Standard X-Ray Diffraction Powder Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Standard X-Ray Diffraction Powder Patterns NBS CIRCULAR 539 VOLUME III Standard X-ray Diffraction Powder Patterns UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Standard X-ray Diffraction Powder Patterns The two previously issued volumes in this series are avail- able from the Superintendent of Documents, U. S. Govern- ment Printing Office, Washington 25, D. C., as follows: NBS Circular 539, Volume I, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) NBS Circular 539, Volume II, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) The price of each volume is 45 cents. Send orders with remittance to: Superintendent of Documents, Government Printing Office, Washington 25, D. C. / UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Standard X-ray Diffraction Powder Patterns Howard E. Swanson, Ruth K. Fuyat, and George M. Ugrinic National Bureau of Standards Circular 539 Volume III, Issued June 10, 1954 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 45 cents , Contents Page Page 1. Introduction 1 2. X-ray data— Con. oxides 2. X-ray data 4 2.5. Multiple 44 Strontium titanate, SrTi0 2.1. Elements 4 3 44 Titanium, Ti 4 Barium titanate, BaTi03 45 Arsenic, As 6 2.6. Halides 47 Rhodium, Rh 9 Sodium bromide, NaBr 47 Cadmium Cd 10 Cesium bromide, CsBr 49 , Cesium dichloroiodide, CsICl 50 Indium, In 12 2 Antimony, Sb 14 2.7. Chlorates 51 Sodium chlorate, NaC10 51 16 3 Iodine, I 2 Hafnium, Hf 18 2.8. Carbonates 53 Bismuth, Bi 20 Calcium carbonate (aragonite), CaC 03 53 2.2. Selenides 23 Strontium carbonate (strontianite) SrC0 Zinc selenide, ZnSe 23 3 56 2.3. Oxides 24 2.9. Nitrates 58 Potassium nitrate (niter), KN0 58 Silicon dioxide (alpha quartz), Si02 24 3 27 2.10. Sulfates and Sulfites 60 Scandium oxide, Sc 2 03 60 Sodium sulfite, Na 2 S03 Yttrium oxide, Y2 03 28 Potassium sulfate (arcanite), K S04 62 Molybdenum trioxide (molybdite), Mo03 30 2 (senarmontite) Sb 0 31 Barium sulfate (barite), BaS04 65 Antimony trioxide , 2 3 oxide, La 0 33 Lead sulfate (anglesite), PbSC>4 67 Lanthanum 2 3 69 Mercury (II) oxide (montroydite) HgO 35 2.11. Phosphates Potassium dihydrogen phosphate, KH P0 69 2.4. Oxide hydrates 38 2 4 Aluminum oxide mono-hydrate, alpha, 2.12. Bromoosmates 71 Ammonium bromodsmate, (NH 0sBr 71 A1 "H 38 4) 2 6 (bohmite), 2 03 2 0 volumes I, II, Aluminum oxide mono-hydrate, beta, (dia- 3. Cumulative index to and III 72 spore), A1 0 *H 0 41 2 3 2 ERRATA Vol. I. Page 64, table 37, Swanson and Tatge pattern. The a value for the d spacing at 2.680 should read 4.642. Vol. II. Page 54, column 1. The a and c values for Bergen should read 4.99003 and 17.0605. II STANDARD X-RAY DIFFRACTION POWDER PATTERNS Vol. Ill — Data for 34 Inorganic Substances 1 Howard E. Swanson, Ruth K. Fuyat , and George M. Ugrinic Data for thirty-two standard X-ray diffraction powder patterns are presented in revision of the eighty-one corresponding patterns in the American Society for Testing Materials card file, a system for the identification of unknown crystalline materials based on the three strongest reflections of each structurally distinct phase. Pat- terns for two compounds not represented in the file are also included. A comparison is made between all powder data available for each of the substances reported. The patterns were made with a geiger counter X-ray spectrometer, using samples of excep- tionally high purity. The d-spacings were assigned Miller indices determined from calculated patterns of theoretical spacings and from space group considerations. The lattice constants and densities were calculated, and the refractive indices were measured whenever possible. Included in this report is X-ray data for the following thirty-four substances: Ti, As, Rh, Cd, In, Sb, I Hf, Bi, ZnSe, Si0 (a-quartz), Sc 0 Y 0 Mo0 (molyb- 2 , 2 2 3 , 2 3 , 3 dite), Sb (senarmontite) La HgO (montroydite) a-Al 'H (bohmite), 2 03 , 2 03 , , 2 0 3 20 /3-Al (diaspore), SrTi0 BaTi0 NaBr, CsBr, CsICl NaC10 CaCo (aragonite), 0 'H 0 , , 2 3 2 3 , 3 , 2 3 3 SrC0 (strontianite) KN0 (niter), Na S0 S0 (arcanite), BaS0 (barite), PbS0 , , K 3 3 2 3 2 4 4 4 (anglesite), KH P0 and (NH ) 0sBr 2 4 , 4 2 6 1. INTRODUCTION The National Bureau of Standards program 3 oxide and ammonium bromoosmate, not repre- for revision and evaluation of published sented in the file, have been added. X-ray data for the American Society for Test- Experimental procedures and the general ing Materials card file presents in this paper plan of these reports are discussed in the a third series 3 of standard powder diffrac- first three papers of this series, two by 4 tion patterns for nine elements and twenty- Swanson and Tatge [1, 2] and one by Swanson three inorganic compounds. These patterns and Fuyat [3]. The significant changes in are recommended to replace eighty- four cards procedure and certain basic data discussed now in the file. Two compounds, scandium below are arranged in the same form as the data for each compound in the body of the re- 3 Fellow at the National Bureau of Standards sponsored port . by the Joint Committee on Chemical Analysis by X-ray Dif- fraction Methods. ASTM Cards. Each section of this paper, devoted to the discussion of X-ray data for 2 This project is sponsored by the Joint Committee on Chemical Analysis by X-ray Diffraction Methods, composed of one substance, contains a table listing old members from American the Society for Testing Materials, and new file card numbers, the ASTM index the American Crystallographic Association, and the British Institute of Physics. Financial support is being given by lines, the radiation used and the literature the National Bureau of Standards and the Flight Research reference for each card. The old card num- Laboratory, Wright Air Development Center, Wright-Patterson bers of these tables to the Air Force Base. refer original 3 The first paper of this series is Standard X-ray Dif- ASTM card file (1939) and the first supple- fraction Powder Patterns, I. Data for 53 Inorganic Sub- ment (1944). The new card numbers are from stances by H. E. Swanson and E. Tatge, and the second is Standard X-ray Diffraction Powder Patterns, II. Data for 4 Figures in brackets indicate the literature refer- 30 Inorganic Compounds by H. E. Swanson and R. K. Fuyat. ences at the end of each section of this paper. 1 the second edition and include the second top. The sample holder was then turned face supplement (1950). up, and the piece of glass removed. This Additional published patterns. Litera- surface was used for exposure to the X-ray ture references and radiation data for pat- beam. For a few powder samples which did not terns that had not been published as ASTM flow readily or were prone to orient badly, cards were listed and the patterns were included 25 to 50 percent finely ground silica-gel was in the tables of d-spacings and intensities. added as a diluent. The intensity values of INBS pattern. The samples used to make each pattern were measured as peak height the NBS patterns were special preparations above background and were expressed as per- of exceptionally high purity obtained or pre- centages of the strongest line. The d-spacing pared only in small quantities. patterns were made with a sample packed into The purity of each sample was determined a shallow sample holder, using approximately by a spectrographic or chemical analysis. A 5 weight percent of tungsten as an internal phase purity check was made on the nonopaque standard, whose lattice constant at 25 °C is materials during the refractive index deter- 3.1648 A, as determined by Jette and Foote mination. Another excellent check on the [ 4 ] . All the NBS patterns were made by using phase purity was provided by the X-ray pat- copper radiation with a wavelength of 1.5405. tern itself, since it was indexed by compari- Interplanar spacings and intensity meas- son with theoretical d-values. However, some urements. Interplanar spacing data presented uncertainty was possible in the unequivocal in the tables were converted to angstrom isolation of the desired isomorphic forms units as internationally defined in 1946 [5], when their d-spacings tended to coincide. from Bragg angle data, from d-spacings in kX The majority of the samples that were in- units or supposed kX units, using the factor itially too coarse for X-ray analysis could 1.00202, or from d-spacings with specifically be reduced to the proper size and then an- stated wavelengths other than kX. In each nealed to remove the lattice distortion case the type of conversion made was indi- caused by grinding. It was found that powder cated. The wavelength values in the tables samples of soluble salts which could not be of d-spacings and intensities are given in annealed successfully or which could not be angstroms; the values listed under the first obtained free from the distortion of grind- section of the reports, ASTM cards, are the ing, could be recrystallized by using a original values taken from the literature. throat aspirator. Particles averaging 15 mi- The tables of patterns contain data from crons were obtained by using an aspirator or the original literature except in those in- a nebulizer in which a concentrated solution stances where there is no reference other of a salt was atomized to form a fine mist.
Recommended publications
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • United States Patent (19) (11) 3,899,444 Stephens (45) Aug
    United States Patent (19) (11) 3,899,444 Stephens (45) Aug. 12, 1975 54 EXHAUST GAS CATALYST SUPPORT 75) Inventor: Ruth E. Stephens, Royal Oak, Mich. Primary Examiner-Carl F. Dees Attorney, Agent, or Firm-Donald L. Johnson; Robert 73) Assignee: Ethyl Corporation, Richmond, Va. A. Linn; Joseph D. Odenweller 22 Filed: Dec. 22, 1972 (21) Appl. No.: 317,831 57 ... ' ABSTRACT A thermally stable and attrition resistant catalyst sup Related U.S. Application Data port consisting essentially of an alumina coating on an 63 Continuation-in-part of Ser. No. 224,240, Feb. 7, inert substrate. The alumina coating has a rare earth 1972. metal oxide substantially uniformly distributed throughout. Catalyst compositions utilizing this sup 52 U.S. Cl.............. 252/455 R; 252/462; 252/463; port, processes for preparing both support and cata 252/471; 423/213.5 lyst, and a method of treating internal combustion en (51) Int. Cl..... B01j 11/40; B01j 1 1/06; B01j 1 1/32 gine exhaust gases and preventing crystallization of 58) Field of Search........ 252/462, 463, 455 R, 457; alumina are disclosed. Catalysts consisting essentially 423/213.5 of an alumina matrix containing rare earth metal oxide and a catalytic metal oxide are also disclosed. The 56 References Cited atom ratio of rare earth metal to aluminum in the sup UNITED STATES PATENTS port is 1:5.7-25. The atom ratio of catalytic metal to 3,284,370 1 1/1966 Clifford et al...................... 252/462 rare earth metal to aluminum in the catalysts is 3,554,929 1/1971 Aarons...............................
    [Show full text]
  • Us 2016/0017536A1 Tang
    US 2016.0017536A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0017536A1 TANG. et al. (43) Pub. Date: Jan. 21, 2016 (54) A TREATMENT PLATE FORA GARMENT (30) Foreign Application Priority Data TREATMENT APPLIANCE Apr. 2, 2013 (EP) .................................. 13161937.1 (71) Applicant: both the PHILIPS N.V., Publication Classification (51) Int. Cl. (72) Inventors: JIECONGTANG, EINDHOVEN (NL); D6F 75/38 (2006.01) YTSEN WIELSTRA, EINDHOVEN B5D3/00 (2006.01) (NL); YA LINGLEE, EINDHOVEN BOSDI/02 (2006.01) (NL); SABRINA MAY FONG KHOO, (52) U.S. Cl. EINDHOVEN (NL); LIHONG ZHAO, CPC D06F 75/38 (2013.01); B05D 1/02 (2013.01); EINDHOVEN (NL) B05D3/007 (2013.01) (57) ABSTRACT (73) Assignee: Koninklijke Philips N.V., Eindhoven The invention relates to a treatment plate (10) for a garment (NL) treatment appliance (100) for treating garments (30), which plate has a contact surface which is provided with a sol-gel (21) Appl. No.: 14/764,015 coating (20) that comprises an oxide of titanium, Zirconium, hafnium, Scandium, yttrium, or a mixture or combination (22) PCT Filed: Jan. 23, 2014 thereof. The layer preferably has a thickness of less than 1 lum. Such a layer shows excellent properties. A garment treatment (86). PCT No.: PCT/EP2014/051281 appliance comprising Such a treatment plate, as well as pro S371 (c)(1), cesses to produce the coating on the contact Surface of the (2) Date: Jul. 28, 2015 treatment plate are also disclosed. 1OO Patent Application Publication Jan. 21, 2016 Sheet 1 of 3 US 2016/0017536A1 E Patent Application Publication Jan.
    [Show full text]
  • Catalytic Performance of Lanthanum Promoted Ni/Zro2 for Carbon Dioxide Reforming of Methane
    processes Article Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane Mahmud S. Lanre 1, Ahmed S. Al-Fatesh 1,* , Anis H. Fakeeha 1,2 , Samsudeen O. Kasim 1 , Ahmed A. Ibrahim 1 , Abdulrahman S. Al-Awadi 1,2, Attiyah A. Al-Zahrani 1 and Ahmed E. Abasaeed 1,* 1 Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; mahmudsofi[email protected] (M.S.L.); [email protected] (A.H.F.); [email protected] (S.O.K.); [email protected] (A.A.I.); [email protected] (A.S.A.-A.); [email protected] (A.A.A.-Z.) 2 King Abdullah City for Atomic and Renewable Energy, (K.A. CARE) Energy Research and Innovation Center at Riyadh, Riyadh 11421, Saudi Arabia * Correspondence: [email protected] (A.S.A.-F.); [email protected] (A.E.A.); Tel.: +966-11-467-6859 (A.S.A.-F.); +966-11-467-6856 (A.E.A.) Received: 14 October 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Nickel catalysts supported on zirconium oxide and modified by various amounts of lanthanum with 10, 15, and 20 wt.% were synthesized for CO2 reforming of methane. The effect of La2O3 as a promoter on the stability of the catalyst, the amount of carbon formed, and the ratio of H2 to CO were investigated. In this study, we observed that promoting the catalyst with La2O3 enhanced catalyst activities. The conversions of the feed, i.e., methane and carbon dioxide, were in the order 10La2O3 > 15La2O3 > 20La2O3 > 0La2O3, with the highest conversions being about 60% and 70% for both CH4 and CO2 respectively.
    [Show full text]
  • Scandium Oxide Thin Films and Their Optical Properties in the Extreme Ultraviolet
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2007-11-30 Scandium Oxide Thin Films and Their Optical Properties in the Extreme Ultraviolet Guillermo Antonio Acosta Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Astrophysics and Astronomy Commons, and the Physics Commons BYU ScholarsArchive Citation Acosta, Guillermo Antonio, "Scandium Oxide Thin Films and Their Optical Properties in the Extreme Ultraviolet" (2007). Theses and Dissertations. 1285. https://scholarsarchive.byu.edu/etd/1285 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. SCANDIUM OXIDE THIN FILMS AND THEIR OPTICAL PROPERTIES IN THE EXTREME ULTRAVIOLET by Guillermo Acosta A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics and Astronomy Brigham Young University December 2007 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a dissertation submitted by Guillermo Acosta This dissertation has been read by each member of the following graduate committee and by a majority vote has been found to be satisfactory. Date David D. Allred, Chair Date R. Steven Turley Date Lawrence B. Rees Date Richard Vanfleet Date Branton Campbell BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the dissertation of Guillermo Acosta in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscipt is satisfactory to the graduate committee and is ready for submission to the university library.
    [Show full text]
  • Adverse Health Effects of Heavy Metals in Children
    TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children.
    [Show full text]
  • Structural and Optical Properties of Yttrium Oxide Thin Films for Planar Waveguiding Applications
    Structural and optical properties of Yttrium Oxide thin films for planar waveguiding applications Stuart J. Pearce,a) Greg J. Parker,a) Martin D.B. Charlton,a) and James S. Wilkinson b) a) Electronic and Computer Science, Southampton University, SO17 1BJ b) Optoelectronics Research Center, Southampton University, SO17 1BJ Thin films of Yttrium Oxide, Y2O3 were deposited by reactive sputtering and reactive evaporation to determine their suitability as a host for a rare earth doped planar waveguide upconversion laser. The optical properties, structure and crystalline phase of the films were found to be dependent on the deposition method and process parameters. X-ray diffraction (XRD) analysis on the ‘as-deposited’ thin films revealed that the films vary from amorphous to highly crystalline with a strong peak along the <222> plane of Y2O3. The samples with the polycrystalline structure had a stoichometry close to bulk cubic Y2O3. SEM imaging revealed a regular column structure confirming their crystalline nature. The thin film layers which allowed guiding in both the visible and infra-red region had lower refractive indices, higher oxygen content and had a more amorphous structure. Higher oxygen pressures during the deposition leads to a more amorphous layer. PACS numbers: 68.55. J-, 78.66. -w, 81.15. -z, 42.82.Et, 78.20. -e INTRODUCTION Recently there has been considerable interest in fabrication and characterization of waveguide layers as solid-state laser host materials for use as optical amplifiers in telecommunications. These include Aluminum Oxide,1 Zirconium Oxide,2 Titanium Oxide,3 Scandium Oxide,4 and Yttrium Oxide.5-7 Planar waveguide lasers made with rare earth doped thin films are a desirable method to achieve high optical gain in a small and compact device.5 In selecting the most suitable material for a rare earth doped solid state waveguide laser, desirable properties for a host material include: low optical loss, low peak phonon energy, ability to be easily doped, and ability to waveguide at the pump and emission wavelengths.
    [Show full text]
  • High Purity Metal Compounds
    High Purity Metal Compounds KANTO CHEMICAL offers a variety of materials that can be used for the SOFC applications, as seen in the tables below. Our product portfolio includes Oxides, Halides, Carbonates, Nitrates and other High purity Metal compounds. Metal Product Name Product # Size Al Aluminium, granule, 2N5 01145-08 500g Ba Barium carbonate,3N 04015-08 500g Barium chloride dihydrate,3N 04017-08 500g Bi Bismuth nitrate pentahydrate,3N 04208-08 500g Bismuth(III) oxide,3N 04211-08 500g Ca Calcium carbonate,4N 07050-09 500g Calcium fluoride,3N 07065-23 100g Calcium hydroxide,3N 07069-13 250g Calcium nitrate tetrahydrate,3N 07082-08 500g Calcium oxide,3N 07087-23 100g 07087-08 500g Ce Cerium(III) acetate monohydrate,4N 07170-33 25g 07170-13 250g Cerium(III) carbonate octahydrate,4N 07175-23 100g 07175-08 500g Cerium(III) nitrate hexahydrate,4N 07179-23 100g 07179-08 500g Cerium(III) oxalate nonahydrate,4N 07180-08 500g Cerium(IV) oxide,4N 07167-23 100g 07167-09 500g Cerium(IV) sulfate tetrahydrate,4N 08107-33 25g 08107-08 500g Diammonium cerium(IV) nitrate,4N 07165-33 25g 07165-13 250g Tetraammonium cerium(IV) sulfate dihydrate,4N 08108-33 25g 08108-13 250g 0.1mol/l Cerium(IV) tetraammonium sulfate solution(N/10) 08122-08 500mL Co Cobalt, cube, 5N 08341-53 5g 08341-33 25g Cobalt(II) carbonate,basic,3N5 08113-33 25g 08113-08 500g Cobalt(II) chloride hexahydrate,3N5 07398-33 25g Cobalt(II) nitrate hexahydrate,3N5 07408-33 25g 07408-08 500g Cobalt(II,III) oxide,3N5 08120-33 25g 08120-08 500g Cr Chromium, flake, 4N 08340-53 5g 08340-33 25g
    [Show full text]
  • W. R. Grace & Co.-Conn. Lanthanum Chloride Product Stewardship
    W. R. Grace & Co.-Conn. Lanthanum Chloride Product Stewardship Summary I. Overview Lanthanum chloride is used by Grace in the production of Fluid Catalytic Cracking (FCC) catalysts. Lanthanum is a rare earth element, one of a collection of 17 chemically similar elemental metals. Rare-earth minerals tend to be found mixed together in ore deposits that are mined then purified. Lanthanum is supplied to Grace in various forms including oxides, hydrates and carbonates. The value and use of the various rare-earth metals varies; lanthanum finds application in metal alloys, optical glass, batteries, electronics, and in FCC catalysts. FCC catalysts are typically composed of zeolites, silica, alumina, clay and a binder. The lanthanum in FCC catalysts is contained in the zeolite component of the catalyst. Grace converts the supplied form of lanthanum into lanthanum chloride, and does not commercially supply lanthanum chloride. II. Chemical Identity - Physical and Chemical Properties CAS number: 10099-58-8 EC number: 233-237-5 Molecular formula: LaCl3 Molecular weight: 245.264 Synonyms: lanthanum trichloride, lanthanum chloride anhydrous, Lanthanum (III) chloride; Lanthanum chloride hexahydrate; Lanthanum chloride heptahydrate Alternate CAS RNs: 17272-45-6 (hexahydrate); 20211-76-1 (heptahydrate) Physical-chemical properties Lanthanum chloride is an odorless solid in the form of a white powder Density: 3.84 g/cm3 at 25.0°C Melting Point: 852 °C Boiling Point: 1750 °C Solubility: 861.06 g/L at 20.0 °C and pH >= 2.51 <= 2.88 1 grace.com Talent | Technology | Trust™ III. Applications Rare-earth materials such as lanthanum are an essential ingredient in the production of transportation fuels, plastics and other petroleum based products, accounting for 16 percent of the total US consumption of rare earths.
    [Show full text]
  • Draft Screening Assessment Thallium and Its Compounds Environment
    Draft Screening Assessment Thallium and its compounds Environment and Climate Change Canada Health Canada September 2020 Synopsis Pursuant to section 68 and 74 of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment of thallium and its compounds. The scope of this assessment is on the thallium moiety. This assessment considers all thallium-containing substances, that may release thallium as well as thallium in its elemental form, and thallium released in the environment in dissolved, solid or particulate forms. This includes three thallium- containing substances on the Domestic Substances List (DSL) identified as priorities for assessment as they met categorization criteria under subsection 73(1) of CEPA or were considered a priority on the basis of other ecological concerns, and two thallium- containing substances that were identified for further consideration following prioritization of the Revised In Commerce List (R-ICL). The Chemical Abstracts Service Registry Numbers (CAS RN1), their DSL or R-ICL names and their common names are listed in the table below. Thallium-containing substances identified as priorities for assessment CAS RN DSL or R-ICL name Common name 7440-28-0 a Thallium Thallium 563-68-8 Acetic acid, thallium(1++) salt Thallium(I) acetate 7791-12-0 Thallium chloride Thallium chloride 10031-59-1 b Sulfuric acid, thallium(1+) salt (1:?) Thallium(I) sulfate 55172-29-7 b Thallium chloride (201TlCl) 201TlCl a This substance was not identified under subsection 73(1) of CEPA but was included in this assessment as it is highly reactive when exposed to moisture in air and releases thallium ions under environmental conditions.
    [Show full text]
  • Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices
    Materials 2012, 5, 1297-1335; doi:10.3390/ma5071297 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices Rathnait D. Long * and Paul C. McIntyre Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 12 May 2012; in revised form: 10 July 2012 / Accepted: 16 July 2012 / Published: 24 July 2012 Abstract: The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology. Keywords: GaN growth; oxides; high-κ, surfaces; treatments; interface; ALD 1.
    [Show full text]
  • Water Quality Criteria for Thallium
    Office of Water Envir"onmental Protection R$gulations Stam:iards Agency Criteria and Stan(jards UIVISlon Washington DC 20460 A.mblent Water Quality Criteria for Thallium m & & rt' AMBIENT WATER QUALITY CRITERIA FOR THALLIUM Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C: Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island i DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Offi ce, U. S. Envi ronmenta1 Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Techn al Information Service, (NTIS), Springfield, Virginia 22161. ii FOREWORD Section 304 (a) (1) of the Clean Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on hea 1th and we 1fare wh ich may be expected from the presence of pollutants in any body of water, including..ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a)(1) of the C1 ean Water Act were developed and a notice of thei r availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628).
    [Show full text]