Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol Into 4-Aminophenol

Total Page:16

File Type:pdf, Size:1020Kb

Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol Into 4-Aminophenol coatings Article Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol Ikram Ahmad 1, Muhammad Asghar Jamal 2,* , Miara Iftikhar 2, Awais Ahmad 3 , Shahid Hussain 4, Humaira Asghar 2, Muhammad Saeed 2 , Ammar Bin Yousaf 5, Rama Rao Karri 6,* , Nada Sulaymaniyah Al-kadhi 7, Mohamed Ouladsmane 8, Ayman Ghfar 8 and Safia Khan 9 1 Department of Chemistry, University of Sahiwal, Sahiwal 54000, Pakistan; [email protected] 2 Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; [email protected] (M.I.); [email protected] (H.A.); [email protected] (M.S.) 3 Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; [email protected] 4 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] 5 Centre for Advanced Materials, Qatar University, Doha 2713, Qatar; [email protected] 6 Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Mukim Gadong 1410, Brunei 7 Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; [email protected] 8 Citation: Ahmad, I.; Jamal, M.A.; Advanced Materials Research Chair, Chemistry Department College of Science, King Saud University, Iftikhar, M.; Ahmad, A.; Hussain, S.; P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] (M.O.); [email protected] (A.G.) 9 Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan; Asghar, H.; Saeed, M.; Yousaf, A.B.; safi[email protected] Karri, R.R.; Al-kadhi, N.S.; et al. * Correspondence: [email protected] (M.A.J.); [email protected] (R.R.K.) Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Abstract: This work intended to enhance the unique and outstanding properties of lanthanum by Heterogeneous Catalysis Performance for the Active synthesizing its nanocomposite. A lanthanum-based nanocomposite was prepared by a simple Conversion of 4-Nitrophenol into and cost-effective “co-precipitation” method. Lanthanum nitrate (La (NO3)3) and zinc nitrate (Zn 4-Aminophenol. Coatings 2021, 11, (NO3)2) were used as precursors. The lanthanum/zinc oxide nano composite formed was then ◦ 537. https://doi.org/10.3390/ calcined at 450 C for 4 h in order to obtain a fine powder with size in the nano range of 1–100 nm. coatings11050537 Characterization of the prepared catalyst was done by ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence. Crystallinity and morphology were found Academic Editors: Luca Valentini and by X-ray diffraction and scanning electron microscopy. The synthesized nanocomposite material Ioannis V. Yentekakis was also tested for heterogeneous catalytic applications of 4-nitrophenol (4-NP) reduction into 4- aminophenol (4-AP). It was found to be successful in complete reduction of 4-NP with enhanced Received: 25 March 2021 catalytic performance. Accepted: 23 April 2021 Published: 30 April 2021 Keywords: nanocomposite structure; XRD; photoluminescence; rare earth element REE; heteroge- neous catalysis Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction 4-aminophenol (p-aminophenol), an imperative intermediate in the manufacturing of multiple pharmaceutical products, mainly including phenacetin, acetanilide, and paracetamol, Copyright: © 2021 by the authors. also has numerous applications in anticorrosion, photography, and lubrication as a dyeing Licensee MDPI, Basel, Switzerland. agent [1,2]. Due to its increased demand by pharmacists, the direct catalytic conversion of This article is an open access article easily available 4-nitrophenol is the center of huge research [3,4]. Several reduction methods distributed under the terms and have been reported to date for conversion of 4-nitrophenol into 4-aminophenol [5–7]. The use conditions of the Creative Commons of precious metals for this catalytic reduction is frequently seen, e.g., Pt, Au, etc. [8,9], involving Attribution (CC BY) license (https:// hydrazine as a reducing agent. However, the discovery and development of more compatible, creativecommons.org/licenses/by/ ecofriendly, and efficient reduction catalysts for this specific reaction is still under research. 4.0/). Coatings 2021, 11, 537. https://doi.org/10.3390/coatings11050537 https://www.mdpi.com/journal/coatings Coatings 2021, 11, 537 2 of 12 Consequently, rare earth metal compounds are being considered by scientists across the globe for investigation of their catalytic performance. Over the last decade, rare earth metals with nanostructures of size 1–100 nm have been studied by researchers around the world. Owing to the presence of 4f orbital elec- trons, they have unique properties and offer promising applications in many fields. Their nanostructures are defenseless against compositional or structural effects [10–12]. The electrons in 4f shell orbitals of rare earth metals are continuously shielded by the electrons of 5p and 4 d; this feature plays an important role in the catalytic applications of these oxides [13]. The particle size and electronic configuration of metal oxides are interlinked, and the band gaps and energy excitation levels change when the particle size of the metal oxide is reduced [14]. Among nanostructured rare earth metal compounds, Lanthanum metal is an im- portant p-type semiconductor metal, used in numerous fields, such as solar cells [15,16], photocatalysis [17,18], photo detectors [19,20], sensors, light-emitting diodes [21,22], and laser communications [23,24]. Lanthanum oxides with metals is a perovskite type oxide i.e., its ABO3 type structure makes it special for catalytic applications [25,26]. In addition, Lanthanum metal oxide in powder form, with particle size in nano range of 1–100 nm, exhibits a lot of industrial properties as well. Lanthanum oxides are used in the synthesis of organic catalysts in the field of electrochemistry; it is used as an electrode, and the burning rate of propellants can also be enhanced by lanthanum oxide [27,28]. Moreover, zinc is an important transition metal, due to its feasibility and low cost, and researchers have extensively studied its oxides. Zinc oxide is a non-toxic, highly stable n- type semiconductor having a wide band gap (3.37 eV), which is an attractive feature because it can absorb sufficient amounts of UV light at room temperature [29–31]. Zinc oxides are used in several fields: in solar cells [32,33], super capacitors [34], field effect transistors [35], light-emitting materials [36,37], gas sensors [38], drug delivery [39]; as anticancer [40,41], antibacterial [42], diabetes treatment [43], bio- imaging [44], photocatalysts [45,46], base material for magnetic semiconductors [47], food additive [48], transparent UV- protection films [49,50], luminescence [51,52], solar energy conversion [53], etc. Zinc oxides are also used in care products like sunscreen and cosmetics, as they can strongly absorb UV light [54,55]. Additionally, the properties of metals can be enhanced in combination with another metal i.e., transition metal. The combination of metal oxides as nanocomposite, hence, increase interactions and effectiveness [56]. Various methods have been reported for the synthesis of nanocomposites, such as the sol-gel method [57,58], chemical vapor deposition (CVD) [59], hydrothermal methods [60], and the solid state method [61]. Among all preparation methods, co-precipitation is the easiest and most cost-effective method, and no special or complicated material and equipment is required [62]. In this work, the reduction of 4-nitrophenol using aqueous NaOH as a reducing agent in the presence of an La2ZnO4 catalyst could be a substitute for conservative reduction processes. Up till now, no work has done on the direct combination of Lanthanum and Zinc metals in the form of a combined oxide. Thus, in the present work, we report the synthesis of Lanthanum Zinc oxide nanocomposite La2ZnO4 through a simple co- precipitation method, keeping in mind the properties of Lanthanum and Zinc. The prepared nanocomposite was characterized by many useful techniques, i.e., FTIR Fourier transform infrared spectroscopy, ultraviolet spectroscopy, XRD X-ray diffraction, SEM scanning electron microscopy, and PL photoluminescence. Herein, 4-nitrophenol was reduced to 4-aminophenol in the presence of the La2ZnO4 composite applying aq. NaOH as a reducing agent. This scheme did not involve a specific solvent and was established at room temperature. Hence, the current method offers an eco-friendly route for the catalytic hydrogenation of 4-nitrophenol to 4-aminophenol. Coatings 2021, 11, 537 3 of 12 2. Materials and Methods 2.1. Materials Lanthanum nitrate hexahydrate (La(NO3)3·6H2O) (99.99% pure), zinc nitrate hexahy- drate (Zn(NO3)2·6H2O) (99% pure), sodium hydroxide anhydrous pellets (NaOH) (98% pure), and methanol (CH3OH) (99.8%) were purchased from Sigma Aldrich and used as received without any further purification treatment. All chemicals, including deionized water (DI) used during the experiment, were of analytical reagent grade. 2.2. Synthesis of La2ZnO4 The process of synthesizing the La2ZnO4 nanocomposite, was followed according to the work reported by Tinwala et al. [63]. The La2ZnO4 nanocomposite was synthesized via the co-precipitation method, using the precursors lanthanum nitrate
Recommended publications
  • United States Patent (19) (11) 3,899,444 Stephens (45) Aug
    United States Patent (19) (11) 3,899,444 Stephens (45) Aug. 12, 1975 54 EXHAUST GAS CATALYST SUPPORT 75) Inventor: Ruth E. Stephens, Royal Oak, Mich. Primary Examiner-Carl F. Dees Attorney, Agent, or Firm-Donald L. Johnson; Robert 73) Assignee: Ethyl Corporation, Richmond, Va. A. Linn; Joseph D. Odenweller 22 Filed: Dec. 22, 1972 (21) Appl. No.: 317,831 57 ... ' ABSTRACT A thermally stable and attrition resistant catalyst sup Related U.S. Application Data port consisting essentially of an alumina coating on an 63 Continuation-in-part of Ser. No. 224,240, Feb. 7, inert substrate. The alumina coating has a rare earth 1972. metal oxide substantially uniformly distributed throughout. Catalyst compositions utilizing this sup 52 U.S. Cl.............. 252/455 R; 252/462; 252/463; port, processes for preparing both support and cata 252/471; 423/213.5 lyst, and a method of treating internal combustion en (51) Int. Cl..... B01j 11/40; B01j 1 1/06; B01j 1 1/32 gine exhaust gases and preventing crystallization of 58) Field of Search........ 252/462, 463, 455 R, 457; alumina are disclosed. Catalysts consisting essentially 423/213.5 of an alumina matrix containing rare earth metal oxide and a catalytic metal oxide are also disclosed. The 56 References Cited atom ratio of rare earth metal to aluminum in the sup UNITED STATES PATENTS port is 1:5.7-25. The atom ratio of catalytic metal to 3,284,370 1 1/1966 Clifford et al...................... 252/462 rare earth metal to aluminum in the catalysts is 3,554,929 1/1971 Aarons...............................
    [Show full text]
  • Catalytic Performance of Lanthanum Promoted Ni/Zro2 for Carbon Dioxide Reforming of Methane
    processes Article Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane Mahmud S. Lanre 1, Ahmed S. Al-Fatesh 1,* , Anis H. Fakeeha 1,2 , Samsudeen O. Kasim 1 , Ahmed A. Ibrahim 1 , Abdulrahman S. Al-Awadi 1,2, Attiyah A. Al-Zahrani 1 and Ahmed E. Abasaeed 1,* 1 Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; mahmudsofi[email protected] (M.S.L.); [email protected] (A.H.F.); [email protected] (S.O.K.); [email protected] (A.A.I.); [email protected] (A.S.A.-A.); [email protected] (A.A.A.-Z.) 2 King Abdullah City for Atomic and Renewable Energy, (K.A. CARE) Energy Research and Innovation Center at Riyadh, Riyadh 11421, Saudi Arabia * Correspondence: [email protected] (A.S.A.-F.); [email protected] (A.E.A.); Tel.: +966-11-467-6859 (A.S.A.-F.); +966-11-467-6856 (A.E.A.) Received: 14 October 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Nickel catalysts supported on zirconium oxide and modified by various amounts of lanthanum with 10, 15, and 20 wt.% were synthesized for CO2 reforming of methane. The effect of La2O3 as a promoter on the stability of the catalyst, the amount of carbon formed, and the ratio of H2 to CO were investigated. In this study, we observed that promoting the catalyst with La2O3 enhanced catalyst activities. The conversions of the feed, i.e., methane and carbon dioxide, were in the order 10La2O3 > 15La2O3 > 20La2O3 > 0La2O3, with the highest conversions being about 60% and 70% for both CH4 and CO2 respectively.
    [Show full text]
  • High Purity Metal Compounds
    High Purity Metal Compounds KANTO CHEMICAL offers a variety of materials that can be used for the SOFC applications, as seen in the tables below. Our product portfolio includes Oxides, Halides, Carbonates, Nitrates and other High purity Metal compounds. Metal Product Name Product # Size Al Aluminium, granule, 2N5 01145-08 500g Ba Barium carbonate,3N 04015-08 500g Barium chloride dihydrate,3N 04017-08 500g Bi Bismuth nitrate pentahydrate,3N 04208-08 500g Bismuth(III) oxide,3N 04211-08 500g Ca Calcium carbonate,4N 07050-09 500g Calcium fluoride,3N 07065-23 100g Calcium hydroxide,3N 07069-13 250g Calcium nitrate tetrahydrate,3N 07082-08 500g Calcium oxide,3N 07087-23 100g 07087-08 500g Ce Cerium(III) acetate monohydrate,4N 07170-33 25g 07170-13 250g Cerium(III) carbonate octahydrate,4N 07175-23 100g 07175-08 500g Cerium(III) nitrate hexahydrate,4N 07179-23 100g 07179-08 500g Cerium(III) oxalate nonahydrate,4N 07180-08 500g Cerium(IV) oxide,4N 07167-23 100g 07167-09 500g Cerium(IV) sulfate tetrahydrate,4N 08107-33 25g 08107-08 500g Diammonium cerium(IV) nitrate,4N 07165-33 25g 07165-13 250g Tetraammonium cerium(IV) sulfate dihydrate,4N 08108-33 25g 08108-13 250g 0.1mol/l Cerium(IV) tetraammonium sulfate solution(N/10) 08122-08 500mL Co Cobalt, cube, 5N 08341-53 5g 08341-33 25g Cobalt(II) carbonate,basic,3N5 08113-33 25g 08113-08 500g Cobalt(II) chloride hexahydrate,3N5 07398-33 25g Cobalt(II) nitrate hexahydrate,3N5 07408-33 25g 07408-08 500g Cobalt(II,III) oxide,3N5 08120-33 25g 08120-08 500g Cr Chromium, flake, 4N 08340-53 5g 08340-33 25g
    [Show full text]
  • W. R. Grace & Co.-Conn. Lanthanum Chloride Product Stewardship
    W. R. Grace & Co.-Conn. Lanthanum Chloride Product Stewardship Summary I. Overview Lanthanum chloride is used by Grace in the production of Fluid Catalytic Cracking (FCC) catalysts. Lanthanum is a rare earth element, one of a collection of 17 chemically similar elemental metals. Rare-earth minerals tend to be found mixed together in ore deposits that are mined then purified. Lanthanum is supplied to Grace in various forms including oxides, hydrates and carbonates. The value and use of the various rare-earth metals varies; lanthanum finds application in metal alloys, optical glass, batteries, electronics, and in FCC catalysts. FCC catalysts are typically composed of zeolites, silica, alumina, clay and a binder. The lanthanum in FCC catalysts is contained in the zeolite component of the catalyst. Grace converts the supplied form of lanthanum into lanthanum chloride, and does not commercially supply lanthanum chloride. II. Chemical Identity - Physical and Chemical Properties CAS number: 10099-58-8 EC number: 233-237-5 Molecular formula: LaCl3 Molecular weight: 245.264 Synonyms: lanthanum trichloride, lanthanum chloride anhydrous, Lanthanum (III) chloride; Lanthanum chloride hexahydrate; Lanthanum chloride heptahydrate Alternate CAS RNs: 17272-45-6 (hexahydrate); 20211-76-1 (heptahydrate) Physical-chemical properties Lanthanum chloride is an odorless solid in the form of a white powder Density: 3.84 g/cm3 at 25.0°C Melting Point: 852 °C Boiling Point: 1750 °C Solubility: 861.06 g/L at 20.0 °C and pH >= 2.51 <= 2.88 1 grace.com Talent | Technology | Trust™ III. Applications Rare-earth materials such as lanthanum are an essential ingredient in the production of transportation fuels, plastics and other petroleum based products, accounting for 16 percent of the total US consumption of rare earths.
    [Show full text]
  • 3% 27017 4 Ttof "E75 3,740,242 United States Patent 0 1C6 Patented June 19,, 1973
    June 19, 1973 / - NI. FAULSTICH ETAL 3,740,242 OPTICAL GLASSES Original Filed Aug. 31, 1966 180 / ' >nd If‘x /\x : 1.75 lx'f/nf‘uu . .I.l 1'70 55 50 45 4D 35 Vd INVDVIOPS: 3% 27017 4 ttOF "e75 3,740,242 United States Patent 0 1C6 Patented June 19,, 1973 :1 2 being greater and in a few cases practically equal to the 3,740,242 Slog-content. OPTICAL GLASSES Marga Faulstich, Mainz, and Willy Ritze, Mainz It will be obvious that it is desirable to eliminate thoria Monbach, Germany from glass compositions, since thoria is often a radio Continuation of abandoned application Ser. No. 1,960, active material. Further and similarly, it will he obviously Jan. 12, 1970, which is a continuation of application desirable to remove beryllia from optical glass composi Ser. No. 576,403, Aug. 31, 1966. This application Mar. tions, since beryllia is toxic, and therefore, a physiologi 4, 1971, Ser. No. 121,167 cally undesirable component. Claims priority, application Germany, Sept. 4, 1965, It has been known in the past to produce thoria- and J 28,924 l0 beryllia-free glasses having optical properties in the same Int. Cl. C03c 3/08, 3/10, 3/30 general range as those indicated to be desirable therefor. US. Cl. 106-54 22 Claims These glasses generally have been prepared with a silica content of at most about 15 percent. In the manufacture ABSTRACT OF THE DISCLOSURE of these glasses, it has been found to be necessary to melt Thorium oxide and beryllium oxide-free glasses suitable 15 the compositions in platinum crucibles and to carry out to continuous melting and production having the follow the production of optical glass from these compositions ing comparative values: in batch operations, since continuous or automatic pro duction could not be accomplished without devitri?cation Index of refraction: Abbe value of the product.
    [Show full text]
  • SYNTHESIS of LANTHANUM ALUMINATE DOPED with CARBON (Laalo3: C) by SOLID STATE REACTION for APPLICATION in THERMOLUMINESCENT DOSIMETRY
    2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 SYNTHESIS OF LANTHANUM ALUMINATE DOPED WITH CARBON (LaAlO3: C) BY SOLID STATE REACTION FOR APPLICATION IN THERMOLUMINESCENT DOSIMETRY Alves, N.1; Ferraz, W. B.1; Faria, L. O.1 1 Centro de Desenvolvimento da Tecnologia Nuclear (CDTN / CNEN - MG) Av. Antônio Carlos 6627, 941 30270-901. Belo Horizonte, MG [email protected]; [email protected]; [email protected] ABSTRACT One of the best TL materials ever discovered is α-Al2O3 single crystals doped with carbon atoms. Recently, LaAlO3:Ce,Dy crystals have been proposed to be used as a TL dosimeter for UV fields. Its crystalline structure is very similar to the Al2O3 ones. Thus, in this work, we explore the idea of introducing carbon atoms in the polycrystalline lattice of LaAlO3, in order to investigate its TL properties for X and gamma fields. In this study, the lanthanum aluminate was synthesized using the solid state reaction method by mixing aluminum and lanthanum oxide in a 1:1 molar ratio. The mixture with different concentrations of graphite was then first calcinated in the air and then sintered under reducing atmosphere at high temperature. The resulting powder was characterized by X-ray diffraction, confirming the attainment of the desired phase (LaAlO3). Among the different doping levels investigated all showed thermoluminescence, including the undoped LaAlO3. The best TL responses were obtained for pristine compositions and those doped with 0.5 at.% of carbon. An additional evaluation evidenced the presence of OSL peaks for samples doped with 2.0 at.% of carbon.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Cytotoxic Lanthanum Oxide Nanoparticles Sensitize Glioblastoma Cells to Radiation Therapy and Temozolomide: an in Vitro Rationale for Translational Studies Victor M
    www.nature.com/scientificreports OPEN Cytotoxic lanthanum oxide nanoparticles sensitize glioblastoma cells to radiation therapy and temozolomide: an in vitro rationale for translational studies Victor M. Lu1,2*, Toni Rose Jue1 & Kerrie L. McDonald1 Glioblastoma (GBM) is a malignant brain tumour with a dismal prognosis, despite best treatment by surgical resection, radiation therapy (RT) and chemotherapy with temozolomide (TMZ). Nanoparticle (NP) therapy is an emerging consideration due to the ability of NPs to be formulated and cross the blood brain barrier. Lanthanum oxide (La2O3) NPs are therapeutically advantageous due to the unique chemical properties of lanthanum making it cytotoxic to cancers, and able to enhance existing anti-cancer treatments. However, La2O3 NPs have yet to be thoroughly investigated in brain tumors. We show that these NPs can reach the brain after venous injection, penetrate into GBM cells via endocytosis, dissociate to be cytotoxic, and enhance the therapeutic efects of RT and TMZ. The mechanisms of cell death by La2O3 NPs were found to be multifaceted. Increasing NP concentration was correlated to increased intrinsic and extrinsic apoptosis pathway markers in a radical oxygen species (ROS)-dependent manner, as well as involving direct DNA damage and autophagic pathways within GBM patient-derived cell lines. NP interactions to sensitize GBM to RT and TMZ were shown to involve these pathways by enhancing ROS and apoptotic mechanisms. We therefore demonstrate the therapeutic potential of La2O3 NPs to treat GBM cells in vitro, and encourage translational exploration in the future. Of all known adult brain tumors, glioblastoma (GBM) is the most lethal. In its defning trial in 2005, chemo- therapy agent temozolomide (TMZ) added to radiation therapy (RT) improved median survival to 15 months1.
    [Show full text]
  • R (44. Aeter: 6-4- a 77 Oat//A/S 2,998,412 United States Patent Office Patented Aug
    Aug. 29, 1961 N. FLETCHER 2,998,412 PROCESS FOR MANUFACTURE OF POLYETHYLENE TEREPHTHALATE WITH ZINC ACETATE-ANTIMONY TRIFLUORIDE CATALYST SYSTEM Filed May 12, 1958 ReAction times FOR ESTER-FINTERCHANGE AND PolycoNDENsATION PRODUCED BY DFRNt CONCENTRATIONS OF ZINC ACATE AND E. FLUORDE 4. UNDER stANDARD CONDITIONS. 1 ca Je 2. cs: 3 - c) c l O 2 c ANTMONYb FLUORDE N POYCONDENSATON ZNC ACEATE IN Ster-NERCHANG O O *02 O3 O4. O5 CATALYST CONCENTRATION (% AGE wT OF DIMETHYL TEREPHTHALATE) M1/p/a/v72 a MVaa/7/M / a 7-caya a r (44. Aeter: 6-4- a 77 oat//a/s 2,998,412 United States Patent Office Patented Aug. 29, 1961 1. 2 2,998,412 Apart from their influence on rate of ester-interchange PROCESS FOR MANUFACTURE OF POLYETHYL and polycondensation it is particularly important to con ENE TEREPHTHALATE WITH ZNC ACETATE sider the effect of metal compounds on thermal stability ANTMONY TRFLUORIDE CATALYST SYSTEM since these compounds remain in the polymer. Subse Norman Fletcher, Harrogate, England, assignor to Im quent processing operations such as the spinning of fibres perial Chemical Industries Limited, London, England, a corporation of Great Britain and casting of films are carried out from the polymer Filed May 12, 1958, Ser. No. 734,489 melt at elevated temperatures and high thermal sta Claims priority, application Great Britain Feb. 27, 1953 bility facilitates process control and minimises colour 3 Claims. (C. 260-75) deterioration during such operations. We have found 0. that the thermal stability of polyethylene terephthalate This invention relates to an improved process for the may be conveniently measured by rate of fall of intrinsic manufacture of polyethylene terephthalate, a synthetic viscosity at a standard temperature preferably 282 C.
    [Show full text]
  • The Concrete Structure Represents a Line of Defense in Safety
    UOg/Magnetite Concrete Interaction and Penetration Study* The submitted manuscript has been author R. Farhadieh, R. Purviance, and N. Carlson by a contractor ol the U. S Government CONP-831047—31 under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a Reactor Analysis and Safety Oivision nonexclusive, royalty-free (•rjnst; to publish or reproduce the published ;orm of this DB83 014575 Argonne National Laboratory contribution, or allow others to dc so, for Argonne, Illinois 60439 USA U. S. Government purposes. The concrete structure represents a line of defense in safety assessment of containment integrity and possible minimization of radiological releases following a reactor accident. The penetration study of hot UO2 particles into limestone concrete1 and basalt concrete2 highlighted some major differences between the two concretes. These included penetration rate, melting and dis- solution phenomena, released gases, pressurizatfon of the U02 chamber, and characteristics of post-test concrete. The present study focuses on the phenomena associated with core debris interaction with and penetration into magnetite type concrete. The real material experiment was carried out with U02 particles and mag- netite concrete in a test apparatus similar to the one utilized in the 1 U02/limestone experiment . For experimental detail see Ref. I. A cylindrical cast of magnetite concrete, 17.8 cm deep and 8.9 cm in diameter, prepared in a graphite container, was allowed to cure over two months before the experiment was conducted. Compressive strength of this concrete after 43 days of curing was 4.96 x 107 Pa (7205 psi). Two high-temperature thermocouples, 2.54 cm apart, embedded along the axis and 2.54 cm below the concrete surface was added to the array of other thermocouples along the axis.
    [Show full text]
  • Lanthanum Oxide Safety Data Sheet According to Federal Register / Vol
    Lanthanum Oxide Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Issue date: 05/13/2013 Revision date: 07/19/2021 Supersedes: 11/07/2017 Version: 1.2 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Lanthanum Oxide CAS-No. : 1312-81-8 Product code : LC16040 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem, Inc. 1010 Jackson's Pointe Ct. Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or +1-703-741-5970 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS US classification Serious eye damage/eye irritation Category 2B H320 Causes eye irritation Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS US labeling Signal word (GHS US) : Warning Hazard statements (GHS US) : H320 - Causes eye irritation Precautionary statements (GHS US) : P264 - Wash exposed skin thoroughly after handling. P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P337+P313 - If eye irritation persists: Get medical advice/attention. 2.3. Other hazards which do not result in classification Other hazards not contributing to the : None. classification 2.4.
    [Show full text]
  • Characterization and Bacterial Toxicity of Lanthanum Oxide Bulk and Nanoparticles
    JOURNAL OF RARE EARTHS, Vol. 30, No. 12, Dec. 2012, P. 1298 Characterization and bacterial toxicity of lanthanum oxide bulk and nanoparticles Brabu Balusamy1,2, Yamuna Gowri Kandhasamy2, Anitha Senthamizhan3, Gopalakrishnan Chandrasekaran1, Murugan Siva Subramanian2,4, Kumaravel Tirukalikundram S2,4 (1. Nanotechnology Research Center, SRM University, Chennai-603203, India; 2. GLR Laboratories Private Limited, Chennai-600 060, India; 3. Department of Physics, Indian Institute of Technology-Madras, Chennai-600 036, India; 4. GLR Laboratories Private Limited, Willingham, Cambridge, CB24 5GX, United Kingdom) Received 30 May 2012; revised 30 October 2012 Abstract: This study evaluated the bacterial toxicity of lanthanum oxide micron and nano sized particles using shake flask method against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Particle size, morphology and chemical composition were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Re- sults indicated that lanthanum oxide nanoparticles showed antimicrobial activity against Staphylococcus aureus, but not against Escherichia coli and Pseudomonas aeruginosa. It was speculated that lanthanum oxide produced this effect by interacting with the gram-positive bacte- rial cell wall. Furthermore, lanthanum oxide bulk particles were found to enhance the pyocyanin pigment production in Pseudomonas aeruginosa. Keywords: lanthanum oxide: nanoparticles: bacterial toxicity: pyocyanin; rare earths In recent years, the rapid development in the field of age, ceramics, catalysis, automobiles, biosensor, water nanotechnology has provided a wide range of application in treatment and biomedicine[16–18]. The possible applications of fields of material, medical, computer, bio-sciences and in- these materials has not been fully explored especially in the formation technology.
    [Show full text]