.80-230812.4 -12.6 -20.7 24.2 UCAC4 78.7 YF? J153549.35-065727.8 -17.1 -18.1 24.9 UCAC4 51.2 -6.9 2.0 YF? Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J154220.24+593653.0 -89.0 23.1 92.0 UCAC4 46.1 -21.9 2.4 OF J154227.07-042717.1 -11.3 -15.8 19.4 UCAC4 55.2 YF? J154349.42-364838.7 -12.4 -31.8 34.1 UCAC4 71.8 YF? J154435.17+042307.5 -25.3 -25.9 36.2 UCAC4 58 -15.4 3.5 YF? J154656.43+013650.8 -52.0 -24.2 57.4 UCAC4 63.3 OF J155046.47+305406.9 -35.1 -17.0 39.0 UCAC4 50.3 OF J155515.35+081327.9 -32.7 0.7 32.7 UCAC4 20.5 OF J155759.01-025905.8 -33.4 -26.4 42.6 UCAC4 48.3 OF

190 J155947.24+440359.6 -70.7 -8.9 71.3 UCAC4 33.5 AB? J160116.86-345502.7 -51.7 -67.0 84.6 PPMXL 45 AR? J160549.19-311521.6 -23.4 -29.5 37.7 UCAC4 56.9 -1.6 2.8 YF? J160828.45-060734.6 -20.4 -25.0 32.3 UCAC4 42.6 -55.4 1.4 YF? J160954.85-305858.4 -12.3 -30.2 32.6 UCAC4 70.8 OF J161410.76-025328.8 AB -13.6 -16.9 21.7 UCAC4 85.4 -47.1 7.2 OF J161743.18+261815.2 -28.0 5.6 28.6 UCAC4 40.2 -12.0 0.9 OF J162422.68+195922.0 -71.3 -71.0 100.6 PPMXL 35.2 OF J162548.69-135912.0 -26.4 -38.6 46.8 PPMXL 75.2 125.1 0.3 OF J162602.80-155954.5 -11.5 -23.6 26.3 UCAC4 87.7 -61.8 0.6 OF J163051.34+472643.8 -56.7 2.8 56.8 UCAC4 30 AB? J163632.90+635344.9 -99.6 23.2 102.3 UCAC4 20.6 OF J164539.37+702400.1 -16.4 45.5 48.4 PPMXL 34.5 OF J170415.15-175552.5 -6.6 -26.7 27.5 UCAC4 45.7 -169.3 0.2 OF J171038.44-210813.0 -13.0 -26.7 29.7 UCAC4 38.7 -5.0 2.3 YF? J171117.68+124540.4 -10.9 -39.6 41.1 UCAC4 71.6 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J171426.13-214845.0 -18.7 -27.8 33.5 UCAC4 60 AR? J171441.70-220948.8 -16.3 -37.3 40.7 UCAC4 56.8 -7.8 0.8 YF? J172130.71-150617.8 -14.8 -42.8 45.3 PPMXL 39 AR? J172131.73-084212.3 -37.8 -22.4 44.0 SuperCosmos 29.5 AR J172309.67-095126.2 20.8 -45.6 50.1 SuperCosmos 49.4 OF J172454.26+502633.0 31.8 108.0 112.6 UCAC4 29.6 OF J172615.23-031131.9 -25.7 -100.7 103.9 UCAC4 44.8 YF J172951.38+093336.9 -19.1 -43.6 47.6 UCAC4 27 OF

191 J173353.07+165511.7 -108.6 -133.1 171.8 PPMXL 6.5 -22.1 2.3 -12.6 -17.3 -7.8 BP J173544.26-165209.9 -7.7 -82.5 82.9 UCAC4 40.5 -16.7 2.5 -13.1 -16.5 -9.4 BP J173623.80+061853.0 -21.3 -40.4 45.7 UCAC4 23.2 OF J173826.94-055628.0 -11.0 -10.4 15.1 UCAC4 39.5 AR J174203.85-032340.4 -30.5 -20.8 36.9 UCAC4 21 AR J174426.59-074925.3 6.2 -38.2 38.7 PPMXL 38.6 OF J174439.27+483147.1 -30.5 -24.6 39.2 UCAC4 13 AB? J174536.31-063215.3 -2.8 -3.6 4.6 PPMXL 34 AR? J174735.31-033644.4 -5.6 -6.2 8.4 UCAC4 33.5 AR J174811.33-030510.2 26.1 -43.2 50.5 UCAC4 39.6 OF J174936.01-010808.7 -21.3 -47.1 51.7 SuperCosmos 13.5 AR? J175022.27-094457.8 -21.3 -20.6 29.6 UCAC4 28 AR J175839.30+155208.6 39.5 -11.7 41.2 SuperCosmos 22.8 -11.8 0.9 OF J175942.12+784942.1 -17.9 39.4 43.3 PPMXL 38.5 0.4 1.5 OF J180508.62-015058.5 3.7 -14.7 15.2 UCAC4 23 AR J180554.92-570431.3 1.0 -75.4 75.4 UCAC4 56.1 YF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J180658.07+161037.9 -9.0 -25.7 27.2 UCAC4 23 -18.5 6.4 -11.0 -14.2 -5.6 BP? J180733.00+613153.6 0.0 32.9 32.9 UCAC4 40.5 AB? J180929.71-543054.2 7.7 -104.8 105.1 UCAC4 43.5 BP? J181059.88-012322.4 -2.7 0.3 2.7 PPMXL 24.5 AR J181725.08+482202.8 -45.4 49.7 67.3 UCAC4 23 -25.5 1.8 OF J182054.20+022101.5 -1.8 -6.3 6.6 UCAC4 21 AR? J182905.79+002232.2 5.3 -5.3 7.5 UCAC4 32.5 AR J184204.85-555413.3 13.4 -73.9 75.1 UCAC4 80.2 YF

192 J184206.97-555426.2 9.7 -81.2 81.8 UCAC4 55 1.2 0.9 -8.6 -17.5 -8.7 BP J184536.02-205910.8 -0.4 -49.8 49.8 PPMXL 70 BP? J190453.69-140406.0 32.8 -65.9 73.6 UCAC4 30 -26.0 2.4 -22.7 -16.0 -4.0 AR J191019.82-160534.8 21.8 -27.0 34.7 PPMXL 57.5 AR? J191036.02-650825.5 5.5 -77.3 77.5 UCAC4 111.6 YF J191235.95+630904.7 73.3 31.0 79.6 UCAC4 61.4 OF J191500.80-284759.1 17.9 -49.8 52.9 UCAC4 74.5 BP J191534.83-083019.9 14.6 -22.5 26.8 PPMXL 60.4 -27.0 2.9 OF J191629.61-270707.2 17.3 -50.2 53.1 UCAC4 73 BP J192240.05-061208.0 -1.9 -39.7 39.7 SuperCosmos 63.2 OF J192242.80-051553.8 33.4 -17.7 37.8 SuperCosmos 47.5 AR? J192250.70-631058.6 -10.0 -75.0 75.7 PPMXL 64 4.4 1.7 -6.7 -22.4 -1.6 TH J192323.20+700738.3 35.4 51.8 62.7 UCAC4 64.3 20.2 10.0 OF J192434.97-344240.0 22.1 -71.7 75.0 UCAC4 56 -5.3 1.3 -8.1 -16.7 -9.0 BP J192600.77-533127.6 A 34.1 -87.4 93.8 UCAC4 21.3 36.1 1.8 OF J192600.77-533127.6 B 34.1 -87.4 93.8 UCAC4 21.3 36.1 1.8 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J192659.33-710923.8 8.2 -79.4 79.8 UCAC4 72.3 -18.3 3.7 OF J193052.51-545325.4 14.1 -64.9 66.4 UCAC4 78 -23.0 2.8 OF J193411.46-300925.3 24.0 -55.2 60.2 PPMXL 67 -5.4 8.5 -7.5 -15.3 -10.1 BP J193711.26-040126.7 43.4 -30.8 53.2 UCAC4 25.4 OF J194309.89-601657.8 -5.7 -84.2 84.4 UCAC4 58.5 TH J194444.21-435903.0 31.9 -160.1 163.2 PPMXL 40 AB? J194539.01+704445.9 -1.6 30.4 30.4 UCAC4 76 -9.5 3.9 OF J194714.54+640237.9 86.1 28.2 90.6 PPMXL 25.5 AB?

193 J194816.54-272032.3 21.4 -49.1 53.6 UCAC4 72 BP J194834.58-760546.9 24.2 -70.8 74.8 UCAC4 54.5 BP? J195227.23-773529.4 B 63.0 -97.5 116.1 UCAC4 41.5 -5.4 2.2 -21.1 -8.8 -5.4 AR J195227.23-773529.4 A 63.0 -97.5 116.1 UCAC4 36.8 69.6 1.5 OF J195315.67+745948.9 30.0 67.9 74.2 UCAC4 39.5 AB? J195331.72-070700.5 40.0 -42.5 58.4 UCAC4 55.5 BP J195340.71+502458.2 27.8 37.7 46.8 SuperCosmos 38.7 OF J195602.95-320719.3 35.2 -59.9 69.5 UCAC4 60 BP J200137.19-331314.5 27.0 -58.6 64.5 UCAC4 63.5 -4.1 1.5 -7.4 -16.0 -9.1 BP J200311.61-243959.2 -3.2 -52.7 52.8 UCAC4 58.6 -8.0 1.4 OF J200409.19-672511.7 7.0 -84.5 84.8 UCAC4 57.5 TH J200423.80-270835.8 21.2 -19.4 28.7 UCAC4 68.2 OF J200556.44-321659.7 36.7 -68.5 77.7 UCAC4 54 BP J200837.87-254526.2 30.0 -58.6 65.8 UCAC4 59.5 BP J200853.72-351949.3 49.4 -76.7 91.2 UCAC4 47.5 BP J201000.06-280141.6 40.7 -62.0 74.2 UCAC4 55.5 -5.7 3.2 -8.8 -15.0 -10.6 BP Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J201931.84-081754.3 13.4 -27.2 30.3 PPMXL 60.5 OF J202505.36+835954.2 40.0 77.8 87.5 UCAC4 28.8 -4.1 2.1 OF J202716.80-254022.8 15.6 -38.5 41.5 UCAC4 50.8 OF J203023.10+711419.8 20.6 25.7 32.9 UCAC4 81 -15.1 0.7 OF J203301.99-490312.6 83.7 -208.8 224.9 WISE-2M 28.5 AB J203337.63-255652.8 52.8 -75.9 92.5 UCAC4 45 -5.7 0.7 -8.7 -15.8 -9.9 BP J204406.36-153042.3 15.7 -69.3 71.1 PPMXL 37.6 OF J204714.59+110442.2 33.9 -14.9 37.0 SuperCosmos 49.9 OF

194 J205131.01-154857.6 21.4 -55.7 59.7 UCAC4 28.6 OF J205136.27+240542.9 43.8 -73.8 85.8 SuperCosmos 25.5 4.1 0.5 OF J205832.99-482033.8 16.0 -64.1 66.1 PPMXL 66 TH J210131.13-224640.9 35.0 -71.6 79.7 UCAC4 46.9 YF J210338.46+075330.3 27.1 -43.6 51.3 UCAC4 74.1 -18.0 1.0 YF? J210708.43-113506.0 82.4 -5.0 PPMXL -8.1 1.6 YF? J210722.53-705613.4 27.5 -91.6 95.6 UCAC4 44.7 -2.7 2.6 OF J210736.82-130458.9 59.4 -86.0 104.5 UCAC4 23.5 0.7 8.1 OF J210957.48+032121.1 138.7 -23.2 140.6 PPMXL 27 -20.0 0.9 -21.0 -16.2 -4.9 AR J211004.67-192031.2 87.0 -94.4 128.4 UCAC4 32.5 -6.0 3.3 -9.2 -15.7 -9.9 BP J211005.41-191958.4 89.0 -89.9 126.5 UCAC4 33.5 -6.1 1.1 -9.8 -15.4 -10.3 BP J211031.49-271058.1 A 69.7 -72.2 100.4 UCAC4 54.5 -13.4 -19.6 -12.2 BP J211031.49-271058.1 B 43.0 -58.5 PPMXL 18.9 -6.3 2.3 YF? J211635.34-600513.4 31.5 -97.0 102.0 UCAC4 49 2.4 2.3 -8.4 -22.2 -1.6 TH J212007.84-164548.2 58.8 -54.5 80.2 UCAC4 50 -7.1 3.2 -10.3 -15.0 -8.9 BP J212128.89-665507.1 97.2 -104.1 142.4 UCAC4 30.5 BP Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J212230.56-333855.2 23.1 -78.1 81.4 UCAC4 53 TH? J212750.60-684103.9 29.9 -85.8 90.9 UCAC4 53.5 TH J213507.39+260719.4 63.2 12.8 64.5 UCAC4 49.8 OF J213520.34-142917.9 46.6 -78.8 91.6 UCAC4 68.5 AB? J213644.54+670007.1 OF J213708.89-603606.4 41.0 -89.0 98.0 UCAC4 50 1.9 0.5 -9.5 -21.2 -1.7 TH J213740.24+013713.2 80.3 -59.4 99.9 UCAC4 38 -5.5 9.7 -7.9 -12.6 -11.5 BP? J213835.44-505111.0 104.6 -56.3 118.8 UCAC4 28.2 OF

195 J213847.58+050451.4 52.8 -42.9 68.0 PPMXL 50 BP? J214101.48+723026.7 48.3 5.4 48.6 UCAC4 79.7 OF J214126.66+204310.5 45.9 -45.1 64.4 UCAC4 73.5 AB? J214414.73+321822.3 78.4 32.1 84.7 PPMXL 29.5 OF J214905.04-641304.8 48.0 -97.1 108.3 UCAC4 46 TH J215053.68-055318.9 3.9 -35.8 36.0 UCAC4 45.4 -20.9 1.1 OF J215128.95-023814.9 36.9 -33.4 49.8 UCAC4 31.7 OF J215717.71-341834.0 38.6 -67.9 78.1 UCAC4 53.5 TH? J220216.29-421034.0 50.4 -90.9 103.9 UCAC4 45.5 -2.8 1.0 -8.3 -10.9 -2.2 TH J220254.57-644045.0 51.4 -95.2 108.2 UCAC4 46 -0.2 4.1 -11.8 -20.4 1.8 TH J220306.98-253826.6 71.9 -109.5 131.0 UCAC4 50 AB J220730.16-691952.6 103.3 -66.2 122.7 UCAC4 47.7 -11.7 0.8 OF J220850.39+114412.7 90.5 -50.9 103.9 PPMXL 37 -9.4 3.5 -10.2 -15.3 -9.1 BP J221217.17-681921.1 62.0 -62.4 88.0 UCAC4 98 YF J221559.00-014733.0 73.0 -38.1 82.3 SuperCosmos 58.2 OF J221833.85-170253.2 41.6 -37.1 55.7 UCAC4 69 OF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J221842.70+332113.5 56.8 -13.9 58.5 UCAC4 37.6 OF J222024.21-072734.5 39.5 -49.0 62.9 UCAC4 52.1 OF J224111.08-684141.8 34.1 -42.8 54.7 SuperCosmos 70.5 TH? J224221.02-410357.2 76.2 -51.3 91.9 UCAC4 45 BP? J224448.45-665003.9 66.6 -81.4 105.2 UCAC4 46 TH J224500.20-331527.2 175.7 -143.2 226.7 WISE-2M 20.9 BP? J224634.82-735351.0 59.8 -68.3 90.8 UCAC4 51 7.5 1.7 -9.6 -21.0 -1.5 TH J225914.87+373639.3 92.8 -30.8 97.8 UCAC4 25.6 -17.0 1.8 OF

196 J225934.89-070447.1 67.5 -49.6 83.8 UCAC4 31.1 OF J230209.10-121522.0 69.3 -60.1 91.7 UCAC4 43.5 -11.4 1.2 -9.9 -19.8 0.7 TH? J230327.73-211146.2 41.5 -47.8 63.3 UCAC4 71.9 OF J230740.98+080359.7 58.4 -9.6 59.2 UCAC4 54.2 OF J231021.75+685943.6 145.7 19.8 147.0 PPMXL 61 OF J231211.37+150329.7 39.3 -22.9 45.5 UCAC4 63.8 OF J231246.53-504924.8 77.7 -73.3 106.8 UCAC4 23.3 -22.6 OF J231457.86-633434.0 B 115.8 -46.9 124.9 UCAC4 33 -110.6 4.6 -68.6 33.5 82.4 BP J231457.86-633434.0 A 115.8 -46.9 124.9 UCAC4 60.8 71.5 8.0 OF J231543.66-140039.6 77.3 -24.6 81.1 UCAC4 47.8 -52.0 2.6 OF J231933.16-393924.3 120.5 -67.3 PPMXL 31 1.0 0.8 -12.0 -15.5 -5.4 BP J232008.15-634334.9 122.7 -36.1 127.9 UCAC4 30.1 BP? J232151.23+005037.3 127.3 19.4 128.8 PPMXL 31.6 OF J232656.43+485720.9 48.1 -14.5 50.2 UCAC4 61.7 17.9 1.0 OF J232857.75-680234.5 66.8 -67.1 94.7 UCAC4 49.5 8.5 2.4 -7.8 -22.4 -1.7 TH J232904.42+032910.8 78.7 -46.0 91.2 PPMXL 59.6 YF Table 4.8 (cont’d)

WISE Designation Comp µra µdec µtot pm (ref) d RV RV (err) U V W MG? [mas/yr] [mas/yr] [mas/yr] [pc] [km/s] [km/s] [[km/s] [km/s] [km/s] [km/s]

J232917.64-675000.6 69.4 -69.3 98.1 UCAC4 48 TH J232959.47+022834.0 34.2 -39.1 52.0 UCAC4 67.3 OF

197 J233647.87+001740.1 59.3 -52.4 79.1 PPMXL 48.5 OF J234243.45-622457.1 82.9 -62.3 103.7 UCAC4 45.5 TH J234326.88-344658.5 87.2 -78.2 117.1 UCAC4 40.5 TH? J234333.91-192802.8 79.8 -36.4 87.7 UCAC4 49.1 -13.4 4.1 OF J234347.83-125252.1 43.6 -6.7 44.1 UCAC4 60.4 OF J234857.35+100929.3 54.6 -34.0 64.3 UCAC4 70.8 OF J234924.87+185926.7 55.3 -27.1 61.6 UCAC4 58 6.1 1.2 OF J234926.23+185912.4 47.2 -16.2 49.9 UCAC4 43.6 OF J235250.70-160109.7 48.9 -20.1 52.9 UCAC4 48.5 OF 2M 12182363-3515098 -48.4 -20.7 PPMXL 62.2 11.5 1.5 -6.0 -18.3 -2.0 TWA Table 4.9. Spectral Typing

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J000453.05-103220.0 4.4 J001527.62-641455.2 2.5 J001536.79-294601.2 4.1 J001552.28-280749.4 3.2 0.74 0.2 0.75 0.86 J001555.65-613752.2 3.4 0.43 3.6 0.44 0.66 1.21 J001709.96+185711.8 N 2.1 J001709.96+185711.8 S 2.1 J001723.69-664512.4 2.4 J002101.27-134230.7 4.4 J003057.97-655006.4 4 J003234.86+072926.4 3.6 J003903.51+133016.0 4.9 J004210.98-425254.8 2.4 J004524.84-775207.5 3.3 J004528.25-513734.4 B 2.1 J004528.25-513734.4 A 2.1 J004826.70-184720.7 4.4 0.92 -1.7 1.03 J005633.96-225545.4 2.4 0.80 -0.4 0.84 0.90 J010047.97+025029.0 3.7 0.89 -1.4 1.01 J010126.59+463832.6 -0.1 0.93 -1.8 1.03 0.98 J010243.86-623534.8 3.9 0.38 4.2 J010251.05+185653.7 3.6 0.35 4.4 0.43 0.70 J010629.32-122518.4 3 0.45 3.4 0.72 1.16 J010711.99-193536.4 1.8 J011440.20+205712.9 1.7 0.87 -1.2 1.03 0.97 J011846.91+125831.4 0.1 0.89 -1.4 1.11 1.00 J012118.22-543425.1 1 J012245.24-631845.0 3.4 0.37 4.2 0.67 1.18 J012332.89-411311.4 4.7 0.35 4.4 0.39 0.63 1.19 J012532.11-664602.6 4.2 0.36 4.3 0.42 0.71 1.21 J013110.69-760947.7 2.6 J014156.94-123821.6 2.6 0.57 2.1 0.64 0.79 J014431.99-460432.1 5.9 0.27 5.3 0.29 0.57 1.37 J015057.01-584403.4 2.9 J015257.41+083326.3 4.2 0.52 2.6 0.78

198 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J015350.81-145950.6 3.9 0.62 1.6 0.65 0.84 J015455.24-295746.0 5.1 0.81 -0.5 0.84 1.15 J020012.84-084052.4 2.5 J020302.74+221606.8 4.1 0.54 2.4 0.63 0.78 J020305.46-590146.6 5 0.54 2.4 0.56 0.73 1.09 J020805.55-474633.7 1.5 J021258.28-585118.3 2.9 J021330.24-465450.3 3.8 0.36 4.3 0.69 1.23 J021935.52-455106.2 W J021935.52-455106.2 E 7.1 J022240.88+305515.4 3.5 J022424.69-703321.2 4.3 J023005.14+284500.0 3 0.84 -0.9 0.91 0.96 J023139.36+445638.1 3.6 0.36 4.3 0.43 0.68 J024552.65+052923.8 3.2 0.74 0.2 0.75 0.88 J024746.49-580427.4 3 J024852.67-340424.9 4.5 J025154.17+222728.9 3.2 J025913.40+203452.6 -0.9 J030002.98+550652.4 1.1 J030251.62-191150.0 4.6 J030444.10+220320.8 4.5 0.94 -1.9 1.02 J030824.14+234554.2 2.4 0.77 -0.2 0.79 0.89 J031650.45-350937.9 3.7 0.43 3.6 0.75 1.14 J032047.66-504133.0 2.4 J033235.82+284354.6 4 J033431.66-350103.3 3.4 0.38 4.1 0.41 0.64 1.17 J033640.91+032918.3 4.3 0.33 4.6 0.67 1.18 J034115.60-225307.8 1.7 0.73 0.3 0.87 1.09 J034116.16-225244.0 1.9 0.70 0.6 0.67 0.81 1.12 J034236.95+221230.2 5.8 J034444.80+404150.4 2.7 J035100.83+141339.2 4.4 0.55 2.3 0.58 0.79 J035134.51+072224.5 7.4 J035223.52-282619.6 2.2 1.13 0.6 0.79 1.13

199 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J035345.92-425018.0 2.4 1.13 0.6 0.80 1.13 J035716.56-271245.5 0.7 J035733.95+244510.2 1 0.71 0.6 0.73 0.85 J035829.67-432517.2 3.5 0.44 3.5 0.45 0.68 1.20 J040539.68-401410.5 4.1 1.18 0.4 0.68 1.18 J040649.38-450936.3 3.3 1.14 0.5 0.73 1.14 J040711.50-291834.3 1.4 J040743.83-682511.0 3.3 J040809.80-611904.3 1.3 1.07 0.9 0.93 1.07 J040827.01-784446.7 1.7 J041050.04-023954.4 0.5 1.10 0.8 0.87 1.10 J041255.78-141859.2 2.6 1.10 0.7 0.83 1.10 J041336.14-441332.4 3.9 J041525.58-212214.5 5.2 J041749.66+001145.4 -0.1 J041807.76+030826.0 1.6 J042139.19-723355.7 2.5 J042500.91-634309.8 4.8 0.45 3.4 0.42 0.64 1.19 J042736.03-231658.8 4.7 J042739.33+171844.2 4.1 J043213.46-285754.8 4 0.38 4.1 0.42 0.64 1.18 J043257.29+740659.3 3.7 0.60 1.8 0.64 0.79 J043657.44-161306.7 3.2 J043726.87+185126.2 -0.2 J043923.21+333149.0 3.3 J043939.24-050150.9 B -0.5 0.88 -1.2 0.97 J043939.24-050150.9 A -0.5 0.88 -1.2 0.97 J044036.23-380140.8 1.7 J044120.81-194735.6 1 0.81 -0.5 0.94 1.08 J044154.44+091953.1 4 0.34 4.5 0.39 0.67 1.18 J044336.19-003401.8 4 J044349.19+742501.6 3.7 J044356.87+372302.7 3.3 J044455.71+193605.3 1.2 J044530.77-285034.8 3.4 0.42 3.7 0.44 0.68 1.19

200 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J044700.46-513440.4 2.5 J044721.05+280852.5 3.4 0.42 3.7 0.48 0.72 J044800.86+143957.7 AB 10.5 J044802.59+143951.1 A J045114.41-601830.5 1.2 J045420.20-400009.9 3.6 0.36 4.3 0.41 0.67 1.27 J045651.47-311542.7 0.6 0.99 -2.4 1.03 0.98 J050333.31-382135.6 3.6 0.37 4.2 0.41 0.68 1.13 J050610.44-582828.5 2.9 0.53 2.5 0.78 1.12 J050827.31-210144.3 5.9 J051026.38-325307.4 7.3 J051255.82-212438.7 3.4 0.39 4.0 0.42 0.63 1.15 J051310.57-303147.7 0.3 J051403.20-251703.8 2.9 0.45 3.4 0.74 1.14 J051650.66+022713.0 3.9 0.33 4.6 0.38 0.65 1.19 J051803.00-375721.2 2.4 J052419.14-160115.5 4.3 J052535.85-250230.2 3.6 0.64 1.3 0.61 0.77 1.12 J052944.69-323914.1 4.7 J053100.27+231218.3 4.3 J053311.32-291419.9 4 J053328.01-425720.1 A 4 0.59 1.8 0.79 1.13 J053328.01-425720.1 B 4 J053747.56-424030.8 4.9 J053925.08-424521.0 2.3 J054223.86-275803.3 3.4 0.40 3.9 0.42 0.63 1.21 J054433.76-200515.5 2.6 J054448.20-265047.4 -0.2 J054709.88-525626.1 0.8 0.83 -0.8 0.94 1.08 J054719.52-335611.2 3.3 0.42 3.6 0.43 0.67 1.21 J055008.59+051153.2 2 0.77 -0.1 0.86 0.86 J055041.58+430451.8 1.2 0.74 0.2 0.80 0.85 J055208.04+613436.6 0.1 0.85 -0.9 0.88 0.90 J055941.10-231909.4 3.6 0.40 3.9 0.43 0.66 1.16 J060156.10-164859.9 B 2.5

201 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J060156.10-164859.9 A 2.5 J060224.56-163450.0 0.8 J060329.60-260804.7 3.4 3.40 -1.9 0.72 1.18 J061313.30-274205.6 3.2 J061740.43-475957.2 3.2 0.40 3.8 0.46 0.70 1.17 J061851.01-383154.9 4.2 0.96 -2.1 1.03 -2.96 J062047.17-361948.2 0.4 J062130.52-410559.1 6.3 0.40 3.8 0.46 0.70 1.17 J062407.62+310034.4 3.9 J063001.84-192336.6 4.2 0.60 1.8 0.88 -0.92 J065846.87+284258.9 2.1 0.59 1.8 0.68 0.84 J070657.72-535345.9 1.1 0.87 -1.1 0.84 0.95 1.09 J071036.50+171322.6 0.8 0.83 -0.7 0.86 0.89 J072641.52+185034.0 2.5 0.49 2.9 0.51 0.71 J072821.16+334511.6 3.5 J072911.26-821214.3 1.8 J073138.47+455716.5 3.2 0.44 3.5 0.50 0.72 J075233.22-643630.5 1.6 0.84 -0.9 0.89 0.93 1.10 J075808.25-043647.5 2.5 0.57 2.0 0.80 1.12 J075830.92+153013.4 B 5.3 J075830.92+153013.4 A 5.3 J080352.54+074346.7 2.4 0.62 1.5 0.65 0.82 J080636.05-744424.6 2.4 J081443.62+465035.8 4.4 0.37 4.2 0.43 0.66 J081738.97-824328.8 3.5 J082105.04-090853.8 B 2.2 J082105.04-090853.8 A 2.2 0.69 0.8 0.87 1.13 J082558.91+034019.5 5.1 J083528.87+181219.9 2.4 0.55 2.3 0.58 0.75 J090227.87+584813.4 2.9 0.56 2.2 0.56 0.76 J092216.12+043423.3 1.5 0.73 0.4 0.81 0.87 J093212.63+335827.3 3.7 0.45 3.3 0.52 0.71 J094317.05-245458.3 0.4 J094508.15+714450.1 5.3 0.24 5.7 0.35 0.57 J100146.28+681204.1 4.4 0.68 0.8 0.69 0.83

202 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J100230.94-281428.2 4.1 0.37 4.2 0.64 1.23 J101543.44+660442.3 1.7 0.55 2.2 0.61 0.77 J101905.68-304920.3 2.2 J101917.57-443736.0 3.3 0.41 3.7 0.76 1.10 J102602.07-410553.8 B 2.8 0.67 1.0 0.85 1.09 J102602.07-410553.8 A 2.8 0.67 1.0 0.85 1.09 J102636.95+273838.4 3.4 0.85 -0.9 1.01 1.02 J103016.11-354626.3 1.8 J103137.59-374915.9 2.9 0.69 0.8 0.93 -2.02 J103557.17+285330.8 3.2 0.66 1.1 0.54 0.77 J103952.70-353402.5 1.9 0.69 0.7 0.67 0.81 1.11 J104008.36-384352.1 1.8 0.74 0.3 0.76 0.87 1.08 J104044.98-255909.2 2.6 J104551.72-112615.4 4.1 0.24 5.6 0.72 1.09 J105515.87-033538.2 4.7 0.80 -0.4 0.61 0.82 J105518.12-475933.2 0.6 J105524.25-472611.7 A 2.3 0.83 -0.8 0.97 -2.78 J105524.25-472611.7 B J105711.36+054454.2 1.3 0.89 -1.4 0.83 0.91 J105850.47-234620.8 5.2 0.35 4.4 0.87 1.04 J110119.22+525222.9 1.2 0.91 -1.6 0.93 0.96 J110335.71-302449.5 0.88 -1.2 1.00 1.02 J110335.71-302449.5 -0.4 0.89 -1.4 1.00 0.98 1.01 J110551.56-780520.7 4.6 0.44 3.4 0.95 0.97 0.90 J111052.06-725513.0 4.8 0.37 4.2 0.64 1.16 0.33 J111103.54-313459.0 3.2 0.75 0.1 0.95 -0.71 J111128.13-265502.9 5.6 0.38 4.1 0.65 1.28 J111229.74-461610.1 0.7 J111309.15+300338.4 2.6 0.68 0.9 0.75 0.85 J111707.56-390951.3 1 J112047.03-273805.8 4.8 0.38 4.1 0.75 1.10 J112105.43-384516.6 0.64 1.3 0.76 1.03 J112512.28-002438.2 3.2 0.79 -0.3 0.89 0.99 J112547.46-441027.4 3.8 0.33 4.6 0.72 1.06 J112651.28-382455.5 3.6 0.80 -0.4 0.90 1.08

203 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J112816.27-261429.6 6.6 0.36 4.3 0.75 1.09 J112955.84+520213.2 1.8 0.55 2.3 0.64 0.81 J113105.57+542913.5 2.9 0.73 0.4 0.82 0.98 J113114.81-482628.0 2.9 0.75 0.1 0.92 -1.09 J113120.31+132140.0 2.1 0.54 2.4 0.57 0.74 J114623.01-523851.8 4.4 0.33 4.6 0.39 0.63 1.23 J114728.37+664402.7 4.7 0.32 4.7 0.42 0.66 J115156.73+073125.7 2.3 0.59 1.9 0.67 0.82 J115438.73-503826.4 3.8 0.41 3.8 0.45 0.68 1.16 J115927.82-451019.3 4.1 0.29 5.1 0.70 1.13 J115949.51-424426.0 0.9 0.35 4.4 0.73 1.10 J115957.68-262234.1 2 J120001.54-173131.1 3.9 J120237.94-332840.4 4.2 J120647.40-192053.1 J120929.80-750540.2 3.4 0.46 3.2 0.46 0.70 1.28 J121153.04+124912.9 2.1 0.83 -0.8 0.77 0.89 J121341.59+323127.7 B 1.7 0.80 -0.4 0.87 J121341.59+323127.7 A 1.7 0.79 -0.3 0.71 0.87 J121429.15-425814.8 0.7 J121511.25-025457.1 3.9 J121558.37-753715.7 4.4 0.30 5.0 0.34 0.60 1.44 J122643.99-122918.3 5 0.74 0.2 0.53 0.74 J122725.27-454006.6 0.7 0.84 -0.9 0.98 1.52 J122813.57-431638.9 4.8 0.35 4.5 0.42 0.68 1.27 J123005.17-440236.1 3.7 J123234.07-414257.5 3.9 0.32 4.7 0.39 0.64 1.19 J123425.84-174544.4 -0.6 J123704.99-441919.5 5.4 0.22 5.8 0.37 0.70 1.18 J124054.09-451625.4 2.2 0.61 1.7 0.81 2.09 J124612.32-384013.5 3.2 0.41 3.8 0.44 0.67 1.18 J124955.67-460737.3 2.4 0.63 1.5 0.85 1.93 J125049.12-423123.6 4.9 0.39 4.0 0.72 1.14 J125326.99-350415.3 3 0.49 2.9 0.76 1.09 J125902.99-314517.9 3.4 0.37 4.3 0.73 1.08

204 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J130501.18-331348.7 2.6 0.58 2.0 0.54 0.76 1.17 J130522.37-405701.2 3 0.50 2.8 0.76 2.43 J130530.31-405626.0 0.1 0.84 -0.8 0.94 1.49 J130618.16-342857.0 4.5 0.32 4.7 0.40 0.68 1.14 J130650.27-460956.1 1.5 0.85 -1.0 0.84 0.90 1.14 J130731.03-173259.9 3.3 0.39 4.0 0.39 0.63 1.30 J131129.00-425241.9 2.2 0.63 1.4 0.63 0.78 1.13 J132112.77-285405.1 0.8 J133238.94+305905.8 4.6 0.36 4.3 0.44 0.66 J133509.40+503917.5 7.1 0.69 0.8 0.56 0.78 J133901.87-214128.0 3.3 0.71 0.5 0.63 0.84 J134146.41+581519.2 3.6 0.72 0.5 0.57 0.77 J134907.28+082335.8 0.8 0.90 -1.5 0.90 0.94 J135145.65-374200.7 J135511.38+665207.0 4.4 0.95 -2.0 1.13 1.02 J135913.33-292634.2 1.9 0.92 -1.7 0.82 0.92 J140337.56-501047.9 3 0.44 3.5 0.50 0.77 1.11 J141045.24+364149.8 2.8 0.70 0.7 0.60 0.79 J141332.23-145421.1 3.7 0.66 1.1 0.53 0.73 J141510.77-252012.0 2.4 0.83 -0.8 1.06 1.04 J141842.36+475514.9 1.2 0.83 -0.7 0.73 0.89 J141903.13+645146.4 2.9 0.71 0.6 0.75 0.93 J143517.80-342250.4 2.4 0.64 1.3 0.63 0.78 1.12 J143648.16+090856.5 3.7 0.41 3.7 0.48 0.69 J143713.21-340921.1 3.8 0.43 3.6 0.48 0.74 1.14 J143753.36-343917.8 3.7 0.40 3.9 0.44 0.68 1.20 J145014.12-305100.6 1.7 0.90 -1.5 1.05 1.05 J145731.11-305325.0 4.3 0.75 0.1 0.66 0.84 J145949.90+244521.9 2.6 0.46 3.2 0.53 0.72 J150119.48-200002.1 3.5 0.64 1.3 0.53 0.77 J150230.94-224615.4 4.3 0.62 1.5 0.98 0.89 J150355.37-214643.1 2.6 0.85 -0.9 1.03 1.04 J150601.66-240915.0 3.9 0.37 4.2 0.42 0.65 1.18 J150723.91+433353.6 3.4 0.44 3.5 0.48 0.69 J150820.15-282916.6 4.5 0.37 4.2 0.40 0.62 1.26

205 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J150836.69-294222.9 3.9 0.78 -0.2 0.71 0.85 J150939.16-133212.4 4.1 0.64 1.3 0.79 0.93 J151212.18-255708.3 1.8 0.81 -0.6 0.81 0.90 J151242.69-295148.0 2.6 0.60 1.8 0.58 0.79 1.12 J151411.31-253244.1 0.2 0.89 -1.4 0.92 0.96 1.07 J152150.76-251412.1 2.8 0.48 3.0 0.53 0.72 J153248.80-230812.4 2.1 0.81 -0.5 0.82 0.89 1.10 J153549.35-065727.8 2.5 0.75 0.1 0.91 1.60 J154220.24+593653.0 4 0.39 4.0 0.47 0.66 J154227.07-042717.1 2.4 0.81 -0.5 0.79 0.90 1.09 J154349.42-364838.7 3.2 0.44 3.5 0.46 0.73 1.15 J154435.17+042307.5 1.1 0.82 -0.7 0.90 J154656.43+013650.8 0.7 0.74 0.3 0.75 0.86 J155046.47+305406.9 2.1 0.58 1.9 0.51 0.72 J155515.35+081327.9 -0.8 0.96 -2.2 1.17 1.05 J155759.01-025905.8 3.4 0.95 -2.1 1.04 1.01 J155947.24+440359.6 2.2 0.63 1.4 0.70 0.82 J160116.86-345502.7 5.5 0.25 5.5 0.30 0.59 1.48 J160549.19-311521.6 2.3 0.65 1.2 0.72 0.83 J160828.45-060734.6 3 0.44 3.4 0.54 0.75 J160954.85-305858.4 1.5 0.77 -0.1 0.73 0.86 1.11 J161410.76-025328.8 AB -0.3 0.92 -1.7 1.02 0.35 J161743.18+261815.2 1.6 J162422.68+195922.0 3.2 0.77 -0.1 0.70 0.85 J162548.69-135912.0 0.1 0.96 -2.2 1.10 1.01 J162602.80-155954.5 -0.9 1.00 -2.6 1.02 0.99 J163051.34+472643.8 4.3 0.35 4.4 0.45 0.68 J163632.90+635344.9 5.3 0.52 2.6 0.62 0.80 J164539.37+702400.1 7.1 J170415.15-175552.5 1.3 1.02 -2.8 0.97 1.00 1.03 J171038.44-210813.0 1.6 J171117.68+124540.4 1.9 0.76 0.0 0.79 0.95 J171426.13-214845.0 5.5 0.99 -2.4 0.96 0.94 1.06 J171441.70-220948.8 2.4 0.54 2.4 0.80 J172130.71-150617.8 3.7 0.35 4.4 0.41 0.69 1.19

206 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J172131.73-084212.3 4.5 0.55 2.3 0.55 0.73 1.19 J172309.67-095126.2 3.5 0.81 -0.5 0.88 0.92 J172454.26+502633.0 4.2 0.77 -0.1 0.90 J172615.23-031131.9 4.9 0.31 4.9 0.32 0.57 1.36 J172951.38+093336.9 4.8 0.38 4.2 0.48 0.70 J173353.07+165511.7 5.2 J173544.26-165209.9 2.8 0.82 -0.6 0.85 0.91 J173623.80+061853.0 -0.7 0.96 -2.2 1.18 1.05 J173826.94-055628.0 1.2 1.01 -2.6 0.95 0.94 1.08 J174203.85-032340.4 4.1 0.39 4.0 0.38 0.64 1.31 J174426.59-074925.3 5.2 1.01 -2.7 1.19 1.08 J174439.27+483147.1 -1.1 0.97 -2.2 1.17 1.05 J174536.31-063215.3 0.9 1.04 -3.1 0.92 0.95 1.06 J174735.31-033644.4 7.2 1.04 -3.1 1.04 0.97 1.04 J174811.33-030510.2 4 0.60 1.7 0.51 0.73 J174936.01-010808.7 4.7 0.37 4.3 0.42 0.68 1.30 J175022.27-094457.8 2.5 1.02 -2.8 0.98 0.97 1.04 J175839.30+155208.6 6 0.64 1.3 0.66 0.84 J175942.12+784942.1 6.4 J180508.62-015058.5 -0.1 1.00 -2.6 0.89 0.94 1.07 J180554.92-570431.3 3.6 0.44 3.5 0.44 0.71 1.20 J180658.07+161037.9 2 0.83 -0.8 0.91 J180733.00+613153.6 0.6 0.78 -0.2 0.82 0.88 J180929.71-543054.2 5.1 0.28 5.2 0.34 0.65 1.26 J181059.88-012322.4 5.9 1.02 -2.8 0.95 0.96 1.04 J181725.08+482202.8 1.7 J182054.20+022101.5 -1.2 0.98 -2.4 0.99 0.96 1.08 J182905.79+002232.2 2.8 1.00 -2.5 0.99 0.97 1.09 J184204.85-555413.3 4.1 0.43 3.6 0.43 0.70 1.19 J184206.97-555426.2 3 J184536.02-205910.8 3.7 0.87 -1.1 0.84 0.92 J190453.69-140406.0 2.3 J191019.82-160534.8 2.4 0.59 1.8 0.57 0.80 1.15 J191036.02-650825.5 2.9 0.51 2.7 0.48 0.72 1.22 J191235.95+630904.7 2.2 0.57 2.0 0.66 0.80

207 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J191500.80-284759.1 4.8 0.32 4.7 0.34 0.64 1.22 J191534.83-083019.9 -0.8 J191629.61-270707.2 3.8 0.44 3.5 0.44 0.75 1.14 J192240.05-061208.0 3.1 0.53 2.5 0.59 0.75 J192242.80-051553.8 3.2 0.66 1.1 0.62 0.82 J192250.70-631058.6 3.3 0.50 2.8 0.74 1.15 J192323.20+700738.3 0.7 0.95 -2.1 1.09 1.02 J192434.97-344240.0 4.4 0.36 4.3 0.40 0.69 1.19 J192600.77-533127.6 A 4.5 J192600.77-533127.6 B 4.5 J192659.33-710923.8 0.9 0.67 1.0 0.83 1.13 J193052.51-545325.4 1.2 0.72 0.4 0.86 1.12 J193411.46-300925.3 5.6 0.40 3.9 0.64 1.24 J193711.26-040126.7 3.3 0.94 -1.9 1.17 1.05 J194309.89-601657.8 3.3 0.36 4.3 0.38 0.64 1.25 J194444.21-435903.0 5.6 0.31 4.9 0.34 0.61 1.35 J194539.01+704445.9 0.7 1.08 -3.4 1.22 1.09 J194714.54+640237.9 0.8 0.63 1.4 0.76 0.85 J194816.54-272032.3 2.6 0.55 2.2 0.64 0.79 J194834.58-760546.9 1.7 0.78 -0.2 0.72 0.85 1.15 J195227.23-773529.4 B 3.4 0.40 3.9 0.72 1.21 J195227.23-773529.4 A 3.4 0.40 3.9 0.72 1.21 J195315.67+745948.9 2.2 0.77 -0.1 0.81 0.88 J195331.72-070700.5 4.3 0.36 4.3 0.40 0.63 1.33 J195340.71+502458.2 3.3 0.56 2.2 0.62 0.85 J195602.95-320719.3 3.9 0.39 4.0 0.44 0.68 1.17 J200137.19-331314.5 2.1 0.69 0.8 0.87 1.08 J200311.61-243959.2 2.6 0.52 2.6 0.78 1.12 J200409.19-672511.7 3.7 0.49 3.0 0.48 0.72 1.22 J200423.80-270835.8 1.2 0.85 -0.9 0.92 0.93 J200556.44-321659.7 1.8 0.67 1.0 0.63 0.81 1.10 J200837.87-254526.2 4.3 0.32 4.8 0.35 0.64 1.22 J200853.72-351949.3 4.6 0.40 3.9 0.42 0.70 1.14 J201000.06-280141.6 3.9 0.40 3.9 0.42 0.69 1.16 J201931.84-081754.3 1.1 0.72 0.4 0.81 0.87

208 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J202505.36+835954.2 6.1 J202716.80-254022.8 2.5 0.70 0.7 0.63 0.82 1.14 J203023.10+711419.8 3.8 0.92 -1.8 1.04 J203301.99-490312.6 5.4 0.30 5.0 0.36 0.62 1.37 J203337.63-255652.8 4.5 0.29 5.1 0.34 0.63 1.17 J204406.36-153042.3 6.5 0.70 0.7 0.67 0.84 J204714.59+110442.2 3.9 0.74 0.2 0.77 0.85 J205131.01-154857.6 6.8 0.31 4.9 0.35 0.67 1.17 J205136.27+240542.9 5.3 J205832.99-482033.8 5 0.37 4.3 0.39 0.61 1.27 J210131.13-224640.9 1.8 0.72 0.4 0.67 0.84 1.12 J210338.46+075330.3 0.7 J210708.43-113506.0 J210722.53-705613.4 3 J210736.82-130458.9 3.5 J210957.48+032121.1 5 J211004.67-192031.2 4.5 0.39 4.0 0.72 1.15 J211005.41-191958.4 2.9 0.42 3.7 0.70 1.20 J211031.49-271058.1 A 6.8 0.29 5.1 0.36 0.66 1.21 J211031.49-271058.1 B 6.8 J211635.34-600513.4 3.9 0.63 1.4 0.83 1.13 J212007.84-164548.2 3.8 0.35 4.4 0.69 1.16 J212128.89-665507.1 0.8 0.80 -0.4 0.73 0.85 1.13 J212230.56-333855.2 4.8 0.29 5.0 0.35 0.62 1.22 J212750.60-684103.9 4.2 0.33 4.7 0.36 0.64 1.22 J213507.39+260719.4 1.5 0.82 -0.6 0.90 0.91 J213520.34-142917.9 7.6 0.41 3.8 0.44 0.70 1.21 J213644.54+670007.1 1.00 -2.5 1.03 1.00 J213708.89-603606.4 3.7 0.33 4.7 0.71 1.15 J213740.24+013713.2 4.5 J213835.44-505111.0 5.3 0.33 4.6 0.35 0.61 1.28 J213847.58+050451.4 3.9 0.36 4.4 0.40 0.69 1.21 J214101.48+723026.7 2.4 0.65 1.2 0.65 0.80 J214126.66+204310.5 2.8 0.68 0.9 0.64 0.82 J214414.73+321822.3 5.7 0.84 -0.8 0.91

209 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J214905.04-641304.8 4.9 0.30 4.9 0.34 0.63 1.24 J215053.68-055318.9 2.1 J215128.95-023814.9 3.9 0.50 2.8 0.48 0.72 1.19 J215717.71-341834.0 3.9 0.40 3.9 0.44 0.67 1.29 J220216.29-421034.0 2.2 0.50 2.8 0.79 1.12 J220254.57-644045.0 2.5 0.43 3.5 0.71 1.17 J220306.98-253826.6 4.8 J220730.16-691952.6 4 0.41 3.8 0.71 1.17 J220850.39+114412.7 4.3 J221217.17-681921.1 3.5 0.44 3.4 0.45 0.73 1.23 J221559.00-014733.0 3.9 0.53 2.5 0.56 0.79 1.14 J221833.85-170253.2 1.1 0.77 -0.1 0.71 0.87 1.09 J221842.70+332113.5 2.9 0.52 2.6 0.55 0.75 J222024.21-072734.5 2.5 0.56 2.1 0.54 0.76 1.12 J224111.08-684141.8 6.3 0.37 4.2 0.37 0.62 1.23 J224221.02-410357.2 4.3 0.38 4.1 0.39 0.61 1.26 J224448.45-665003.9 5.3 0.28 5.2 0.36 0.66 1.32 J224500.20-331527.2 4.3 0.36 4.4 0.40 0.66 1.15 J224634.82-735351.0 2.8 0.67 1.0 0.85 1.10 J225914.87+373639.3 5.1 J225934.89-070447.1 5.6 0.46 3.2 0.44 0.71 1.19 J230209.10-121522.0 3.5 0.55 2.2 0.79 1.12 J230327.73-211146.2 4.3 0.44 3.4 0.44 0.71 1.19 J230740.98+080359.7 1.3 0.75 0.1 0.80 0.87 J231021.75+685943.6 2 0.83 -0.8 0.83 0.93 J231211.37+150329.7 2.3 0.76 0.1 0.76 0.89 J231246.53-504924.8 4 J231457.86-633434.0 B 2.6 0.50 2.8 0.76 1.13 J231457.86-633434.0 A 2.6 0.45 3.3 0.71 1.19 J231543.66-140039.6 0.7 J231933.16-393924.3 J232008.15-634334.9 4.7 0.34 4.5 0.39 0.64 1.31 J232151.23+005037.3 3.5 0.88 -1.3 1.02 0.99 J232656.43+485720.9 1.1 J232857.75-680234.5 2.7 0.38 4.1 0.70 1.18

210 Table 4.9 (cont’d)

WISE Desig Comp SpT TiO SpT CaH2 CaH3 NaI (J-W2 color) Index (TiO) Index Index Index

J232904.42+032910.8 5.1 0.28 5.1 0.36 0.66 J232917.64-675000.6 4.2 0.35 4.4 0.38 0.64 1.29 J232959.47+022834.0 4 0.38 4.1 0.37 0.64 1.27 J233647.87+001740.1 2 0.73 0.3 0.67 0.83 1.12 J234243.45-622457.1 5 0.30 5.0 0.35 0.61 1.28 J234326.88-344658.5 2.6 0.63 1.4 0.60 0.79 1.13 J234333.91-192802.8 0.8 J234347.83-125252.1 2.8 0.55 2.3 0.61 0.77 J234857.35+100929.3 0.6 0.77 -0.1 0.71 0.86 1.12 J234924.87+185926.7 2.8 J234926.23+185912.4 1.7 0.77 -0.1 0.78 0.87 J235250.70-160109.7 3.2 0.39 4.0 0.47 0.67 2M 12182363-3515098 0.90 -1.5 0.97 1.06

Table 4.10. Probable Members of Nearby Moving Groups

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

AB Dor J010047.97+025029.0 95 3.3 2.0 N J012245.24-631845.0 91 23.7 1.9 18.3 5.3 N J054709.88-525626.1 98 31.2 1.6 27.4 6.6 N J062130.52-410559.1 98 31.2 1.5 N J004528.25-513734.4 B 100 20.1 2.0 -8.0 1.3 Y J012118.22-543425.1 99 22.6 2.0 25.8 1.3 Y J072911.26-821214.3 98 25.7 1.5 26.1 0.7 Y J112547.46-441027.4 97 19.3 1.4 20.4 2.6 Y Y B15 J203301.99-490312.6 94 6.3 1.7 Y J220306.98-253826.6 95 -0.1 1.9 Y Argus J004524.84-775207.5 99 1.4 1.4 3.6 2.1 N J172131.73-084212.3 96 -24.4 1.3 N J173826.94-055628.0 91 -24.9 1.4 N J174203.85-032340.4 96 -25.1 1.4 N J174735.31-033644.4 92 -25.1 1.4 N J175022.27-094457.8 92 -24.8 1.4 N J180508.62-015058.5 96 -25.3 1.5 N J181059.88-012322.4 96 -25.3 1.5 N J182905.79+002232.2 91 -25.2 1.5 N J190453.69-140406.0 92 -23.7 1.4 -26.0 2.4 N J114623.01-523851.8 90 1.9 1.9 Y J120929.80-750540.2 97 0.5 1.8 Y Y B15 J121558.37-753715.7 96 0.3 1.8 Y J143753.36-343917.8 97 -12.4 1.4 Y J195227.23-773529.4 B 100 -4.4 1.5 -5.4 2.2 Y J210957.48+032121.1 90 -17.7 1.6 -20.0 0.9 Y β Pic J020305.46-590146.6 95 14.7 1.5 N J030444.10+220320.8 94 8.7 1.9 11.3 3.4 N J041050.04-023954.4 98 17.3 1.9 16.9 2.5 N J041525.58-212214.5 99 19.9 1.7 20.5 0.5 N J041807.76+030826.0 100 16.4 1.9 15.7 1.7 N J042500.91-634309.8 93 17.6 1.4 N

211 Table 4.10 (cont’d)

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

J043213.46-285754.8 97 20.7 1.6 N J043923.21+333149.0 98 8.6 2.0 7.7 1.1 N J044530.77-285034.8 93 21.0 1.6 N J051026.38-325307.4 100 21.4 1.6 23.1 0.4 N J052419.14-160115.5 98 20.8 1.8 25.4 2.5 N Y B16, B15 J052535.85-250230.2 97 21.5 1.7 N J053100.27+231218.3 96 12.7 2.1 15.2 3.2 N J054223.86-275803.3 99 21.6 1.6 N J054448.20-265047.4 99 21.6 1.6 17.8 0.6 N J054719.52-335611.2 91 21.6 1.5 N J055941.10-231909.4 95 21.5 1.7 N J081738.97-824328.8 100 12.9 1.5 13.4 0.7 N Y B15 J173544.26-165209.9 99 -14.6 2.0 -16.7 2.5 N J192434.97-344240.0 100 -7.8 2.0 -5.3 1.3 N Y B15 J195602.95-320719.3 98 -7.7 2.0 N Y B15 J201000.06-280141.6 100 -8.4 1.9 -5.7 3.2 N Y B15 J203337.63-255652.8 100 -7.9 1.9 -5.7 0.7 N Y B15 J211004.67-192031.2 100 -7.8 1.8 -6.0 3.3 N J231933.16-393924.3 95 5.0 1.6 1.0 0.8 N J025154.17+222728.9 99 7.9 1.9 11.4 2.6 Y J033235.82+284354.6 98 8.1 1.9 Y Y B15 J033640.91+032918.3 95 14.8 1.9 13.9 4.8 Y J034236.95+221230.2 99 10.4 2.0 10.6 1.4 Y J043726.87+185126.2 91 13.1 2.0 9.3 1.5 Y J044356.87+372302.7 96 7.4 2.0 7.1 1.1 Y J044800.86+143957.7 AB 100 14.5 2.0 13.7 0.6 Y J051650.66+022713.0 93 17.9 1.9 Y J052944.69-323914.1 100 21.6 1.6 22.2 0.8 Y Y B15 J053747.56-424030.8 100 21.2 1.5 18.5 3.3 Y J061313.30-274205.6 100 21.6 1.6 22.7 0.6 Y Y B15 J173353.07+165511.7 95 -21.0 1.7 -22.1 2.3 Y J184206.97-555426.2 100 -1.0 1.9 1.2 0.9 Y Y B15 J191500.80-284759.1 98 -9.9 2.0 Y J191629.61-270707.2 98 -10.4 2.0 Y J193411.46-300925.3 99 -9.0 2.0 -5.4 8.5 Y

212 Table 4.10 (cont’d)

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

J194816.54-272032.3 91 -9.4 2.0 Y J195331.72-070700.5 92 -14.6 1.8 Y J200137.19-331314.5 98 -7.1 2.0 -4.1 1.5 Y Y B15 J200556.44-321659.7 99 -7.2 1.9 Y J200837.87-254526.2 95 -9.1 1.9 Y J200853.72-351949.3 99 -6.2 1.9 Y J211005.41-191958.4 100 -7.8 1.8 -6.1 1.1 Y Y B15 J211031.49-271058.1 A 93 -5.7 1.8 Y Y B15 J212007.84-164548.2 98 -7.8 1.7 -7.1 3.2 Y J212128.89-665507.1 92 5.7 1.7 Y J220850.39+114412.7 99 -10.2 1.4 -9.4 3.5 Y J231457.86-633434.0 B 98 8.6 1.6 -110.6 4.6 Y Carina J080636.05-744424.6 99 19.1 0.6 18.3 0.8 Columba J003234.86+072926.4 97 -3.6 1.0 -4.6 0.7 N J015257.41+083326.3 100 3.7 1.0 2.8 4.1 N J033431.66-350103.3 93 18.8 1.0 N J010629.32-122518.4 98 4.0 0.9 2.7 1.5 Y J034115.60-225307.8 93 18.4 1.0 19.2 1.7 Y J035829.67-432517.2 96 20.1 1.0 Y J040649.38-450936.3 98 20.4 1.0 20.6 0.6 Y J040711.50-291834.3 93 20.4 1.0 19.4 1.2 Y Y B15 J045114.41-601830.5 95 20.2 1.1 20.0 1.8 Y J051403.20-251703.8 98 23.3 1.1 23.7 1.7 Y J053311.32-291419.9 97 24.1 1.1 23.5 1.5 Y Y B15 J061740.43-475957.2 96 23.8 1.1 Y J070657.72-535345.9 98 23.0 1.2 Y Y B15 Tuc Hor J035223.52-282619.6 99 14.6 1.5 13.9 4.6 N J212750.60-684103.9 100 3.8 1.5 N Y K14 J214905.04-641304.8 100 2.5 1.5 N Y K14 J001527.62-641455.2 100 6.7 1.5 6.3 0.9 Y Y K14 J001555.65-613752.2 98 6.1 1.5 Y Y K14 J010243.86-623534.8 99 8.1 1.5 3.3 1.0 Y Y B15

213 Table 4.10 (cont’d)

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

J012332.89-411311.4 99 5.5 2.0 Y Y K14 J012532.11-664602.6 100 9.5 1.5 Y Y K14 J013110.69-760947.7 99 10.5 1.6 11.3 4.1 Y J014431.99-460432.1 98 8.2 2.4 Y J015057.01-584403.4 100 9.7 1.5 9.3 1.5 Y Y B15 J024746.49-580427.4 100 12.3 1.5 12.2 1.0 Y Y K14 J024852.67-340424.9 99 10.8 1.4 12.5 2.0 Y Y K14 J030251.62-191150.0 91 10.0 1.4 12.3 1.2 Y J040539.68-401410.5 99 16.0 1.6 16.6 1.5 Y J042139.19-723355.7 100 14.4 1.7 14.2 0.8 Y Y K14 J044700.46-513440.4 99 17.6 1.7 18.3 0.7 Y Y B15 J050610.44-582828.5 99 17.5 1.7 18.0 1.6 Y J192250.70-631058.6 100 0.9 1.5 4.4 1.7 Y J194309.89-601657.8 100 -0.3 1.5 Y J200409.19-672511.7 100 2.6 1.5 Y J205832.99-482033.8 98 -4.4 1.4 Y J211635.34-600513.4 100 0.4 1.5 2.4 2.3 Y Y B15 J213708.89-603606.4 100 1.0 1.5 1.9 0.5 Y Y K14 J220216.29-421034.0 100 -4.9 1.4 -2.8 1.0 Y Y K14 J220254.57-644045.0 100 2.9 1.5 -0.2 4.1 Y Y K14 J224448.45-665003.9 100 4.6 1.5 Y Y K14 J224634.82-735351.0 100 6.7 1.6 7.5 1.7 Y Y B15 J232857.75-680234.5 100 6.1 1.5 8.5 2.4 Y Y K14 J232917.64-675000.6 100 6.0 1.5 Y Y K14 J234243.45-622457.1 99 5.1 1.5 Y Y K14 TWA J101905.68-304920.3 99 15.4 1.7 19.3 1.6 N J103137.59-374915.9 99 15.1 1.6 18.8 5.1 N J103952.70-353402.5 100 14.6 1.7 N J115438.73-503826.4 94 11.4 2.2 N J115949.51-424426.0 100 10.6 2.2 9.4 0.7 N J115957.68-262234.1 98 8.8 2.2 10.6 3.3 N J124054.09-451625.4 94 8.6 2.5 11.5 1.3 N J124955.67-460737.3 96 8.2 2.6 9.5 0.8 N J125326.99-350415.3 100 6.4 2.6 5.6 1.7 N

214 Table 4.10 (cont’d)

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

J130522.37-405701.2 96 6.6 2.7 6.3 1.0 N J130530.31-405626.0 96 6.6 2.7 9.0 1.5 N 2M 12182363-3515098 98 11.5 1.5 Y J101917.57-443736.0 99 15.8 1.6 15.7 0.9 Y J104551.72-112615.4 99 11.8 2.2 12.2 8.9 Y J105850.47-234620.8 100 12.5 1.9 Y J112047.03-273805.8 100 11.5 2.0 10.6 4.4 Y J112105.43-384516.6 99 12.0 0.8 Y J112651.28-382455.5 100 12.1 1.9 11.4 0.6 Y J115927.82-451019.3 100 10.8 2.2 11.4 1.2 Y J120001.54-173131.1 99 7.5 2.3 6.6 5.3 Y J120237.94-332840.4 100 9.5 2.2 8.1 5.2 Y J123005.17-440236.1 100 9.0 2.4 8.5 1.8 Y J123234.07-414257.5 100 8.6 2.4 Y J123704.99-441919.5 98 8.7 2.5 Y J125902.99-314517.9 100 5.5 2.7 4.3 2.0 Y J130618.16-342857.0 97 5.5 2.7 Y

Note. — 1Indicates that a star is isochronal with its assigned moving group (to within 1 mag; see Section 4.5.1

215 Table 4.11. Possible Members of Nearby Moving Groups

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

AB Dor J001723.69-664512.4 73 21.6 1.9 23.1 1.1 N J174439.27+483147.1 88 -31.3 1.6 N J180733.00+613153.6 83 -30.5 1.6 N J194714.54+640237.9 58 -29.4 1.4 N J213520.34-142917.9 84 -7.1 1.8 N J214126.66+204310.5 57 -20.3 1.5 N J004528.25-513734.4 A 56 17.2 0.7 Y J072821.16+334511.6 81 3.7 1.5 4.9 2.7 Y J101543.44+660442.3 84 -17.1 1.8 Y J133509.40+503917.5 67 -22.7 2.0 Y Y B16 (rejected) J155947.24+440359.6 53 -28.9 1.8 Y Y B16 J163051.34+472643.8 84 -30.1 1.8 Y J194444.21-435903.0 88 2.2 1.6 Y J195315.67+745948.9 67 -27.4 1.5 Y Argus J171426.13-214845.0 80 -22.7 1.3 N J172130.71-150617.8 73 -23.8 1.3 N J174536.31-063215.3 64 -25.0 1.4 N J174936.01-010808.7 82 -25.2 1.4 N J182054.20+022101.5 86 -25.3 1.5 N J094508.15+714450.1 72 4.1 1.3 1.7 2.1 Y J110551.56-780520.7 90 1.9 1.8 Y J143517.80-342250.4 76 -12.2 1.4 Y J150820.15-282916.6 81 -15.5 1.3 Y J160116.86-345502.7 89 -17.4 1.4 Y J191019.82-160534.8 84 -23.3 1.4 Y J192242.80-051553.8 88 -23.8 1.5 Y Y B15 β Pic J031650.45-350937.9 69 18.2 1.6 17.0 2.7 N J042739.33+171844.2 57 13.3 2.0 17.6 0.5 N J045420.20-400009.9 81 20.9 1.5 N J050333.31-382135.6 82 21.2 1.5 N J051255.82-212438.7 87 21.1 1.7 N J054433.76-200515.5 89 21.3 1.7 22.4 2.5 N

216 Table 4.11 (cont’d)

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

J061851.01-383154.9 69 21.4 1.5 16.8 7.9 N J065846.87+284258.9 62 10.3 2.0 N J180658.07+161037.9 60 -20.9 1.7 -18.5 6.4 N J194834.58-760546.9 78 6.8 1.7 N J021935.52-455106.2 W 85 13.2 0.7 Y J022240.88+305515.4 88 4.1 1.8 Y J035733.95+244510.2 88 10.2 2.0 Y J044036.23-380140.8 83 20.8 1.5 Y J044154.44+091953.1 88 15.7 2.0 Y J044336.19-003401.8 87 17.9 1.9 20.9 1.1 Y J044721.05+280852.5 76 10.6 2.0 Y J111052.06-725513.0 78 11.6 1.5 Y J180929.71-543054.2 71 -1.8 2.0 Y J184536.02-205910.8 52 -13.0 2.0 Y J213740.24+013713.2 59 -10.6 1.6 -5.5 9.7 Y J213847.58+050451.4 51 -11.2 1.5 Y J224221.02-410357.2 73 3.0 1.7 Y J224500.20-331527.2 89 1.8 1.5 Y Y T08 J232008.15-634334.9 63 7.9 2.0 Y Carina J040827.01-784446.7 88 17.0 0.5 16.1 1.2 Y Y B15 Columba J010711.99-193536.4 82 5.5 0.9 7.1 1.1 N J035100.83+141339.2 76 11.8 1.0 N J004826.70-184720.7 82 3.6 0.9 5.6 1.4 Y J024552.65+052923.8 88 9.1 1.0 Y J034116.16-225244.0 82 18.4 1.0 Y J035345.92-425018.0 87 19.9 1.0 20.1 1.3 Y J042736.03-231658.8 83 21.1 1.0 20.0 1.4 Y J044120.81-194735.6 70 21.5 1.0 23.6 1.2 Y J055008.59+051153.2 74 19.8 1.1 Y Tuc Hor J015350.81-145950.6 63 2.9 1.5 N J212230.56-333855.2 76 -9.1 1.4 N J215717.71-341834.0 84 -7.7 1.4 N

217 Table 4.11 (cont’d)

1 WISE Desig Comp Prob RVpred err RV err iso? previously ref km/s km/s km/s km/s known?

J224111.08-684141.8 65 5.1 1.5 N J040809.80-611904.3 86 15.4 1.6 10.6 0.8 Y J041255.78-141859.2 64 14.4 1.5 16.4 1.1 Y J230209.10-121522.0 59 -10.5 1.4 -11.4 1.2 Y J234326.88-344658.5 74 -2.0 1.3 Y TWA J102602.07-410553.8 B 66 7.1 11.0 N J105518.12-475933.2 86 14.2 1.8 17.3 1.7 N J122725.27-454006.6 87 9.3 2.4 13.8 1.3 N J124612.32-384013.5 90 7.4 2.6 N J130501.18-331348.7 70 5.4 2.7 N J130650.27-460956.1 73 7.2 2.7 N J130731.03-173259.9 60 2.5 2.8 N J131129.00-425241.9 81 6.5 2.8 N J105524.25-472611.7 B 81 7.6 3.1 Y J125049.12-423123.6 50 7.7 2.6 8.7 12.9 Y

Note. — 1Indicates that a star is isochronal with its assigned moving group (to within 1 mag; see Section 4.5.1

218 Table 4.12. Field Dwarfs

WISE Desig comp Prob RV err YF/OF km/s km/s

J000453.05-103220.0 100 7.7 13.4 YF* J001536.79-294601.2 100 -28.8 4.9 OF J001552.28-280749.4 100 OF J001709.96+185711.8 N 100 32.7 1.0 OF J001709.96+185711.8 S 100 34.6 1.0 OF J002101.27-134230.7 73 OF J003057.97-655006.4 100 -10.9 4.7 OF J003903.51+133016.0 80 -7.0 1.5 OF J004210.98-425254.8 100 -18.7 4.0 OF J005633.96-225545.4 100 OF J010126.59+463832.6 100 -152.4 7.1 OF J010251.05+185653.7 YF J011440.20+205712.9 99 OF J011846.91+125831.4 96 OF J014156.94-123821.6 100 OF J015455.24-295746.0 100 37.7 2.0 OF J020012.84-084052.4 5.5 1.4 YF J020302.74+221606.8 100 OF J020805.55-474633.7 97 20.6 0.7 OF J021258.28-585118.3 100 -16.2 3.8 OF J021330.24-465450.3 100 11.2 1.2 OF J021935.52-455106.2 E 100 30.9 2.5 OF J022424.69-703321.2 100 -8.8 5.1 OF J023005.14+284500.0 100 OF J023139.36+445638.1 98 OF J025913.40+203452.6 100 -18.3 3.9 OF J030002.98+550652.4 100 17.9 4.2 OF J030824.14+234554.2 68 OF J032047.66-504133.0 100 -13.8 4.0 OF J034444.80+404150.4 100 7.7 17.0 OF J035134.51+072224.5 100 33.2 1.0 OF J035716.56-271245.5 100 1.0 1.6 OF J040743.83-682511.0 100 -9.0 4.4 OF J041336.14-441332.4 100 -22.4 3.3 OF J041749.66+001145.4 98 8.1 6.8 YF*

219 Table 4.12 (cont’d)

WISE Desig comp Prob RV err YF/OF km/s km/s

J043257.29+740659.3 58 OF J043657.44-161306.7 16.4 2.3 YF J043939.24-050150.9 B 100 -12.2 2.8 OF J043939.24-050150.9 A 100 50.7 4.6 OF J044349.19+742501.6 100 OF J044455.71+193605.3 100 26.0 1.6 OF J044802.59+143951.1 A 100 15.3 0.4 YF* J045651.47-311542.7 100 255.7 1.1 OF J050827.31-210144.3 97 28.9 3.0 YF* J051310.57-303147.7 100 12.4 1.5 OF J051803.00-375721.2 55 16.4 1.0 OF J053328.01-425720.1 A 100 -43.8 4.2 OF J053328.01-425720.1 B 100 -0.2 2.3 OF J053925.08-424521.0 50 21.6 0.5 YF J055041.58+430451.8 100 OF J055208.04+613436.6 97 OF J060156.10-164859.9 B 100 -87.6 4.6 OF J060156.10-164859.9 A 100 51.8 2.9 OF J060224.56-163450.0 100 -10.4 0.9 OF J060329.60-260804.7 100 -3.0 1.0 OF J062047.17-361948.2 100 13.4 3.0 YF* J062407.62+310034.4 100 31.0 0.6 OF J063001.84-192336.6 100 44.5 6.3 OF J071036.50+171322.6 100 OF J072641.52+185034.0 84 OF J073138.47+455716.5 61 OF J075233.22-643630.5 96 YF* J075808.25-043647.5 100 29.7 0.8 OF J075830.92+153013.4 B 93 21.3 2.4 OF J075830.92+153013.4 A 99 24.1 4.1 OF J080352.54+074346.7 96 OF J081443.62+465035.8 100 OF J082105.04-090853.8 B 99 OF J082105.04-090853.8 A 18.4 1.2 YF J082558.91+034019.5 100 32.3 15.2 OF

220 Table 4.12 (cont’d)

WISE Desig comp Prob RV err YF/OF km/s km/s

J083528.87+181219.9 100 OF J090227.87+584813.4 84 OF J092216.12+043423.3 96 OF J093212.63+335827.3 65 OF J094317.05-245458.3 100 -7.1 1.5 OF J100146.28+681204.1 100 OF J100230.94-281428.2 100 6.7 1.4 OF J102602.07-410553.8 A 100 7.1 11.0 YF* J102636.95+273838.4 100 OF J103016.11-354626.3 100 -3.4 3.2 OF J103557.17+285330.8 100 OF J104008.36-384352.1 100 OF J104044.98-255909.2 100 -6.7 0.7 OF J105515.87-033538.2 85 OF J105524.25-472611.7 A 100 -30.9 3.2 OF J105711.36+054454.2 100 OF J110119.22+525222.9 100 OF J110335.71-302449.5 100 50.2 2.2 OF J110335.71-302449.5 100 OF J111103.54-313459.0 93 21.2 5.4 OF J111128.13-265502.9 100 1.2 10.3 YF* J111229.74-461610.1 100 -9.5 0.7 OF J111309.15+300338.4 100 OF J111707.56-390951.3 100 -7.7 1.7 YF* J112512.28-002438.2 100 OF J112816.27-261429.6 100 -87.8 7.3 OF J112955.84+520213.2 100 OF J113105.57+542913.5 100 OF J113114.81-482628.0 100 2.4 4.8 OF J113120.31+132140.0 100 OF J114728.37+664402.7 99 OF J115156.73+073125.7 100 OF J120647.40-192053.1 100 14.6 0.9 OF J121153.04+124912.9 100 OF J121341.59+323127.7 B 100 OF

221 Table 4.12 (cont’d)

WISE Desig comp Prob RV err YF/OF km/s km/s

J121341.59+323127.7 A 100 OF J121429.15-425814.8 100 -14.4 4.8 YF* J121511.25-025457.1 99 OF J122643.99-122918.3 100 -6.2 1.4 OF J122813.57-431638.9 53 YF J123425.84-174544.4 100 19.8 2.2 OF J132112.77-285405.1 100 94.2 4.7 OF J133238.94+305905.8 93 OF J133901.87-214128.0 94 OF J134146.41+581519.2 100 OF J134907.28+082335.8 100 OF J135145.65-374200.7 100 4.8 1.3 YF* J135511.38+665207.0 98 OF J135913.33-292634.2 100 -21.1 0.5 OF J140337.56-501047.9 100 YF* J141045.24+364149.8 100 OF J141332.23-145421.1 100 OF J141510.77-252012.0 100 OF J141842.36+475514.9 100 OF J143648.16+090856.5 100 OF J143713.21-340921.1 100 OF J145014.12-305100.6 100 OF J145731.11-305325.0 100 OF J145949.90+244521.9 100 OF J150119.48-200002.1 100 OF J150230.94-224615.4 100 OF J150355.37-214643.1 100 -2.2 1.4 YF* J150601.66-240915.0 100 OF J150723.91+433353.6 100 OF J150836.69-294222.9 100 OF J150939.16-133212.4 100 -7.3 10.3 YF* J151212.18-255708.3 100 YF* J151242.69-295148.0 100 YF* J151411.31-253244.1 100 YF* J152150.76-251412.1 100 OF

222 Table 4.12 (cont’d)

WISE Desig comp Prob RV err YF/OF km/s km/s

J153248.80-230812.4 100 YF* J153549.35-065727.8 100 -6.9 2.0 YF* J154220.24+593653.0 87 -21.9 2.4 OF J154227.07-042717.1 100 YF* J154349.42-364838.7 100 YF* J154435.17+042307.5 100 -15.4 3.5 YF* J154656.43+013650.8 100 OF J155046.47+305406.9 100 OF J155515.35+081327.9 100 OF J155759.01-025905.8 100 OF J160549.19-311521.6 100 -1.6 2.8 YF* J160828.45-060734.6 100 -55.4 1.4 YF* J160954.85-305858.4 100 OF J161410.76-025328.8 AB 100 -47.1 7.2 OF J161743.18+261815.2 100 -12.0 0.9 OF J162422.68+195922.0 51 OF J162548.69-135912.0 100 125.1 0.3 OF J162602.80-155954.5 100 -61.8 0.6 OF J163632.90+635344.9 87 OF J164539.37+702400.1 85 OF J170415.15-175552.5 100 -169.3 0.2 OF J171038.44-210813.0 100 -5.0 2.3 YF* J171117.68+124540.4 86 OF J171441.70-220948.8 100 -7.8 0.8 YF* J172309.67-095126.2 100 OF J172454.26+502633.0 90 OF J172615.23-031131.9 YF J172951.38+093336.9 65 OF J173623.80+061853.0 87 OF J174426.59-074925.3 70 OF J174811.33-030510.2 93 OF J175839.30+155208.6 100 -11.8 0.9 OF J175942.12+784942.1 100 0.4 1.5 OF J180554.92-570431.3 YF J181725.08+482202.8 98 -25.5 1.8 OF

223 Table 4.12 (cont’d)

WISE Desig comp Prob RV err YF/OF km/s km/s

J184204.85-555413.3 YF J191036.02-650825.5 YF J191235.95+630904.7 76 OF J191534.83-083019.9 99 -27.0 2.9 OF J192240.05-061208.0 100 OF J192323.20+700738.3 100 20.2 10.0 OF J192600.77-533127.6 A 100 36.1 1.8 OF J192600.77-533127.6 B 99 36.1 1.8 OF J192659.33-710923.8 100 -18.3 3.7 OF J193052.51-545325.4 100 -23.0 2.8 OF J193711.26-040126.7 62 OF J194539.01+704445.9 100 -9.5 3.9 OF J195227.23-773529.4 A 100 69.6 1.5 OF J195340.71+502458.2 98 OF J200311.61-243959.2 100 -8.0 1.4 OF J200423.80-270835.8 100 OF J201931.84-081754.3 100 OF J202505.36+835954.2 100 -4.1 2.1 OF J202716.80-254022.8 100 OF J203023.10+711419.8 100 -15.1 0.7 OF J204406.36-153042.3 99 OF J204714.59+110442.2 98 OF J205131.01-154857.6 99 OF J205136.27+240542.9 100 4.1 0.5 OF J210131.13-224640.9 YF J210338.46+075330.3 88 -18.0 1.0 YF* J210708.43-113506.0 100 -8.1 1.6 YF* J210722.53-705613.4 69 -2.7 2.6 OF J210736.82-130458.9 100 0.7 8.1 OF J211031.49-271058.1 B -6.3 2.3 YF* J213507.39+260719.4 99 OF J213644.54+670007.1 100 OF J213835.44-505111.0 58 OF J214101.48+723026.7 94 OF J214414.73+321822.3 73 OF

224 Table 4.12 (cont’d)

WISE Desig comp Prob RV err YF/OF km/s km/s

J215053.68-055318.9 100 -20.9 1.1 OF J215128.95-023814.9 100 OF J220730.16-691952.6 100 -11.7 0.8 OF J221217.17-681921.1 YF J221559.00-014733.0 65 OF J221833.85-170253.2 100 OF J221842.70+332113.5 83 OF J222024.21-072734.5 99 OF J225914.87+373639.3 85 -17.0 1.8 OF J225934.89-070447.1 73 OF J230327.73-211146.2 99 OF J230740.98+080359.7 100 OF J231021.75+685943.6 70 OF J231211.37+150329.7 100 OF J231246.53-504924.8 100 -22.6 lowSNR OF J231457.86-633434.0 A 100 71.5 8.0 OF J231543.66-140039.6 100 -52.0 2.6 OF J232151.23+005037.3 97 OF J232656.43+485720.9 100 17.9 1.0 OF J232904.42+032910.8 YF J232959.47+022834.0 100 OF J233647.87+001740.1 93 OF J234333.91-192802.8 100 -13.4 4.1 OF J234347.83-125252.1 100 OF J234857.35+100929.3 97 OF J234924.87+185926.7 100 6.1 1.2 OF J234926.23+185912.4 100 OF J235250.70-160109.7 100 OF

Note. — OF indicates that the star is an ”old field” dwarf, while YF indicates the star is a “young field” dwarf. See Section 4.5.1 for more details. ∗The star was originally classified as an “old field” dwarf, and was re- classified due to the presence of lithium.

225 Table 4.13. Spectroscopic Binaries

WISE Designation Comp ∆RV pmRAA pmDecA EW(Hα)A EW(Hα)B EW(Li)A EW(Li)B ref* mas/yr mas/yr [km/s] [A˚][A˚][A˚][A˚]

J004528.25-513734.4 25 100.3 -57.1 -0.9 0.0 <0.03 <0.03 J010047.97+025029.0 63.72 -76.5 -5.6 <0.05 M14 J024852.67-340424.9 90.2 -23.7 -9.1 <0.03 J034444.80+404150.4 59.4 -32.8 -1.1 <0.13 J043939.24-050150.9 63 26.24 -13.07 -4.0 J044455.71+193605.3 17.6 -32.8 -0.8 <0.03 J053328.01-425720.1 A -18.6 43.1 -4.6 <0.25 J060156.10-164859.9 B -3.8 -14.9 -1.5 <0.05 J061313.30-274205.6 -13.1 -0.3 -4.9 <0.07 M14 J072821.16+334511.6 -12.3 -112.3 -7.0 <0.08 S12 J082105.04-090853.8 A -40 -34.3 <0.05 J102602.07-410553.8 -45.3 -2.5 -9.9 0.38 0.23 J104551.72-112615.4 -85.5 -53.8 <0.26 J105518.12-475933.2 -26.2 0 -1.4 0.45 J105524.25-472611.7 A -56.4 4.1 <0.14 J111103.54-313459.0 -45.2 1.3 -4.9 <0.24 J112547.46-441027.4 -83.9 -57 -10.7 <0.15 J12 J112816.27-261429.6 -25.6 -16.8 -3.0 <0.08 J120001.54-173131.1 -81 -24.6 -7.8 0.77 J160549.19-311521.6 -23.4 -29.5 -2.3 0.54 J160828.45-060734.6 -20.4 -25 -4.6 0.20 J161410.76-025328.8 -13.6 -16.9 -3.7 0.11 J192600.77-533127.6 A 34.1 -87.4 -1.9 J195227.23-773529.4 75 63 -97.5 -3.0 <0.3 <0.3 J201000.06-280141.6 40.7 -62 -13.7 <0.08 M14 J210957.48+032121.1 138.69 -23.21 0.3 <0.08 J231457.86-633434.0 182 115.8 -46.9 -1.5 -1.6 <0.06 <0.06 J061851.01-383154.9 -6.5 36.5 -3.4 <1.0 J211031.49-271058.1 B 43 -58.5 -11.9 0.86 M14 J213740.24+013713.2 80.3 -59.4 -12.1 <0.08

Note. — *If a known binary system, ”ref” is the most recent reference in which the binarity is mentioned. M14=Malo et al. (2014), S12=Shkolnik et al. (2012), J12=Janson et al. (2012)

226 Table 4.14. Common Proper Motion Pairs

WISE Designation ρ pmraA pmdecA pmraB pmdecB JmagA KmagA JmagB KmagB (ρ/µ)A (ρ/µ)B MG W1-W3A W1-W4A W1-W3B W1-W4B [arcsec] [mas/yr] [mas/yr] [mas/yr] [mas/yr] [mag] [mag] [mag] [mag] [yr] [yr] [mag] [mag] [mag] [mag]

J001709.96+185711.8 14.064 32.3 -32 41.2 -31.5 9.104 8.424 9.805 9.102 309 877 OF 0.017 0.424 0.025 0.998 J023139.36+445638.1 25.428 -9.7 6.5 -7.3 6.8 13.639 13.343 15.303 14.927 2178 1170 OF1 J034444.80+404150.4 37.35 59.4 -32.8 64.6 -37.4 10.03 9.134 10.963 10.063 550 909 OF 0.186 0.409 0.143 J035100.83+141339.2 28.788 68.8 -77.1 69.9 -74.6 9.436 8.579 10.241 9.38 279 1011 CO?12 0.333 -0.17 0.39 J044721.05+280852.5 11.958 2.7 -7.8 6.5 -4.8 12.936 12.333 11.627 11.092 1449 1022 BP?1 0.218 -0.308 J044800.86+143957.7 25.29 29.9 -39.7 30.2 -44.7 11.68 10.683 11.679 10.73 509 921 BP 2.404 4.449 2.308 4.077 J053100.27+231218.3 14.868 -35.4 -16.3 -24.6 -11.5 13.643 13.038 12.766 12.348 382 1435 BP2 -0.096 J053100.27+231218.3 37.002 5.6 -35 7.3 -37.5 12.314 11.442 7.818 7.403 1044 928 BP2 0.412 -0.032 0.246 J080352.54+074346.7 8.922 -0.6 -5.8 -0.5 -6.4 15.153 14.514 14.922 14.604 1530 908 OF1 J105518.12-475933.2 20.112 -21.2 13.3 -15.4 8.3 14.777 14.141 11.397 11.107 804 1431 TWA?2 0.058 J105524.25-472611.7 11.922 -7 6.5 -6.8 3.9 14.474 14.043 13.14 12.829 1248 1219 TWA? J111229.74-461610.1 11.256 -19.1 6.3 -16.5 5.7 15.046 14.38 13.38 12.895 560 1152 OF -0.136 J112816.27-261429.6 27.072 -32.2 -15.4 -25.6 -16.8 12.309 11.468 12.535 11.556 758 1166 OF -0.297 -0.057 J114623.01-523851.8 3.972 -13.1 -0.9 -12.8 -1.5 13.106 12.728 13.327 12.434 302 1019 AR1 0.251 0.187 J121429.15-425814.8 49.464 -60.7 -13.1 -49 -20.5 10.004 9.163 13.848 12.996 797 1169 YF? 0.141 0.656 -0.152 J121558.37-753715.7 12.624 -151.5 -7.5 -143.1 -11.2 8.651 7.851 11.406 10.556 83 1057 AR1 0.002 0.099 0.615 1.304 227 J123234.07-414257.5 4.068 -123.9 -13.6 -88.6 -24.1 15.051 14.366 8.998 8.685 33 1357 TWA1 -0.012 0.119 J124612.32-384013.5 29.64 -14.3 -2 -12.5 -4.4 14.554 13.881 13.652 13.23 2053 1090 TWA?12 0.453 J130530.31-405626.0 8.394 -45.6 -18.6 -34.5 -26.8 11.5 10.647 10.072 9.254 170 1127 TWA2 0.368 0.094 0.439 J132112.77-285405.1 15.246 -48.4 -45.6 -42.7 -37 10.317 9.527 12.178 11.317 229 1177 OF1 0.152 1.255 0.266 J150230.94-224615.4 34.164 -65 -46.5 -51 -56.7 11.055 10.144 8.977 8.425 427 1048 OF1 0.35 -0.001 -0.416 J171117.68+124540.4 33.75 -10.9 -39.6 -6.8 -42 10.29 9.467 11.194 10.358 822 965 OF1 0.221 0.705 0.293 J184536.02-205910.8 6.576 -1.9 -8.1 -1.5 -7.2 13.731 13.036 14.436 13.573 790 1131 BP?1 0.442 J192240.05-061208.0 2.766 7.7 -7.2 9.7 -5.5 13.388 12.824 14.31 13.682 262 945 OF1 J211031.49-271058.1 9.738 47.2 -71.9 69.7 -72.2 11.2 10.236 10.296 9.411 113 857 BP1 0.286 0.644 J212128.89-665507.1 26.424 90.5 -90.9 97.2 -104.1 7.027 6.4 7.88 7.009 206 901 BP1 -0.006 0.123 0.23 J224500.20-331527.2 35.874 171.1 -125.2 178.7 -123 8.681 7.793 7.786 6.932 169 977 BP 0.327 0.45 0.278 0.439 J231457.86-633434.0 22.602 115.8 -46.9 117.6 -41.8 10.175 9.284 8.118 7.605 181 1001 BP 0.238 0.152 -0.021 0.095 J234924.87+185926.7 22.884 47.2 -16.2 55.3 -27.1 9.169 8.324 10.196 9.338 459 810 OF 0.106 0.278 0.253 0.355 J075830.92+153013.4 13.386 -58.8 -107.4 -32.1 -96.2 10.429 9.561 9.97 9.099 109 1207 OF1 0.369 0.951 0.242 0.809 J111052.06-725513.0 9.366 -9.3 -7.7 -7.4 -4.5 14.198 13.599 14.528 14.014 776 1394 BP?1 0.83 J184204.85-555413.3 20.898 9.7 -81.2 13.4 -73.9 9.488 8.584 10.677 9.852 256 1089 YF1 0.243 0.682 0.309 J195602.95-320719.3 24.906 31.9 -65.1 35.2 -59.9 8.71 7.846 8.959 8.114 344 1043 BP12 0.048 0.403 0.255 0.45 J234347.83-125252.1 17.778 43.6 -6.7 45.6 -6.3 10.26 9.405 12.159 11.335 403 958 OF1 0.203 0.255 J173623.80+061853.0 21.372 73.4 -80.5 95.2 -70.9 196 918 OF1

Note. — Full machine-readable table is available online. 1High resolution data was not available for this star. 2 Star was not found to be isochronal with known MG members. Table 4.15. Magnetic Activity of GALNYSS Stars

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J000453.05-103220.0 2.34E-04 -2.71 -3.36 -18.5 -17.1 J001527.62-641455.2 2.25E-04 -3.13 -3.48 -3.07 -11.5 -7.9 J001536.79-294601.2 2.36E-04 -2.97 -3.46 J001552.28-280749.4 2.24E-04 -3.45 -3.54 J001555.65-613752.2 2.35E-04 -2.86 -3.39 J001709.96+185711.8 N 9.55E-03 -2.00 -3.18 J001709.96+185711.8 S 9.55E-03 -2.08 -3.18 J001723.69-664512.4 2.28E-04 -2.92 -3.48 -3.05 J002101.27-134230.7 6.68E-03 -2.46 -3.65 J003057.97-655006.4 2.32E-04 -3.15 -3.41 -3.08 J003234.86+072926.4 1.22E-04 -3.010 -3.41 -2.95 J003903.51+133016.0 1.89E-07 -5.77 -3.350 J004210.98-425254.8 2.27E-04 -3.25 -3.40 -3.23 J004524.84-775207.5 2.26E-04 -3.51 -1.9 -1.3 J004528.25-513734.4 B 2.30E-04 -3.70 -3.88 -4.2 -5.5 J004528.25-513734.4 A 2.30E-04 -3.88 -9.5 -14.0 J004826.70-184720.7 2.28E-04 -2.72 -20.4 -24.8 J005633.96-225545.4 2.27E-04 -3.33 -3.57 J010047.97+025029.0 1.20E-10 -9.17 -3.19 -17.8 -16.7 J010126.59+463832.6 4.95E-02 -2.97 J010243.86-623534.8 2.32E-04 -3.12 -3.66 J010251.05+185653.7 4.32E-05 -3.49 -3.47 -3.26 -20.3 -22.4 J010629.32-122518.4 2.26E-04 -2.66 -3.38 -10.4 -7.0 J010711.99-193536.4 2.21E-04 -3.27 -3.42 -3.07 J011440.20+205712.9 2.39E-03 -2.51 -3.37 J011846.91+125831.4 8.00E-04 -3.21 -3.31 J012118.22-543425.1 2.30E-04 -3.80 -3.86 -4.2 -2.2 J012245.24-631845.0 0.00E+00 -3.34 lowSNR lowSNR J012332.89-411311.4 2.29E-04 -2.87 -3.70 J012532.11-664602.6 2.39E-04 -2.73 -3.34 J013110.69-760947.7 2.30E-04 -3.538 -3.51 J014156.94-123821.6 2.29E-04 -3.58 -3.69 J014431.99-460432.1 2.30E-04 -2.27 J015057.01-584403.4 2.22E-04 -2.71 -3.34 -14.2 -8.1 J015257.41+083326.3 6.13E-05 -3.14 -3.49 J015350.81-145950.6 5.89E-06 -4.34 -3.32 -3.06

228 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J015455.24-295746.0 2.17E-04 -3.89 -3.34 lowSNR lowSNR J020012.84-084052.4 1.75E-04 -3.16 -3.39 -3.06 J020302.74+221606.8 2.00E-05 -4.66 -3.805 2.5 J020305.46-590146.6 2.33E-04 -3.02 -3.15 J020805.55-474633.7 2.31E-04 -3.96 -3.94 J021258.28-585118.3 2.22E-04 -3.15 -3.25 J021330.24-465450.3 2.26E-04 -2.76 -3.13 -3.04 lowSNR lowSNR J021935.52-455106.2 W J021935.52-455106.2 E J022240.88+305515.4 1.60E-05 -4.10 -3.56 -13.6 -14.5 J022424.69-703321.2 2.28E-04 -3.16 -3.41 J023005.14+284500.0 2.40E-04 -4.67 -3.83 J023139.36+445638.1 3.02E-07 -5.63 -3.42 -23.2 -24.3 J024552.65+052923.8 1.60E-04 -3.32 -3.76 J024746.49-580427.4 2.20E-04 -3.16 -3.40 -12.0 -14.1 J024852.67-340424.9 2.20E-04 -2.70 -3.17 -2.93 J025154.17+222728.9 2.32E-04 -2.87 -3.32 -2.25 J025913.40+203452.6 7.93E-04 -2.50 -3.50 J030002.98+550652.4 2.28E-04 -3.59 -3.49 -13.4 -11.5 J030251.62-191150.0 2.35E-04 -2.77 J030444.10+220320.8 2.37E-04 -2.65 -3.50 -31.7 -29.9 J030824.14+234554.2 2.26E-04 -3.35 -3.45 J031650.45-350937.9 2.29E-04 -2.70 -3.12 J032047.66-504133.0 2.30E-04 -3.76 -3.76 J033235.82+284354.6 2.29E-04 -2.79 -3.81 -3.36 J033431.66-350103.3 2.28E-04 -2.58 -3.12 J033640.91+032918.3 2.29E-04 -2.55 -3.46 -3.48 -9.6 -10.3 J034115.60-225307.8 2.25E-04 -3.20 -3.33 -10.0 -6.1 J034116.16-225244.0 2.23E-04 -3.21 -3.19 -2.50 J034236.95+221230.2 2.30E-04 -2.53 -3.66 J034444.80+404150.4 5.37E-08 -7.21 -3.151 -3.04 lowSNR lowSNR J035100.83+141339.2 2.23E-04 -2.65 -3.53 -2.91 J035134.51+072224.5 2.25E-04 -3.03 -3.06 J035223.52-282619.6 2.28E-04 -2.94 -3.33 -3.06 J035345.92-425018.0 2.36E-04 -3.24 -3.58 lowSNR lowSNR J035716.56-271245.5 2.27E-04 -3.65 -3.73

229 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J035733.95+244510.2 2.24E-04 -3.41 -3.36 -8.4 -10.1 J035829.67-432517.2 2.26E-04 -2.72 -3.25 J040539.68-401410.5 2.36E-04 -2.69 -3.49 lowSNR lowSNR J040649.38-450936.3 2.28E-04 -2.89 -3.43 -6.9 -4.6 J040711.50-291834.3 2.21E-04 -3.25 -3.30 -3.12 J040743.83-682511.0 2.26E-04 -3.39 -2.93 J040809.80-611904.3 2.24E-04 -3.93 -3.95 lowSNR lowSNR J040827.01-784446.7 2.22E-04 -3.31 -3.19 -3.19 -10.8 -6.7 J041050.04-023954.4 2.30E-04 -3.26 -3.24 -8.9 -7.2 J041255.78-141859.2 2.22E-04 -3.344 -3.40 -3.28 lowSNR -13.6 J041336.14-441332.4 2.33E-04 -3.251 -3.36 J041525.58-212214.5 2.32E-04 -3.57 J041749.66+001145.4 3.57E-04 -2.93 -3.04 -3.03 -2.6 -2.3 J041807.76+030826.0 2.26E-04 -3.26 -9.1 -1.7 J042139.19-723355.7 2.28E-04 -3.00 -3.65 -2.92 -1.8 -8.1 J042500.91-634309.8 2.32E-04 -2.86 -3.28 J042736.03-231658.8 -3.46 J042739.33+171844.2 2.83E-08 -3.60 J043213.46-285754.8 2.30E-04 -2.61 -3.27 J043257.29+740659.3 2.27E-04 -3.16 -3.45 -3.03 -8.9 J043657.44-161306.7 2.26E-04 -2.73 -3.11 -2.58 -19.3 -9.2 J043726.87+185126.2 0.00E+00 -3.02 -2.79 -11.4 -8.6 J043923.21+333149.0 2.27E-04 -2.60 -3.15 J043939.24-050150.9 B 2.38E-04 -3.02 -2.97 J043939.24-050150.9 A 2.38E-04 -3.02 -2.97 J044036.23-380140.8 2.12E-04 -3.87 J044120.81-194735.6 2.34E-04 -3.50 -3.24 -3.21 -6.1 -4.7 J044154.44+091953.1 9.71E-06 -4.05 -3.33 J044336.19-003401.8 1.83E-05 -3.97 -3.77 J044349.19+742501.6 2.22E-04 -3.11 -3.49 -14.6 -14.5 J044356.87+372302.7 2.20E-04 -2.82 -3.40 -3.16 J044455.71+193605.3 2.30E-04 -3.72 -3.31 -5.4 -4.5 J044530.77-285034.8 2.27E-04 -2.88 -3.11 J044700.46-513440.4 2.29E-04 -3.17 -3.64 -7.5 -6.6 J044721.05+280852.5 2.30E-04 -2.66 -3.34 -3.15 -31.5 -30.9 J044800.86+143957.7 AB 2.23E-04 -2.82

230 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J044802.59+143951.1 A J045114.41-601830.5 2.26E-04 -3.57 -3.40 -6.0 -13.3 J045420.20-400009.9 2.37E-04 -2.99 -3.36 J045651.47-311542.7 2.30E-04 -3.55 -3.86 J050333.31-382135.6 2.34E-04 -2.71 -3.45 J050610.44-582828.5 2.27E-04 -2.98 -3.56 -3.20 -8.6 -6.6 J050827.31-210144.3 2.28E-04 -2.39 -3.31 -3.21 J051026.38-325307.4 2.12E-04 -3.34 J051255.82-212438.7 2.29E-04 -2.65 -3.47 J051310.57-303147.7 2.32E-04 -3.34 -3.00 -3.11 -11.9 -6.6 J051403.20-251703.8 2.26E-04 -2.95 -3.03 -15.6 -14.3 J051650.66+022713.0 2.31E-04 -2.59 -3.51 J051803.00-375721.2 2.27E-04 -3.05 -3.05 J052419.14-160115.5 2.36E-04 -2.33 -3.28 -3.18 J052535.85-250230.2 2.31E-04 -3.22 -3.23 J052944.69-323914.1 2.27E-04 -2.86 -3.52 -3.14 J053100.27+231218.3 2.25E-04 -2.68 -3.38 J053311.32-291419.9 2.27E-04 -2.73 -3.07 -2.94 J053328.01-425720.1 A -3.59 J053328.01-425720.1 B -3.59 J053747.56-424030.8 2.31E-04 -2.53 -3.43 J053925.08-424521.0 2.27E-04 -3.28 -3.19 -2.84 -12.4 -7.1 J054223.86-275803.3 2.30E-04 -2.74 -3.21 -2.32 J054433.76-200515.5 2.21E-04 -3.32 -3.25 -2.91 -9.1 -9.6 J054448.20-265047.4 2.39E-04 -3.55 J054709.88-525626.1 2.29E-04 -3.36 -3.14 -7.1 -6.1 J054719.52-335611.2 2.34E-04 -3.12 -3.39 J055008.59+051153.2 2.22E-04 -3.42 -3.44 -3.27 J055041.58+430451.8 2.30E-04 -3.25 -3.19 -3.00 J055208.04+613436.6 2.38E-04 -3.81 -3.55 -3.36 J055941.10-231909.4 2.27E-04 -2.62 -3.24 J060156.10-164859.9 B -3.14 J060156.10-164859.9 A 2.32E-04 -3.45 -3.14 J060224.56-163450.0 -3.41 -3.23 -10.1 -8.5 J060329.60-260804.7 2.41E-04 -3.38 -3.81 -2.0 -3.9 J061313.30-274205.6 2.34E-04 -2.94 -3.51 -2.99 -13.1 -4.9

231 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J061740.43-475957.2 2.34E-04 -2.59 -2.99 J061851.01-383154.9 2.29E-04 -3.11 -3.04 J062047.17-361948.2 2.33E-04 -3.41 -2.84 -3.10 -11.8 -10.7 J062130.52-410559.1 2.33E-04 -2.59 -3.34 J062407.62+310034.4 2.24E-04 -3.04 -16.3 -7.7 J063001.84-192336.6 6.36E-05 -3.81 -3.66 J065846.87+284258.9 1.81E-04 -5.44 -3.22 -3.08 6.7 J070657.72-535345.9 2.27E-04 -3.27 -3.40 -3.13 J071036.50+171322.6 2.30E-04 -3.42 -3.30 4.9 J072641.52+185034.0 2.33E-04 -2.94 -3.26 -16.6 -16.3 J072821.16+334511.6 2.26E-04 -2.80 J072911.26-821214.3 2.29E-04 -3.36 -3.61 -8.5 -9.4 J073138.47+455716.5 1.73E-04 -2.90 -3.28 -3.05 6.8 J075233.22-643630.5 2.34E-04 -3.34 -3.21 -3.39 J075808.25-043647.5 2.30E-04 -3.78 -3.9 -2.8 J075830.92+153013.4 B 1.73E-06 -5.08 -3.22 J075830.92+153013.4 A 1.73E-06 -5.08 -3.22 J080352.54+074346.7 2.31E-02 -2.94 -3.87 5.3 J080636.05-744424.6 -3.71 -2.61 -18.0 -10.0 J081443.62+465035.8 2.26E-04 -2.69 -3.17 -28.5 -27.8 J081738.97-824328.8 2.27E-04 -2.74 -3.28 -2.94 J082105.04-090853.8 B -3.59 -1.3 -2.3 J082105.04-090853.8 A 2.16E-04 -3.59 -4.0 -8.0 J082558.91+034019.5 3.44E-05 -3.76 -3.37 -20.1 -8.8 J083528.87+181219.9 9.48E-02 -0.44 -3.04 9.5 J090227.87+584813.4 8.17E-05 -3.48 -3.21 -15.0 -14.9 J092216.12+043423.3 3.12E-03 -2.07 -3.89 J093212.63+335827.3 7.10E-04 -2.48 -3.32 -3.10 J094317.05-245458.3 2.37E-04 -3.670 -2.1 -2.5 J094508.15+714450.1 2.26E-04 -2.55 -3.63 J100146.28+681204.1 2.10E-06 -5.95 -3.69 -2.4 -4.1 J100230.94-281428.2 2.34E-04 -2.66 -3.16 -3.16 -18.1 -11.5 J101543.44+660442.3 -3.16 -3.08 J101905.68-304920.3 2.25E-04 -3.34 -3.33 -7.0 -6.7 J101917.57-443736.0 2.26E-04 -3.05 -3.54 -14.1 -11.9 J102602.07-410553.8 B 2.20E-04 -2.66 -3.15 -3.26 -14.6 -15.4

232 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J102602.07-410553.8 A 2.20E-04 -2.66 -3.15 -3.26 -22.0 -17.9 J102636.95+273838.4 2.99E-05 -4.18 -3.24 4.9 4.8 J103016.11-354626.3 2.32E-04 -3.28 -3.24 J103137.59-374915.9 2.33E-04 -2.87 -3.85 J103557.17+285330.8 7.37E-03 -1.77 -3.76 -3.38 J103952.70-353402.5 2.42E-04 -3.25 -3.21 J104008.36-384352.1 2.21E-04 -3.048 -3.09 J104044.98-255909.2 2.25E-04 -4.04 -3.85 J104551.72-112615.4 2.31E-04 -3.34 -20.4 -21.3 J105515.87-033538.2 3.33E-04 -3.28 -3.45 J105518.12-475933.2 -3.00 -5.6 -4.5 J105524.25-472611.7 A -3.44 J105524.25-472611.7 B J105711.36+054454.2 8.78E-03 -1.68 -3.16 -2.93 J105850.47-234620.8 2.31E-04 -3.61 -9.9 -17.1 J110119.22+525222.9 8.57E-04 -3.51 -3.63 J110335.71-302449.5 J110335.71-302449.5 -3.08 J110551.56-780520.7 2.25E-04 -4.27 -3.70 J111052.06-725513.0 2.31E-04 -2.64 -3.40 J111103.54-313459.0 2.33E-04 -2.94 -3.48 J111128.13-265502.9 2.37E-04 -2.39 -17.1 -9.9 J111229.74-461610.1 2.24E-04 -3.392 J111309.15+300338.4 4.32E-03 -2.59 -3.43 J111707.56-390951.3 2.28E-04 -3.56 -3.14 J112047.03-273805.8 2.29E-04 -2.43 0.0 0.0 J112105.43-384516.6 -18.2 -12.7 J112512.28-002438.2 1.06E-04 -3.65 -3.22 -2.62 4.8 5.0 J112547.46-441027.4 2.32E-04 -2.61 -3.31 -2.28 -18.1 -7.0 J112651.28-382455.5 2.23E-04 -2.78 -3.44 -15.0 -12.2 J112816.27-261429.6 2.12E-04 -3.19 -3.08 0.0 0.0 J112955.84+520213.2 1.28E-02 -1.27 -3.80 8.6 J113105.57+542913.5 6.50E-05 -3.68 -3.57 2.8 J113114.81-482628.0 2.28E-04 -2.70 -2.89 J113120.31+132140.0 5.95E-05 -3.66 -3.26 9.6 J114623.01-523851.8 2.28E-04 -2.72 -3.21

233 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J114728.37+664402.7 3.33E-08 -6.56 -3.21 -17.2 J115156.73+073125.7 -3.16 -2.94 J115438.73-503826.4 2.27E-04 -2.76 -3.28 J115927.82-451019.3 2.33E-04 -2.61 -3.29 -15.3 -8.5 J115949.51-424426.0 2.34E-04 -3.91 -3.82 -4.3 -7.4 J115957.68-262234.1 2.21E-04 -3.19 -2.97 -8.1 -7.2 J120001.54-173131.1 2.16E-04 -2.77 -3.35 -23.0 -13.9 J120237.94-332840.4 2.35E-04 -2.63 -3.60 -10.0 -8.9 J120647.40-192053.1 J120929.80-750540.2 2.22E-04 -2.81 -2.75 -3.18 J121153.04+124912.9 7.35E-03 -1.88 -3.49 J121341.59+323127.7 B -3.77 J121341.59+323127.7 A 2.15E-06 -5.73 -3.77 J121429.15-425814.8 2.26E-04 -3.09 -2.84 J121511.25-025457.1 3.68E-07 -3.48 J121558.37-753715.7 2.34E-04 -2.66 J122643.99-122918.3 2.08E-04 -2.89 -3.56 J122725.27-454006.6 2.36E-04 -3.60 -2.90 -8.5 -6.8 J122813.57-431638.9 2.33E-04 -2.85 -3.04 J123005.17-440236.1 2.29E-04 -2.77 -3.45 -13.2 -14.2 J123234.07-414257.5 2.31E-04 -2.61 -3.06 J123425.84-174544.4 2.38E-04 -3.44 -2.88 -12.1 -9.1 J123704.99-441919.5 2.30E-04 -2.64 -3.15 J124054.09-451625.4 2.19E-04 -3.09 -3.68 -9.2 -9.9 J124612.32-384013.5 2.29E-04 -2.85 -3.44 J124955.67-460737.3 2.23E-04 -3.41 -3.29 -9.7 -11.8 J125049.12-423123.6 2.29E-04 -2.44 -13.6 -14.0 J125326.99-350415.3 2.28E-04 -2.93 -3.44 -21.3 -12.5 J125902.99-314517.9 2.34E-04 -2.91 -3.61 -10.4 -10.7 J130501.18-331348.7 2.21E-04 -3.79 -3.87 J130522.37-405701.2 2.32E-04 -2.97 -3.12 -6.1 -6.4 J130530.31-405626.0 2.31E-04 -3.47 -3.27 -2.96 -9.0 -7.3 J130618.16-342857.0 2.30E-04 -2.72 -3.63 J130650.27-460956.1 2.31E-04 -3.49 -2.92 J130731.03-173259.9 2.37E-04 -2.73 -3.22 J131129.00-425241.9 2.18E-04 -3.13 -3.51 -2.94

234 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J132112.77-285405.1 2.32E-04 -3.42 -3.07 J133238.94+305905.8 8.37E-05 -3.32 -3.43 -19.8 J133509.40+503917.5 4.88E-02 -0.66 -3.163 -2.91 J133901.87-214128.0 -3.40 -2.57 J134146.41+581519.2 2.30E-04 -3.27 -3.83 -3.51 J134907.28+082335.8 8.17E-02 -1.69 -3.81 J135145.65-374200.7 -13.0 -9.1 J135511.38+665207.0 4.48E-05 -4.26 -3.55 5.4 7.6 J135913.33-292634.2 2.26E-04 -4.14 -3.89 J140337.56-501047.9 -3.49 J141045.24+364149.8 2.12E-08 -7.11 -3.61 J141332.23-145421.1 7.54E-05 -3.22 -3.39 -2.83 J141510.77-252012.0 2.28E-04 -4.30 -3.39 4.6 5.4 J141842.36+475514.9 3.52E-04 -3.70 -3.27 J141903.13+645146.4 4.80E-05 -3.49 -3.10 -2.97 J143517.80-342250.4 2.26E-04 -3.31 -3.51 J143648.16+090856.5 4.80E-05 -3.55 -3.40 -11.5 J143713.21-340921.1 -3.18 J143753.36-343917.8 2.21E-04 -3.07 -3.58 J145014.12-305100.6 2.22E-04 -3.67 -3.66 4.2 J145731.11-305325.0 2.18E-04 -2.92 -3.47 -7.3 -8.5 J145949.90+244521.9 3.41E-05 -3.78 -3.48 J150119.48-200002.1 -3.25 J150230.94-224615.4 2.23E-04 -2.97 -3.08 J150355.37-214643.1 2.20E-04 -3.07 -3.35 J150601.66-240915.0 2.31E-04 -2.60 -2.93 J150723.91+433353.6 1.04E-04 -3.81 -3.74 -2.96 J150820.15-282916.6 2.31E-04 -2.82 -3.59 J150836.69-294222.9 2.28E-04 -3.58 -3.38 J150939.16-133212.4 2.30E-04 -2.70 -3.31 J151212.18-255708.3 2.24E-04 -3.06 -3.68 J151242.69-295148.0 2.19E-04 -3.09 -3.41 J151411.31-253244.1 2.37E-04 -3.86 -3.10 J152150.76-251412.1 2.30E-04 -2.78 -3.38 -2.98 lowSNR 14.0 J153248.80-230812.4 2.19E-04 -3.32 -3.39 J153549.35-065727.8 2.18E-04 -3.41 -3.34 -9.6 -8.4

235 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J154220.24+593653.0 2.05E-05 -3.18 -3.18 -2.74 J154227.07-042717.1 2.20E-04 -3.54 -3.51 J154349.42-364838.7 2.32E-04 -2.70 -3.10 J154435.17+042307.5 1.45E-03 -2.17 -3.41 J154656.43+013650.8 4.18E-02 -0.75 -3.53 J155046.47+305406.9 1.60E-06 -5.02 -3.27 J155515.35+081327.9 1.00E-02 -2.16 -3.79 J155759.01-025905.8 2.17E-04 -4.96 -3.69 J155947.24+440359.6 2.23E-04 -3.18 -3.34 -3.17 1.3 2.0 J160116.86-345502.7 2.31E-04 -3.35 J160549.19-311521.6 2.19E-04 -3.31 -3.35 J160828.45-060734.6 2.27E-04 -2.99 -3.48 J160954.85-305858.4 2.18E-04 -3.73 -3.538 J161410.76-025328.8 AB -2.82 -3.4 -3.4 J161743.18+261815.2 2.77E-04 -3.77 J162422.68+195922.0 5.64E-09 -8.21 -3.35 -2.88 J162548.69-135912.0 -3.29 J162602.80-155954.5 2.58E-04 -3.04 -3.17 J163051.34+472643.8 5.65E-08 -6.51 -3.51 -12.7 J163632.90+635344.9 -3.79 7.4 3.0 J164539.37+702400.1 1.96E-04 -3.34 -3.72 12.0 12.5 J170415.15-175552.5 2.22E-04 -3.50 -3.52 J171038.44-210813.0 2.31E-04 -3.30 -2.97 -2.96 J171117.68+124540.4 2.32E-04 -3.01 -3.35 -2.74 5.8 J171426.13-214845.0 2.01E-04 -3.43 -3.764 J171441.70-220948.8 2.19E-04 -2.90 -3.43 -2.97 J172130.71-150617.8 2.33E-04 -2.86 -3.54 J172131.73-084212.3 2.21E-04 -2.96 -3.39 J172309.67-095126.2 2.16E-04 -3.47 -3.83 J172454.26+502633.0 2.34E-04 -4.02 -3.79 J172615.23-031131.9 2.30E-04 -2.51 -3.60 -2.93 J172951.38+093336.9 2.25E-04 -2.96 -3.41 -15.9 -17.1 J173353.07+165511.7 2.28E-04 -2.63 -3.43 -3.28 J173544.26-165209.9 2.17E-04 -3.66 -3.71 J173623.80+061853.0 6.38E-03 -2.43 -3.83 J173826.94-055628.0 2.82E-04 -3.17 -3.38

236 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J174203.85-032340.4 2.32E-04 -2.75 -3.17 J174426.59-074925.3 2.30E-04 -3.44 -3.46 J174439.27+483147.1 1.21E-03 -4.92 -3.47 J174536.31-063215.3 2.68E-04 -3.09 -2.94 J174735.31-033644.4 2.74E-04 -3.21 -2.91 J174811.33-030510.2 2.35E-04 -3.03 -3.61 -8.0 -10.3 J174936.01-010808.7 5.02E-05 -3.55 -3.45 J175022.27-094457.8 2.13E-04 -3.54 -3.81 J175839.30+155208.6 2.50E-04 -3.05 -3.48 J175942.12+784942.1 1.86E-07 J180508.62-015058.5 2.61E-04 -3.11 -3.65 J180554.92-570431.3 2.19E-04 -2.84 -3.09 J180658.07+161037.9 2.31E-04 -2.90 -3.01 J180733.00+613153.6 2.31E-04 -3.12 -3.15 -12.9 -11.5 J180929.71-543054.2 2.30E-04 -2.69 -3.69 J181059.88-012322.4 1.83E-04 -3.33 J181725.08+482202.8 2.34E-04 -3.28 -3.64 -3.64 J182054.20+022101.5 2.59E-04 -3.23 -3.68 J182905.79+002232.2 -2.93 J184204.85-555413.3 2.33E-04 -2.86 -3.40 -2.17 J184206.97-555426.2 2.22E-04 -2.81 -3.35 -2.70 -6.1 -6.0 J184536.02-205910.8 2.43E-04 -3.788 -3.76 -2.2 -4.1 J190453.69-140406.0 2.26E-04 -3.62 J191019.82-160534.8 2.30E-04 -3.66 -3.61 J191036.02-650825.5 2.22E-04 -3.01 -3.85 J191235.95+630904.7 2.23E-04 -3.18 -3.40 -9.1 -10.3 J191500.80-284759.1 2.30E-04 -2.56 -3.65 J191534.83-083019.9 2.41E-04 -3.50 -2.99 -2.99 J191629.61-270707.2 2.30E-04 -2.86 -3.65 J192240.05-061208.0 2.99E-07 -5.86 -3.37 -2.76 -2.6 J192242.80-051553.8 3.42E-05 -3.68 -3.03 -2.81 J192250.70-631058.6 2.26E-04 -2.87 -3.42 -2.82 -5.9 -4.7 J192323.20+700738.3 2.41E-04 -3.32 J192434.97-344240.0 -3.36 -2.6 -2.6 J192600.77-533127.6 A 2.25E-04 -3.37 -3.78 J192600.77-533127.6 B 2.25E-04 -3.37 -3.78

237 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J192659.33-710923.8 2.33E-04 -3.11 -3.18 -4.5 -3.2 J193052.51-545325.4 2.26E-04 -3.23 -3.11 -11.9 -11.7 J193411.46-300925.3 2.30E-04 -2.52 lowSNR lowSNR J193711.26-040126.7 2.48E-04 -3.77 -3.37 -0.2 -0.5 J194309.89-601657.8 2.29E-04 -2.68 -3.22 J194444.21-435903.0 2.32E-04 -2.80 J194539.01+704445.9 2.30E-04 -3.31 -3.20 J194714.54+640237.9 2.32E-04 -3.37 -3.61 -3.30 J194816.54-272032.3 2.24E-04 -3.02 -3.65 J194834.58-760546.9 2.26E-04 -3.57 -3.39 -2.86 J195227.23-773529.4 B 2.29E-04 -3.16 -3.45 J195227.23-773529.4 A 2.29E-04 -3.16 -3.45 J195315.67+745948.9 2.09E-04 -4.28 -3.59 J195331.72-070700.5 2.27E-04 -2.98 -3.33 J195340.71+502458.2 2.37E-04 -2.79 -3.36 -2.68 -5.4 J195602.95-320719.3 2.30E-04 -2.86 -3.39 -2.85 J200137.19-331314.5 2.18E-04 -3.09 -3.37 -3.33 -7.2 -6.2 J200311.61-243959.2 2.35E-04 -3.33 -3.65 J200409.19-672511.7 2.26E-04 -2.93 -3.19 J200423.80-270835.8 2.22E-04 -3.45 -3.35 J200556.44-321659.7 -3.40 J200837.87-254526.2 2.39E-04 -2.57 -3.20 J200853.72-351949.3 2.24E-04 -2.81 -3.66 J201000.06-280141.6 2.23E-04 -2.52 -3.16 -3.08 -25.8 -13.5 J201931.84-081754.3 2.29E-04 -3.41 -3.31 -3.10 5.0 J202505.36+835954.2 2.05E-04 -2.93 -3.36 J202716.80-254022.8 2.23E-04 -3.63 -3.78 J203023.10+711419.8 2.12E-04 -3.50 -3.72 -5.9 -7.4 J203301.99-490312.6 2.28E-04 -2.76 -3.74 J203337.63-255652.8 2.37E-04 -2.54 -3.44 J204406.36-153042.3 8.57E-05 -5.46 -3.59 J204714.59+110442.2 2.35E-04 -3.14 -3.58 8.7 8.8 J205131.01-154857.6 2.30E-04 -2.01 -2.82 J205136.27+240542.9 8.89E-05 -3.33 J205832.99-482033.8 2.29E-04 -2.62 J210131.13-224640.9 2.22E-04 -4.75 -3.93

238 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J210338.46+075330.3 1.44E-02 -1.78 -2.91 -3.19 J210708.43-113506.0 -3.57 J210722.53-705613.4 2.27E-04 -3.06 -3.25 -6.6 -3.9 J210736.82-130458.9 2.26E-04 -2.97 -3.32 -3.10 J210957.48+032121.1 1.08E-02 -2.49 J211004.67-192031.2 2.34E-04 -2.69 -3.60 -2.74 -13.6 -14.3 J211005.41-191958.4 2.22E-04 -3.01 -3.48 -2.93 -30.9 -19.8 J211031.49-271058.1 A 2.30E-04 -2.15 -3.49 -3.02 J211031.49-271058.1 B -3.49 J211635.34-600513.4 2.28E-04 -2.84 -3.02 -1.7 -0.6 J212007.84-164548.2 2.33E-04 -2.81 -3.56 J212128.89-665507.1 2.28E-04 -3.81 -3.04 J212230.56-333855.2 2.30E-04 -2.38 -3.27 J212750.60-684103.9 2.33E-04 -2.66 -3.411 J213507.39+260719.4 1.42E-04 -4.57 -3.75 3.6 J213520.34-142917.9 2.30E-04 -2.84 -3.54 J213644.54+670007.1 J213708.89-603606.4 2.27E-04 -2.77 -3.17 -2.73 -7.4 -7.3 J213740.24+013713.2 2.21E-04 -2.57 -3.22 -3.04 J213835.44-505111.0 2.27E-04 -2.80 -3.65 J213847.58+050451.4 2.41E-05 -3.82 -3.53 J214101.48+723026.7 1.03E-04 -3.54 -3.42 -13.1 -13.5 J214126.66+204310.5 2.05E-04 -3.01 -3.52 -3.16 J214414.73+321822.3 2.23E-04 -4.25 -3.73 J214905.04-641304.8 2.34E-04 -2.74 -3.49 -2.62 J215053.68-055318.9 4.57E-04 -3.00 -3.35 -2.99 J215128.95-023814.9 4.15E-07 -5.86 -3.50 -3.34 J215717.71-341834.0 2.38E-04 -3.41 -3.63 J220216.29-421034.0 2.17E-04 -3.37 -3.42 -3.11 -22.4 -15.0 J220254.57-644045.0 2.24E-04 -3.13 -3.34 -10.6 -8.7 J220306.98-253826.6 2.33E-04 -2.77 -3.37 -38.6 -25.6 J220730.16-691952.6 2.31E-04 -3.39 -3.58 lowSNR lowSNR J220850.39+114412.7 1.42E-03 -2.02 -3.43 J221217.17-681921.1 2.22E-04 -3.80 J221559.00-014733.0 1.29E-04 -4.53 -3.66 J221833.85-170253.2 2.30E-04 -4.36 -3.80

239 Table 4.15 (cont’d)

WISE Desig Comp χ LHα/Lbol LNUV /Lbol LX /Lbol EW(Ca II H) [A˚] EW(Ca II K) [A˚] J221842.70+332113.5 2.25E-04 -3.26 -3.61 -3.45 -9.3 -11.2 J222024.21-072734.5 1.65E-03 -2.19 -3.38 -3.21 J224111.08-684141.8 2.17E-04 -2.67 -3.04 J224221.02-410357.2 2.33E-04 -2.91 J224448.45-665003.9 2.27E-04 -2.63 J224500.20-331527.2 2.27E-04 -2.73 -3.65 J224634.82-735351.0 2.31E-04 -2.94 -3.21 -4.8 -4.9 J225914.87+373639.3 2.43E-04 -2.72 -3.32 J225934.89-070447.1 5.30E-05 -3.54 -3.54 J230209.10-121522.0 2.36E-04 -2.78 -3.27 -3.1 -2.8 J230327.73-211146.2 2.20E-04 -2.91 -2.84 J230740.98+080359.7 9.06E-02 -1.39 -3.75 J231021.75+685943.6 2.43E-04 -3.79 J231211.37+150329.7 1.10E-02 -1.50 -3.44 J231246.53-504924.8 2.35E-04 -2.76 -3.42 lowSNR lowSNR J231457.86-633434.0 B 2.23E-04 -3.44 -10.0 -2.4 J231457.86-633434.0 A 2.23E-04 -3.49 -12.4 -3.2 J231543.66-140039.6 2.27E-04 -3.86 -3.94 J231933.16-393924.3 J232008.15-634334.9 2.26E-04 -2.89 J232151.23+005037.3 1.23E-03 -3.34 -3.86 J232656.43+485720.9 4.42E-04 -3.49 -2.89 J232857.75-680234.5 2.28E-04 -2.86 -3.21 -3.00 J232904.42+032910.8 1.47E-05 -3.95 -3.69 -43.2 -29.3 J232917.64-675000.6 2.28E-04 -2.77 -3.41 J232959.47+022834.0 2.64E-05 -3.83 J233647.87+001740.1 2.73E-04 -4.72 -3.84 J234243.45-622457.1 2.35E-04 -2.58 J234326.88-344658.5 2.31E-04 -3.28 -3.56 J234333.91-192802.8 2.25E-04 -3.57 -3.15 -3.05 -10.0 -12.1 J234347.83-125252.1 2.33E-04 -3.29 -3.61 J234857.35+100929.3 2.43E-04 -4.66 -3.83 J234924.87+185926.7 1.86E-09 -8.83 -3.42 J234926.23+185912.4 9.06E-02 -1.01 -3.49 -7.8 -8.1 J235250.70-160109.7 2.35E-04 -2.83 -2.95 -8.2 2M 12182363-3515098

Note. — χ is a multiplicative factor used to convert from EW of Hα to LHα (see Section 4.5.4.2).

240 Bibliography

Anderson, E. & Francis, C. 2012, Astronomy Letters, 38, 331

Ansdell, M., Gaidos, E., Mann, A. W., L´epine,S., James, D., Buccino, A., Baranec, C., Law, N. M., Riddle, R., Mauas, P., & Petrucci, R. 2015, ApJ, 798, 41

Aumann, H. H., Beichman, C. A., Gillett, F. C., de Jong, T., Houck, J. R., Low, F. J., Neugebauer, G., Walker, R. G., & Wesselius, P. R. 1984, ApJ, 278, L23

Ballering, N. P., Rieke, G. H., Su, K. Y. L., & Montiel, E. 2013, ApJ, 775, 55

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403

Barnes, S. A. 2003, ApJ, 586, 464

Barrado y Navascu´es,D., Stauffer, J. R., & Jayawardhana, R. 2004, ApJ, 614, 386

Bell, C. P. M., Mamajek, E. E., & Naylor, T. 2015, MNRAS, 454, 593

Bilir, S., Karaali, S., Ak, S., daˇgtekin,N. D., Onal,¨ O.,¨ Yaz, E., Co¸skunoˇglu,B., & Cabrera- Lavers, A. 2011, MNRAS, 417, 2230

Biller, B. A., Close, L. M., Masciadri, E., Nielsen, E., Lenzen, R., Brandner, W., McCarthy, D., Hartung, M., Kellner, S., Mamajek, E., Henning, T., Miller, D., Kenworthy, M., & Kulesa, C. 2007, ApJS, 173, 143

Biller, B. A., Liu, M. C., Wahhaj, Z., Nielsen, E. L., Hayward, T. L., Males, J. R., Skemer, A., Close, L. M., Chun, M., Ftaclas, C., Clarke, F., Thatte, N., Shkolnik, E. L., Reid, I. N., Hartung, M., Boss, A., Lin, D., Alencar, S. H. P., de Gouveia Dal Pino, E., Gregorio- Hetem, J., & Toomey, D. 2013, ApJ, 777, 160

Binks, A. 2016, in IAU Symposium, Vol. 314, IAU Symposium, ed. J. H. Kastner, B. Stelzer, & S. A. Metchev, 159–162

Binks, A. S. & Jeffries, R. D. 2014, MNRAS, 438, L11

241 —. 2016, MNRAS, 455, 3345

Booth, M., Kennedy, G., Sibthorpe, B., Matthews, B. C., Wyatt, M. C., Duchˆene,G., Kavelaars, J. J., Rodriguez, D., Greaves, J. S., Koning, A., Vican, L., Rieke, G. H., Su, K. Y. L., Moro-Mart´ın,A., & Kalas, P. 2013, MNRAS, 428, 1263

Boulade, O., Cesarsky, C. J., Cretolle, J., Rio, Y., Roy, A., Vigroux, L. G., & Cesarsky, D. A. 1995, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 2475, Infrared Detectors and Instrumentation for Astronomy, ed. A. M. Fowler, 360–366

Bryden, G., Beichman, C. A., Carpenter, J. M., Rieke, G. H., Stapelfeldt, K. R., Werner, M. W., Tanner, A. M., Lawler, S. M., Wyatt, M. C., Trilling, D. E., Su, K. Y. L., Blaylock, M., & Stansberry, J. A. 2009, ApJ, 705, 1226

Bryden, G., Beichman, C. A., Trilling, D. E., Rieke, G. H., Holmes, E. K., Lawler, S. M., Stapelfeldt, K. R., Werner, M. W., Gautier, T. N., Blaylock, M., Gordon, K. D., Stans- berry, J. A., & Su, K. Y. L. 2006, ApJ, 636, 1098

Bulger, J., Hufford, T., Schneider, A., Patience, J., Song, I., De Rosa, R. J., Rajan, A., Dowell, C. D., McCarthy, D., & Kulesa, C. 2013, A&A, 556, A119

Butler, R. P., Wright, J. T., Marcy, G. W., Fischer, D. A., Vogt, S. S., Tinney, C. G., Jones, H. R. A., Carter, B. D., Johnson, J. A., McCarthy, C., & Penny, A. J. 2006, ApJ, 646, 505

Carpenter, J. M., Bouwman, J., Mamajek, E. E., Meyer, M. R., Hillenbrand, L. A., Backman, D. E., Henning, T., Hines, D. C., Hollenbach, D., Kim, J. S., Moro-Martin, A., Pascucci, I., Silverstone, M. D., Stauffer, J. R., & Wolf, S. 2009, ApJS, 181, 197

Casagrande, L., Sch¨onrich, R., Asplund, M., Cassisi, S., Ram´ırez, I., Mel´endez,J., Bensby, T., & Feltzing, S. 2011, A&A, 530, A138

Chen, C. H. & Jura, M. 2001, ApJ, 560, L171

242 Chen, C. H., Jura, M., Gordon, K. D., & Blaylock, M. 2005, ApJ, 623, 493

Chen, C. H., Mittal, T., Kuchner, M., Forrest, W. J., Lisse, C. M., Manoj, P., Sargent, B. A., & Watson, D. M. 2014, ApJS, 211, 25

Chen, C. H., Sheehan, P., Watson, D. M., Manoj, P., & Najita, J. R. 2009, ApJ, 701, 1367

Cutri, R. M. & et al. 2012, VizieR Online Data Catalog, 2311

Cutri, R. M., Skrutskie, M. F., van Dyk, S., Beichman, C. A., Carpenter, J. M., Chester, T., Cambresy, L., Evans, T., Fowler, J., Gizis, J., Howard, E., Huchra, J., Jarrett, T., Kopan, E. L., Kirkpatrick, J. D., Light, R. M., Marsh, K. A., McCallon, H., Schneider, S., Stiening, R., Sykes, M., Weinberg, M., Wheaton, W. A., Wheelock, S., & Zacarias, N. 2003, VizieR Online Data Catalog, 2246 da Silva, L., Torres, C. A. O., de La Reza, R., Quast, G. R., Melo, C. H. F., & Sterzik, M. F. 2009, A&A, 508, 833 de Graauw, T., Whyborn, N., Helmich, F., Dieleman, P., Roelfsema, P., Caux, E., Phillips, T., Stutzki, J., Beintema, D., Benz, A., Biver, N., Boogert, A., Boulanger, F., Chered- nichenko, S., Coeur-Joly, O., Comito, C., Dartois, E., de Jonge, A., de Lange, G., Delorme, I., DiGiorgio, A., Dubbeldam, L., Edwards, K., Fich, M., G¨usten, R., Herpin, F., Hon- ingh, N., Huisman, R., Jacobs, H., Jellema, W., Kawamura, J., Kester, D., Klapwijk, T., Klein, T., Kooi, J., Krieg, J.-M., Kramer, C., Kruizenga, B., Laauwen, W., Larsson, B., Leinz, C., Liseau, R., Lord, S., Luinge, W., Marston, A., Merkel, H., Moreno, R., Morris, P., Murphy, A., Naber, A., Planesas, P., Martin-Pintado, J., Olberg, M., Orleanski, P., Ossenkopf, V., Pearson, J., Perault, M., Phillip, S., Rataj, M., Ravera, L., Saraceno, P., Schieder, R., Schmuelling, F., Szczerba, R., Shipman, R., Teyssier, D., Vastel, C., Visser, H., Wildeman, K., Wafelbakker, K., Ward, J., Higgins, R., Aarts, H., Tielens, X., & Zaal, P. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7010, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 4

243 Dhital, S., West, A. A., Stassun, K. G., & Bochanski, J. J. 2010, AJ, 139, 2566

Dominik, C. & Decin, G. 2003, ApJ, 598, 626

Ducourant, C., Teixeira, R., Galli, P. A. B., Le Campion, J. F., Krone-Martins, A., Zucker- man, B., Chauvin, G., & Song, I. 2014, A&A, 563, A121

Duncan, D. K., Vaughan, A. H., Wilson, O. C., Preston, G. W., Frazer, J., Lanning, H., Misch, A., Mueller, J., Soyumer, D., Woodard, L., Baliunas, S. L., Noyes, R. W., Hart- mann, L. W., Porter, A., Zwaan, C., Middelkoop, F., Rutten, R. G. M., & Mihalas, D. 1991, ApJS, 76, 383

Feiden, G. A. & Chaboyer, B. 2013, ApJ, 779, 183

Fischer, D. A., Vogt, S. S., Marcy, G. W., Butler, R. P., Sato, B., Henry, G. W., Robinson, S., Laughlin, G., Ida, S., Toyota, E., Omiya, M., Driscoll, P., Takeda, G., Wright, J. T., & Johnson, J. A. 2007, ApJ, 669, 1336

Fujiwara, H., Onaka, T., Yamashita, T., Ishihara, D., Kataza, H., Fukagawa, M., Takeda, Y., & Murakami, H. 2012, ApJ, 749, L29

Gagn´e,J., Lafreni`ere,D., Doyon, R., Malo, L., & Artigau, E.´ 2014, ApJ, 783, 121

G´asp´ar,A. & Rieke, G. H. 2014, ApJ, 784, 33

Gershberg, R. E., Katsova, M. M., Lovkaya, M. N., Terebizh, A. V., & Shakhovskaya, N. I. 1999, A&AS, 139, 555

Greaves, J. S., Fischer, D. A., & Wyatt, M. C. 2006, MNRAS, 366, 283

Griffin, M., Swinyard, B., Vigroux, L., Abergel, A., Ade, P., Andr´e,P., Baluteau, J.-P., Bock, J., Franceschini, A., Gear, W., Glenn, J., Huang, M., Griffin, D., King, K., Lellouch, E., Naylor, D., Oliver, S., Olofsson, G., Perez-Fournon, I., Page, M., Rowan-Robinson, M., Saraceno, P., Sawyer, E., Wright, G., Zavagno, A., Abreu, A., Bendo, G., Dowell, A., Dowell, D., Ferlet, M., Fulton, T., Hargrave, P., Laurent, G., Leeks, S., Lim, T., Lu,

244 N., Nguyen, H., Pearce, A., Polehampton, E., Rizzo, D., Schulz, B., Sidher, S., Smith, D., Spencer, L., Valtchanov, I., Woodcraft, A., Xu, K., & Zhang, L. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7010, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6

Guinan, E. F. & Engle, S. G. 2009, in IAU Symposium, Vol. 258, The Ages of Stars, ed. E. E. Mamajek, D. R. Soderblom, & R. F. G. Wyse, 395–408

Halbwachs, J. L. 1986, A&AS, 66, 131

Hall, J. C. 1996, PASP, 108, 313

Han, E., Wang, S. X., Wright, J. T., Feng, Y. K., Zhao, M., Fakhouri, O., Brown, J. I., & Hancock, C. 2014, PASP, 126, 827

Hartmann, W. K. & Davis, D. R. 1975, Icarus, 24, 504

Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377

Helou, G. & Walker, D. W., eds. 1988, Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 7: The small scale structure catalog, Vol. 7, 1–265

Hillenbrand, L. A., Carpenter, J. M., Kim, J. S., Meyer, M. R., Backman, D. E., Moro- Mart´ın,A., Hollenbach, D. J., Hines, D. C., Pascucci, I., & Bouwman, J. 2008, ApJ, 677, 630

Høg, E., Fabricius, C., Makarov, V. V., Urban, S., Corbin, T., Wycoff, G., Bastian, U., Schwekendiek, P., & Wicenec, A. 2000, A&A, 355, L27

Houck, J. R., Roellig, T. L., Van Cleve, J., Forrest, W. J., Herter, T. L., Lawrence, C. R., Matthews, K., Reitsema, H. J., Soifer, B. T., Watson, D. M., Weedman, D., Huisjen, M., Troeltzsch, J. R., Barry, D. J., Bernard-Salas, J., Blacken, C., Brandl, B. R., Charman- daris, V., Devost, D., Gull, G. E., Hall, P., Henderson, C. P., Higdon, S. J. U., Pirger, B. E., Schoenwald, J., Sloan, G. C., Uchida, K. I., Appleton, P. N., Armus, L., Burgdorf, M. J., Fajardo-Acosta, S. B., Grillmair, C. J., Ingalls, J. G., Morris, P. W., & Teplitz, 245 H. I. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Se- ries, Vol. 5487, Optical, Infrared, and Millimeter Space Telescopes, ed. J. C. Mather, 62–76

Isaacson, H. & Fischer, D. 2010, ApJ, 725, 875

Jackson, A. P. & Wyatt, M. C. 2012, MNRAS, 425, 657

Janson, M., Hormuth, F., Bergfors, C., Brandner, W., Hippler, S., Daemgen, S., Kudryavt- seva, N., Schmalzl, E., Schnupp, C., & Henning, T. 2012, ApJ, 754, 44

Jenkins, J. S., Murgas, F., Rojo, P., Jones, H. R. A., Day-Jones, A. C., Jones, M. I., Clarke, J. R. A., Ruiz, M. T., & Pinfield, D. J. 2011, A&A, 531, A8

Johnson, J. A., Marcy, G. W., Fischer, D. A., Laughlin, G., Butler, R. P., Henry, G. W., Valenti, J. A., Ford, E. B., Vogt, S. S., & Wright, J. T. 2006, ApJ, 647, 600

Jones, D. O. & West, A. A. 2016, ApJ, 817, 1

Kennedy, G. M. & Wyatt, M. C. 2012, MNRAS, 426, 91

—. 2014, MNRAS, 444, 3164

Kenyon, S. J. & Bromley, B. C. 2005, AJ, 130, 269

—. 2008, ApJS, 179, 451

Koerner, D. W., Kim, S., Trilling, D. E., Larson, H., Cotera, A., Stapelfeldt, K. R., Wahhaj, Z., Fajardo-Acosta, S., Padgett, D., & Backman, D. 2010, ApJ, 710, L26

K´osp´al, A.,´ Mo´or,A., Juh´asz,A., Abrah´am,P.,´ Apai, D., Csengeri, T., Grady, C. A., Henning, T., Hughes, A. M., Kiss, C., Pascucci, I., & Schmalzl, M. 2013, ApJ, 776, 77

Kraus, A. L., Shkolnik, E. L., Allers, K. N., & Liu, M. C. 2014, AJ, 147, 146

Lada, C. J. 2006, ApJ, 640, L63

Lisse, C. M., Chen, C. H., Wyatt, M. C., & Morlok, A. 2008, ApJ, 673, 1106 246 Lisse, C. M., Chen, C. H., Wyatt, M. C., Morlok, A., Song, I., Bryden, G., & Sheehan, P. 2009, ApJ, 701, 2019

Magnelli, B., Popesso, P., Berta, S., Pozzi, F., Elbaz, D., Lutz, D., Dickinson, M., Altieri, B., Andreani, P., Aussel, H., B´ethermin, M., Bongiovanni, A., Cepa, J., Charmandaris, V., Chary, R.-R., Cimatti, A., Daddi, E., F¨orsterSchreiber, N. M., Genzel, R., Gruppioni, C., Harwit, M., Hwang, H. S., Ivison, R. J., Magdis, G., Maiolino, R., Murphy, E., Nordon, R., Pannella, M., P´erezGarc´ıa,A., Poglitsch, A., Rosario, D., Sanchez-Portal, M., Santini, P., Scott, D., Sturm, E., Tacconi, L. J., & Valtchanov, I. 2013, A&A, 553, A132

Malo, L., Artigau, E.,´ Doyon, R., Lafreni`ere,D., Albert, L., & Gagn´e,J. 2014, ApJ, 788, 81

Malo, L., Doyon, R., Lafreni`ere,D., Artigau, E.,´ Gagn´e,J., Baron, F., & Riedel, A. 2013, ApJ, 762, 88

Mamajek, E. E. & Bell, C. P. M. 2014, MNRAS, 445, 2169

Mamajek, E. E. & Hillenbrand, L. A. 2008, ApJ, 687, 1264

Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T., & von Braun, K. 2015, ApJ, 804, 64

Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafreni`ere, D., & Doyon, R. 2008, Science, 322, 1348

Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., & Barman, T. 2010, Nature, 468, 1080

Marshall, J. P., Booth, M., Holland, W., Matthews, B. C., Greaves, J. S., & Zuckerman, B. 2016, MNRAS, 459, 2893

Martin, D. C., Fanson, J., Schiminovich, D., Morrissey, P., Friedman, P. G., Barlow, T. A., Conrow, T., Grange, R., Jelinsky, P. N., Milliard, B., et al. 2005, The Astrophysical Journal Letters, 619, L1

Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E. 2013, VizieR Online Data Catalog, 1, 2026 247 Matthews, B. C., Sibthorpe, B., Kennedy, G., Phillips, N., Churcher, L., Duchˆene,G., Greaves, J. S., Lestrade, J.-F., Moro-Martin, A., Wyatt, M. C., Bastien, P., Biggs, A., Bouvier, J., Butner, H. M., Dent, W. R. F., di Francesco, J., Eisl¨offel,J., Graham, J., Harvey, P., Hauschildt, P., Holland, W. S., Horner, J., Ibar, E., Ivison, R. J., Johnstone, D., Kalas, P., Kavelaars, J., Rodriguez, D., Udry, S., van der Werf, P., Wilner, D., & Zuckerman, B. 2010, A&A, 518, L135

McDonald, I., Zijlstra, A. A., & Boyer, M. L. 2012, MNRAS, 427, 343

Melis, C., Zuckerman, B., Rhee, J. H., & Song, I. 2010, ApJ, 717, L57

Melis, C., Zuckerman, B., Rhee, J. H., Song, I., Murphy, S. J., & Bessell, M. S. 2013, ApJ, 778, 12

Melis, C., Zuckerman, B., Rhee, J. H., Song, I., Murphy, S. J., & Bessell, M. S. 2014, in IAU Symposium, Vol. 293, IAU Symposium, ed. N. Haghighipour, 273–277

Mittal, T., Chen, C. H., Jang-Condell, H., Manoj, P., Sargent, B. A., Watson, D. M., & Lisse, C. M. 2015, ApJ, 798, 87

Mo´or,A., K´osp´al, A.,´ Abrah´am,P.,´ Apai, D., Balog, Z., Grady, C., Henning, T., Juh´asz, A., Kiss, C., Krivov, A. V., Pawellek, N., & Szab´o,G. M. 2015, MNRAS, 447, 577

Morales, F. Y., Bryden, G., Werner, M. W., & Stapelfeldt, K. R. 2013, ApJ, 776, 111

Morales, F. Y., Rieke, G. H., Werner, M. W., Bryden, G., Stapelfeldt, K. R., & Su, K. Y. L. 2011, ApJ, 730, L29

Moro-Mart´ın,A., Marshall, J. P., Kennedy, G., Sibthorpe, B., Matthews, B. C., Eiroa, C., Wyatt, M. C., Lestrade, J.-F., Maldonado, J., Rodriguez, D., Greaves, J. S., Montesinos, B., Mora, A., Booth, M., Duchˆene,G., Wilner, D., & Horner, J. 2015, ApJ, 801, 143

Nesvold, E. R., Naoz, S., Vican, L., & Farr, W. M. 2016, ArXiv e-prints

Nidever, D. L., Marcy, G. W., Butler, R. P., Fischer, D. A., & Vogt, S. S. 2002, ApJS, 141, 503 248 Noyes, R. W., Weiss, N. O., & Vaughan, A. H. 1984, ApJ, 287, 769

Olofsson, J., Henning, T., Nielbock, M., Augereau, J.-C., Juh`asz,A., Oliveira, I., Absil, O., & Tamanai, A. 2013, A&A, 551, A134

Olofsson, J., Juh´asz,A., Henning, T., Mutschke, H., Tamanai, A., Mo´or,A., & Abrah´am,´ P. 2012, A&A, 542, A90

Ott, S. 2010, in Astronomical Society of the Pacific Conference Series, Vol. 434, Astronomical Data Analysis Software and Systems XIX, ed. Y. Mizumoto, K.-I. Morita, & M. Ohishi, 139

Pace, G. 2013, A&A, 551, L8

Palla, F., Randich, S., Pavlenko, Y. V., Flaccomio, E., & Pallavicini, R. 2007, ApJ, 659, L41

Pawellek, N., Krivov, A. V., Marshall, J. P., Montesinos, B., Abrah´am,P.,´ Mo´or, A., Bryden, G., & Eiroa, C. 2014, ApJ, 792, 65

Perryman, M. A. C., Lindegren, L., Kovalevsky, J., Hoeg, E., Bastian, U., Bernacca, P. L., Cr´ez´e,M., Donati, F., Grenon, M., Grewing, M., van Leeuwen, F., van der Marel, H., Mignard, F., Murray, C. A., Le Poole, R. S., Schrijver, H., Turon, C., Arenou, F., Froeschl´e,M., & Petersen, C. S. 1997, A&A, 323

Pilbratt, G. L., Riedinger, J. R., Passvogel, T., Crone, G., Doyle, D., Gageur, U., Heras, A. M., Jewell, C., Metcalfe, L., Ott, S., & Schmidt, M. 2010, A&A, 518, L1

Plavchan, P., Werner, M. W., Chen, C. H., Stapelfeldt, K. R., Su, K. Y. L., Stauffer, J. R., & Song, I. 2009, ApJ, 698, 1068

Poglitsch, A., Waelkens, C., Bauer, O. H., Cepa, J., Feuchtgruber, H., Henning, T., van Hoof, C., Kerschbaum, F., Krause, O., Renotte, E., Rodriguez, L., Saraceno, P., & Vandenbuss- che, B. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7010, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 5 249 Pollack, J. B., Hollenbach, D., Beckwith, S., Simonelli, D. P., Roush, T., & Fong, W. 1994, ApJ, 421, 615

Rameau, J., Chauvin, G., Lagrange, A.-M., Meshkat, T., Boccaletti, A., Quanz, S. P., Currie, T., Mawet, D., Girard, J. H., Bonnefoy, M., & Kenworthy, M. 2013, ApJ, 779, L26

Reid, I. N. & Gizis, J. E. 1997, AJ, 113, 2246

Reid, I. N., Hawley, S. L., & Gizis, J. E. 1995, AJ, 110, 1838

Rhee, J. H., Song, I., & Zuckerman, B. 2008, ApJ, 675, 777

Rhee, J. H., Song, I., Zuckerman, B., & McElwain, M. 2007, ApJ, 660, 1556

Riaz, B., Gizis, J. E., & Harvin, J. 2006, AJ, 132, 866

Rieke, G. H., Young, E. T., Engelbracht, C. W., Kelly, D. M., Low, F. J., Haller, E. E., Beeman, J. W., Gordon, K. D., Stansberry, J. A., Misselt, K. A., Cadien, J., Morrison, J. E., Rivlis, G., Latter, W. B., Noriega-Crespo, A., Padgett, D. L., Stapelfeldt, K. R., Hines, D. C., Egami, E., Muzerolle, J., Alonso-Herrero, A., Blaylock, M., Dole, H., Hinz, J. L., Le Floc’h, E., Papovich, C., P´erez-Gonz´alez,P. G., Smith, P. S., Su, K. Y. L., Bennett, L., Frayer, D. T., Henderson, D., Lu, N., Masci, F., Pesenson, M., Rebull, L., Rho, J., Keene, J., Stolovy, S., Wachter, S., Wheaton, W., Werner, M. W., & Richards, P. L. 2004, ApJS, 154, 25

Rodriguez, D. R., Bessell, M. S., Zuckerman, B., & Kastner, J. H. 2011, ApJ, 727, 62

Rodriguez, D. R., Duchˆene,G., Tom, H., Kennedy, G. M., Matthews, B., Greaves, J., & Butner, H. 2015, MNRAS, 449, 3160

Rodriguez, D. R., Marois, C., Zuckerman, B., Macintosh, B., & Melis, C. 2012, ApJ, 748, 30

Rodriguez, D. R. & Zuckerman, B. 2012, ApJ, 745, 147

Rodriguez, D. R., Zuckerman, B., Faherty, J. K., & Vican, L. 2014, A&A, 567, A20

250 Rodriguez, D. R., Zuckerman, B., Kastner, J. H., Bessell, M. S., Faherty, J. K., & Murphy, S. J. 2013, ApJ, 774, 101

Roy, A., Ade, P. A. R., Bock, J. J., Chapin, E. L., Devlin, M. J., Dicker, S. R., Griffin, M., Gundersen, J. O., Halpern, M., Hargrave, P. C., Hughes, D. H., Klein, J., Marsden, G., Martin, P. G., Mauskopf, P., Miville-Deschˆenes,M.-A., Netterfield, C. B., Olmi, L., Patanchon, G., Rex, M., Scott, D., Semisch, C., Truch, M. D. P., Tucker, C., Tucker, G. S., Viero, M. P., & Wiebe, D. V. 2010, ApJ, 708, 1611

Rugheimer, S., Kaltenegger, L., Segura, A., Linsky, J., & Mohanty, S. 2015, ApJ, 809, 57

Schneider, A., Song, I., Melis, C., Zuckerman, B., & Bessell, M. 2012, ApJ, 757, 163

Shkolnik, E. L., Anglada-Escud´e,G., Liu, M. C., Bowler, B. P., Weinberger, A. J., Boss, A. P., Reid, I. N., & Tamura, M. 2012, ApJ, 758, 56

Shkolnik, E. L. & Barman, T. S. 2014, AJ, 148, 64

Shkolnik, E. L., Liu, M. C., Reid, I. N., Dupuy, T., & Weinberger, A. J. 2011, ApJ, 727, 6

Skumanich, A. 1972, ApJ, 171, 565

Song, I., Zuckerman, B., & Bessell, M. S. 2003, ApJ, 599, 342

Song, I., Zuckerman, B., Weinberger, A. J., & Becklin, E. E. 2005, Nature, 436, 363

Spangler, C., Sargent, A. I., Silverstone, M. D., Becklin, E. E., & Zuckerman, B. 2001, ApJ, 555, 932

Su, K. Y. L., Morrison, S., Malhotra, R., Smith, P. S., Balog, Z., & Rieke, G. H. 2015, ApJ, 799, 146

Su, K. Y. L., Rieke, G. H., Stansberry, J. A., Bryden, G., Stapelfeldt, K. R., Trilling, D. E., Muzerolle, J., Beichman, C. A., Moro-Martin, A., Hines, D. C., & Werner, M. W. 2006, ApJ, 653, 675

251 Tamuz, O., S´egransan,D., Udry, S., Mayor, M., Eggenberger, A., Naef, D., Pepe, F., Queloz, D., Santos, N. C., Demory, B.-O., Figuera, P., Marmier, M., & Montagnier, G. 2008, A&A, 480, L33

Tetzlaff, N., Neuh¨auser,R., & Hohle, M. M. 2011, MNRAS, 410, 190

Torres, C. A. O., Quast, G. R., da Silva, L., de La Reza, R., Melo, C. H. F., & Sterzik, M. 2006, A&A, 460, 695

Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F. 2008, Young Nearby Loose Associations, ed. B. Reipurth, 757

Trilling, D. E., Bryden, G., Beichman, C. A., Rieke, G. H., Su, K. Y. L., Stansberry, J. A., Blaylock, M., Stapelfeldt, K. R., Beeman, J. W., & Haller, E. E. 2008, ApJ, 674, 1086

Vaughan, A. H. & Preston, G. W. 1980, PASP, 92, 385

Vican, L. 2012, AJ, 143, 135

Vican, L. & Schneider, A. 2014, ApJ, 780, 154

Voges, W., Aschenbach, B., Boller, T., Braeuninger, H., Briel, U., Burkert, W., Dennerl, K., Englhauser, J., Gruber, R., Haberl, F., Hartner, G., Hasinger, G., Kuerster, M., Pfeffermann, E., Pietsch, W., Predehl, P., Rosso, C., Schmitt, J. H. M. M., Truemper, J., & Zimmermann, H. U. 1999, VizieR Online Data Catalog, 9010

Walkowicz, L. M., Hawley, S. L., & West, A. A. 2004, PASP, 116, 1105

Weinberger, A. J., Becklin, E. E., Song, I., & Zuckerman, B. 2011, ApJ, 726, 72

Werner, M. W., Roellig, T. L., Low, F. J., Rieke, G. H., Rieke, M., Hoffmann, W. F., Young, E., Houck, J. R., Brandl, B., Fazio, G. G., Hora, J. L., Gehrz, R. D., Helou, G., Soifer, B. T., Stauffer, J., Keene, J., Eisenhardt, P., Gallagher, D., Gautier, T. N., Irace, W., Lawrence, C. R., Simmons, L., Van Cleve, J. E., Jura, M., Wright, E. L., & Cruikshank, D. P. 2004, ApJS, 154, 1

252 White, R. J. & Basri, G. 2003, ApJ, 582, 1109

White, R. J., Gabor, J. M., & Hillenbrand, L. A. 2007, AJ, 133, 2524

Williams, J. P. & Cieza, L. A. 2011, ARA&A, 49, 67

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., Ressler, M. E., Cutri, R. M., Jarrett, T., Kirkpatrick, J. D., Padgett, D., McMillan, R. S., Skrutskie, M., Stanford, S. A., Cohen, M., Walker, R. G., Mather, J. C., Leisawitz, D., Gautier, III, T. N., McLean, I., Benford, D., Lonsdale, C. J., Blain, A., Mendez, B., Irace, W. R., Duval, V., Liu, F., Royer, D., Heinrichsen, I., Howard, J., Shannon, M., Kendall, M., Walsh, A. L., Larsen, M., Cardon, J. G., Schick, S., Schwalm, M., Abid, M., Fabinsky, B., Naes, L., & Tsai, C.-W. 2010, AJ, 140, 1868

Wright, J. T., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2004, ApJS, 152, 261

Wyatt, M. C. 2008, ARA&A, 46, 339

Wyatt, M. C., Smith, R., Greaves, J. S., Beichman, C. A., Bryden, G., & Lisse, C. M. 2007, ApJ, 658, 569

Zorec, J. & Royer, F. 2012, A&A, 537, A120

Zuckerman, B. 2001, ARA&A, 39, 549

—. 2015, ApJ, 798, 86

Zuckerman, B. & Becklin, E. E. 1993, ApJ, 414, 793

Zuckerman, B., Fekel, F. C., Williamson, M. H., Henry, G. W., & Muno, M. P. 2008, ApJ, 688, 1345

Zuckerman, B., Rhee, J. H., Song, I., & Bessell, M. S. 2011, ApJ, 732, 61

Zuckerman, B. & Song, I. 2004, ARA&A, 42, 685

—. 2012, ApJ, 758, 77

Zuckerman, B., Vican, L., & Rodriguez, D. R. 2014, ApJ, 788, 102 253