Design of Higher-K and More Stable Rare Earth Oxides As Gate Dielectrics for Advanced CMOS Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) (11) 3,899,444 Stephens (45) Aug
United States Patent (19) (11) 3,899,444 Stephens (45) Aug. 12, 1975 54 EXHAUST GAS CATALYST SUPPORT 75) Inventor: Ruth E. Stephens, Royal Oak, Mich. Primary Examiner-Carl F. Dees Attorney, Agent, or Firm-Donald L. Johnson; Robert 73) Assignee: Ethyl Corporation, Richmond, Va. A. Linn; Joseph D. Odenweller 22 Filed: Dec. 22, 1972 (21) Appl. No.: 317,831 57 ... ' ABSTRACT A thermally stable and attrition resistant catalyst sup Related U.S. Application Data port consisting essentially of an alumina coating on an 63 Continuation-in-part of Ser. No. 224,240, Feb. 7, inert substrate. The alumina coating has a rare earth 1972. metal oxide substantially uniformly distributed throughout. Catalyst compositions utilizing this sup 52 U.S. Cl.............. 252/455 R; 252/462; 252/463; port, processes for preparing both support and cata 252/471; 423/213.5 lyst, and a method of treating internal combustion en (51) Int. Cl..... B01j 11/40; B01j 1 1/06; B01j 1 1/32 gine exhaust gases and preventing crystallization of 58) Field of Search........ 252/462, 463, 455 R, 457; alumina are disclosed. Catalysts consisting essentially 423/213.5 of an alumina matrix containing rare earth metal oxide and a catalytic metal oxide are also disclosed. The 56 References Cited atom ratio of rare earth metal to aluminum in the sup UNITED STATES PATENTS port is 1:5.7-25. The atom ratio of catalytic metal to 3,284,370 1 1/1966 Clifford et al...................... 252/462 rare earth metal to aluminum in the catalysts is 3,554,929 1/1971 Aarons............................... -
Catalytic Performance of Lanthanum Promoted Ni/Zro2 for Carbon Dioxide Reforming of Methane
processes Article Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane Mahmud S. Lanre 1, Ahmed S. Al-Fatesh 1,* , Anis H. Fakeeha 1,2 , Samsudeen O. Kasim 1 , Ahmed A. Ibrahim 1 , Abdulrahman S. Al-Awadi 1,2, Attiyah A. Al-Zahrani 1 and Ahmed E. Abasaeed 1,* 1 Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; mahmudsofi[email protected] (M.S.L.); [email protected] (A.H.F.); [email protected] (S.O.K.); [email protected] (A.A.I.); [email protected] (A.S.A.-A.); [email protected] (A.A.A.-Z.) 2 King Abdullah City for Atomic and Renewable Energy, (K.A. CARE) Energy Research and Innovation Center at Riyadh, Riyadh 11421, Saudi Arabia * Correspondence: [email protected] (A.S.A.-F.); [email protected] (A.E.A.); Tel.: +966-11-467-6859 (A.S.A.-F.); +966-11-467-6856 (A.E.A.) Received: 14 October 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Nickel catalysts supported on zirconium oxide and modified by various amounts of lanthanum with 10, 15, and 20 wt.% were synthesized for CO2 reforming of methane. The effect of La2O3 as a promoter on the stability of the catalyst, the amount of carbon formed, and the ratio of H2 to CO were investigated. In this study, we observed that promoting the catalyst with La2O3 enhanced catalyst activities. The conversions of the feed, i.e., methane and carbon dioxide, were in the order 10La2O3 > 15La2O3 > 20La2O3 > 0La2O3, with the highest conversions being about 60% and 70% for both CH4 and CO2 respectively. -
High Purity Metal Compounds
High Purity Metal Compounds KANTO CHEMICAL offers a variety of materials that can be used for the SOFC applications, as seen in the tables below. Our product portfolio includes Oxides, Halides, Carbonates, Nitrates and other High purity Metal compounds. Metal Product Name Product # Size Al Aluminium, granule, 2N5 01145-08 500g Ba Barium carbonate,3N 04015-08 500g Barium chloride dihydrate,3N 04017-08 500g Bi Bismuth nitrate pentahydrate,3N 04208-08 500g Bismuth(III) oxide,3N 04211-08 500g Ca Calcium carbonate,4N 07050-09 500g Calcium fluoride,3N 07065-23 100g Calcium hydroxide,3N 07069-13 250g Calcium nitrate tetrahydrate,3N 07082-08 500g Calcium oxide,3N 07087-23 100g 07087-08 500g Ce Cerium(III) acetate monohydrate,4N 07170-33 25g 07170-13 250g Cerium(III) carbonate octahydrate,4N 07175-23 100g 07175-08 500g Cerium(III) nitrate hexahydrate,4N 07179-23 100g 07179-08 500g Cerium(III) oxalate nonahydrate,4N 07180-08 500g Cerium(IV) oxide,4N 07167-23 100g 07167-09 500g Cerium(IV) sulfate tetrahydrate,4N 08107-33 25g 08107-08 500g Diammonium cerium(IV) nitrate,4N 07165-33 25g 07165-13 250g Tetraammonium cerium(IV) sulfate dihydrate,4N 08108-33 25g 08108-13 250g 0.1mol/l Cerium(IV) tetraammonium sulfate solution(N/10) 08122-08 500mL Co Cobalt, cube, 5N 08341-53 5g 08341-33 25g Cobalt(II) carbonate,basic,3N5 08113-33 25g 08113-08 500g Cobalt(II) chloride hexahydrate,3N5 07398-33 25g Cobalt(II) nitrate hexahydrate,3N5 07408-33 25g 07408-08 500g Cobalt(II,III) oxide,3N5 08120-33 25g 08120-08 500g Cr Chromium, flake, 4N 08340-53 5g 08340-33 25g -
W. R. Grace & Co.-Conn. Lanthanum Chloride Product Stewardship
W. R. Grace & Co.-Conn. Lanthanum Chloride Product Stewardship Summary I. Overview Lanthanum chloride is used by Grace in the production of Fluid Catalytic Cracking (FCC) catalysts. Lanthanum is a rare earth element, one of a collection of 17 chemically similar elemental metals. Rare-earth minerals tend to be found mixed together in ore deposits that are mined then purified. Lanthanum is supplied to Grace in various forms including oxides, hydrates and carbonates. The value and use of the various rare-earth metals varies; lanthanum finds application in metal alloys, optical glass, batteries, electronics, and in FCC catalysts. FCC catalysts are typically composed of zeolites, silica, alumina, clay and a binder. The lanthanum in FCC catalysts is contained in the zeolite component of the catalyst. Grace converts the supplied form of lanthanum into lanthanum chloride, and does not commercially supply lanthanum chloride. II. Chemical Identity - Physical and Chemical Properties CAS number: 10099-58-8 EC number: 233-237-5 Molecular formula: LaCl3 Molecular weight: 245.264 Synonyms: lanthanum trichloride, lanthanum chloride anhydrous, Lanthanum (III) chloride; Lanthanum chloride hexahydrate; Lanthanum chloride heptahydrate Alternate CAS RNs: 17272-45-6 (hexahydrate); 20211-76-1 (heptahydrate) Physical-chemical properties Lanthanum chloride is an odorless solid in the form of a white powder Density: 3.84 g/cm3 at 25.0°C Melting Point: 852 °C Boiling Point: 1750 °C Solubility: 861.06 g/L at 20.0 °C and pH >= 2.51 <= 2.88 1 grace.com Talent | Technology | Trust™ III. Applications Rare-earth materials such as lanthanum are an essential ingredient in the production of transportation fuels, plastics and other petroleum based products, accounting for 16 percent of the total US consumption of rare earths. -
Study on Extraction of Lanthanum Oxide from Monazite Concentrate
World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:2, No:10, 2008 Study on Extraction of Lanthanum Oxide from Monazite Concentrate Nwe Nwe Soe, Lwin Thuzar Shwe, and Kay Thi Lwin La2O3 has more extensive applications. It is a white Abstract—Lanthanum oxide is to be recovered from monazite, amorphous powder; insoluble in water improves the alkali which contains about 13.44% lanthanum oxide. The principal resistance of glass. The Kodak's camera objectives contain objective of this study is to be able to extract lanthanum oxide from from 20 to 40% La2O3. Lanthanum oxide can also be used in monazite of Moemeik Myitsone Area. The treatment of monazite in optical glasses where it imparts improved alkali resistance, this study involves three main steps; extraction of lanthanum La-Ce-Tb phosphors for fluorescent lamps, dielectric and hydroxide from monazite by using caustic soda, digestion with nitric conductive ceramics, Barium titanate capacitors, X-Ray acid and precipitation with ammonium hydroxide and calcination of lanthanum oxalate to lanthanum oxide. intensifying screens and lanthanum metal production [1]. Keywords—Calcination, Digestion, Precipitation. II. EXPERIMENTAL PROCEDURE Monazite from Moemeik Myitsone Area was used as raw I. INTRODUCTION material for the experiments. Monazite was ground to obtain - ANTHANUM was discovered in 1839 by Swedish 325 mesh. It has beach color. The flow diagram of the L Chemist Carl Gustav Mosandar when he partially extraction of lanthanum oxide is shown in Fig. 1. decomposed a sample of cerium nitrate by heating and treating Monazite the resulting salt with nitric acid. -
United States Patent [151 3,642,527 Purdes Et Al
United States Patent [151 3,642,527 Purdes et al. v [45] Feb. 15, 1972 [54] METHOD OF MODIFYING va dielectric substrate, such as barium titanate, may be ELECTRICAL RESISTIVITY modi?ed by ?rst forming a relatively porous substrate which CHARACTERISTICS OF DIELECTRIC may be handled without breaking, as by pre?ring the sub SUBSTRATES strate, masking selected portions of the substrate with a material such as a photoresist material which will vaporize [72] Inventors: Andrew J. Purdes, Pawtucket, R.I.; Ernest during ?nal ?ring of the substrate, contacting the substrate ' M. Just, Plainville, Mass. with a solution of a ?rst reactant, immersing at least a portion [ 73] Assignee: Texas Instruments Incorporated, Dallas, of the substrate in a solution of a second reactant which will Tex. react with the ?rst reactant to precipitate in situ in a portion of the substrate a compound which is insoluble in the solutions [22] Filed: Dec. 30, 1968 and which is adapted to modify the electrical resistivity characteristics of the substrate, and thereafter ?ring the sub [21] Appl. No.: 787,989 strate at a temperature on the order of l,400°-l,450° C. to reduce the porosity of the substrate and to incorporate the in {52] us. c1 ....................................... ..117/212, 117/223 soluble compound into the lattice of selected portions of the [511 1m. (:1 ...................................... ..B44d l/l8 substrate. Where it is desired to dope selected portions of an [58] Field 6: Search .................. ..106/39; 117/212, 213, 123, undoped substrate to the desired thickness and form thick ?lm positive temperature coef?cient (PTC) thermistors, the ‘ 117/223 starting material may be an undoped barium titanate, for ex~ [56] References Cited ample, the solution of the ?rst reactant may be an aqueous solution of a compound such as ammonium hydroxide, and UNITED STATES PATENTS the ‘solution of the second reactant may be an aqueous solu tion of a compound such as lanthanum acetate which reacts 3,296,359 1/1967 Ramsey, Jr. -
3% 27017 4 Ttof "E75 3,740,242 United States Patent 0 1C6 Patented June 19,, 1973
June 19, 1973 / - NI. FAULSTICH ETAL 3,740,242 OPTICAL GLASSES Original Filed Aug. 31, 1966 180 / ' >nd If‘x /\x : 1.75 lx'f/nf‘uu . .I.l 1'70 55 50 45 4D 35 Vd INVDVIOPS: 3% 27017 4 ttOF "e75 3,740,242 United States Patent 0 1C6 Patented June 19,, 1973 :1 2 being greater and in a few cases practically equal to the 3,740,242 Slog-content. OPTICAL GLASSES Marga Faulstich, Mainz, and Willy Ritze, Mainz It will be obvious that it is desirable to eliminate thoria Monbach, Germany from glass compositions, since thoria is often a radio Continuation of abandoned application Ser. No. 1,960, active material. Further and similarly, it will he obviously Jan. 12, 1970, which is a continuation of application desirable to remove beryllia from optical glass composi Ser. No. 576,403, Aug. 31, 1966. This application Mar. tions, since beryllia is toxic, and therefore, a physiologi 4, 1971, Ser. No. 121,167 cally undesirable component. Claims priority, application Germany, Sept. 4, 1965, It has been known in the past to produce thoria- and J 28,924 l0 beryllia-free glasses having optical properties in the same Int. Cl. C03c 3/08, 3/10, 3/30 general range as those indicated to be desirable therefor. US. Cl. 106-54 22 Claims These glasses generally have been prepared with a silica content of at most about 15 percent. In the manufacture ABSTRACT OF THE DISCLOSURE of these glasses, it has been found to be necessary to melt Thorium oxide and beryllium oxide-free glasses suitable 15 the compositions in platinum crucibles and to carry out to continuous melting and production having the follow the production of optical glass from these compositions ing comparative values: in batch operations, since continuous or automatic pro duction could not be accomplished without devitri?cation Index of refraction: Abbe value of the product. -
SYNTHESIS of LANTHANUM ALUMINATE DOPED with CARBON (Laalo3: C) by SOLID STATE REACTION for APPLICATION in THERMOLUMINESCENT DOSIMETRY
2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 SYNTHESIS OF LANTHANUM ALUMINATE DOPED WITH CARBON (LaAlO3: C) BY SOLID STATE REACTION FOR APPLICATION IN THERMOLUMINESCENT DOSIMETRY Alves, N.1; Ferraz, W. B.1; Faria, L. O.1 1 Centro de Desenvolvimento da Tecnologia Nuclear (CDTN / CNEN - MG) Av. Antônio Carlos 6627, 941 30270-901. Belo Horizonte, MG [email protected]; [email protected]; [email protected] ABSTRACT One of the best TL materials ever discovered is α-Al2O3 single crystals doped with carbon atoms. Recently, LaAlO3:Ce,Dy crystals have been proposed to be used as a TL dosimeter for UV fields. Its crystalline structure is very similar to the Al2O3 ones. Thus, in this work, we explore the idea of introducing carbon atoms in the polycrystalline lattice of LaAlO3, in order to investigate its TL properties for X and gamma fields. In this study, the lanthanum aluminate was synthesized using the solid state reaction method by mixing aluminum and lanthanum oxide in a 1:1 molar ratio. The mixture with different concentrations of graphite was then first calcinated in the air and then sintered under reducing atmosphere at high temperature. The resulting powder was characterized by X-ray diffraction, confirming the attainment of the desired phase (LaAlO3). Among the different doping levels investigated all showed thermoluminescence, including the undoped LaAlO3. The best TL responses were obtained for pristine compositions and those doped with 0.5 at.% of carbon. An additional evaluation evidenced the presence of OSL peaks for samples doped with 2.0 at.% of carbon. -
WO3 and W Thermal Atomic Layer Etching Using Conversion- Fluorination” and “Oxidation-Conversion-Fluorination” Mechanisms † † ‡ Nicholas R
Research Article www.acsami.org “ WO3 and W Thermal Atomic Layer Etching Using Conversion- Fluorination” and “Oxidation-Conversion-Fluorination” Mechanisms † † ‡ Nicholas R. Johnson and Steven M. George*, , † ‡ Department of Chemistry and Biochemistry, and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States ABSTRACT: The thermal atomic layer etching (ALE) of WO3 and W was demonstrated with new “conversion-fluorination” and “oxidation- conversion-fluorination” etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO3 ALE was achieved by a “conversion-fluorination” mechanism using an AB exposure sequence fl with boron trichloride (BCl3) and hydrogen uoride (HF). BCl3 converts the WO3 surface to a B2O3 layer while forming volatile WOxCly products. Subsequently, HF spontaneously etches the B2O3 layer producing volatile BF3 and H2O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl3 and HF reactions were self-limiting versus exposure. The WO3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop fi because BCl3 and HF could not etch the underlying W lm. W ALE was performed using a three-step “oxidation-conversion-fluorination” mechanism. In this ABC exposure sequence, the W surface is fi rst oxidized to a WO3 layer using O2/O3. Subsequently, the WO3 layer is etched with BCl3 and HF. SE could simultaneously fi monitor the W and WO3 thicknesses and conversion of W to WO3. SE measurements showed that the W lm thickness decreased linearly with number of ABC reaction cycles. -
Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol Into 4-Aminophenol
coatings Article Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol Ikram Ahmad 1, Muhammad Asghar Jamal 2,* , Miara Iftikhar 2, Awais Ahmad 3 , Shahid Hussain 4, Humaira Asghar 2, Muhammad Saeed 2 , Ammar Bin Yousaf 5, Rama Rao Karri 6,* , Nada Sulaymaniyah Al-kadhi 7, Mohamed Ouladsmane 8, Ayman Ghfar 8 and Safia Khan 9 1 Department of Chemistry, University of Sahiwal, Sahiwal 54000, Pakistan; [email protected] 2 Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; [email protected] (M.I.); [email protected] (H.A.); [email protected] (M.S.) 3 Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; [email protected] 4 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; [email protected] 5 Centre for Advanced Materials, Qatar University, Doha 2713, Qatar; [email protected] 6 Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Mukim Gadong 1410, Brunei 7 Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; [email protected] 8 Citation: Ahmad, I.; Jamal, M.A.; Advanced Materials Research Chair, Chemistry Department College of Science, King Saud University, Iftikhar, M.; Ahmad, A.; Hussain, S.; P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] (M.O.); [email protected] (A.G.) 9 Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan; Asghar, H.; Saeed, M.; Yousaf, A.B.; safi[email protected] Karri, R.R.; Al-kadhi, N.S.; et al. -
Surface Modification of Electroosmotic Silicon Microchannel Using
micromachines Article Surface Modification of Electroosmotic Silicon Microchannel Using Thermal Dry Oxidation Tuan Norjihan Tuan Yaakub 1,2, Jumril Yunas 1,* ID , Rhonira Latif 1, Azrul Azlan Hamzah 1, Mohd Farhanulhakim Mohd Razip Wee 1 and Burhanuddin Yeop Majlis 1 1 Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia; [email protected] (T.N.T.Y.); [email protected] (R.L.), [email protected] (A.A.H.); [email protected] (M.F.M.R.W.); [email protected] (B.Y.M.) 2 Department of Electronics Engineering, Faculty of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +60-3-8911-8541 Received: 30 March 2018; Accepted: 4 May 2018; Published: 7 May 2018 Abstract: A simple fabrication method for the surface modification of an electroosmotic silicon microchannel using thermal dry oxidation is presented. The surface modification is done by coating the silicon surface with a silicon dioxide (SiO2) layer using a thermal oxidation process. The process aims not only to improve the surface quality of the channel to be suitable for electroosmotic fluid transport but also to reduce the channel width using a simple technique. Initially, the parallel microchannel array with dimensions of 0.5 mm length and a width ranging from 1.8 µm to 2 µm are created using plasma etching on the 2 cm × 2 cm silicon substrate <100>. The oxidation of the silicon channel in a thermal chamber is then conducted to create the SiO2 layer. -
Hydrophilic Block Copolymer-Directed Growth of Lanthanum Hydroxide Nanoparticles
PAPER www.rsc.org/njc | New Journal of Chemistry Hydrophilic block copolymer-directed growth of lanthanum hydroxide nanoparticles Fre´de´ric Bouyer,a Nicolas Sanson,a Mathias Destaracb and Corine Ge´rardin*a Received (in Montpellier, France) 18th November 2005, Accepted 21st December 2005 First published as an Advance Article on the web 25th January 2006 DOI: 10.1039/b516368d Stable hairy lanthanum hydroxide nanoparticles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic polyacrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (Mw,PAA o Mw,PAM) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La31 and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nanoparticles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nanoparticles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles.