Obtaining the Essential Oil of Syzygium Aromaticum, Identification of Eugenol and Its Effect on Streptococcus Mutans

Total Page:16

File Type:pdf, Size:1020Kb

Obtaining the Essential Oil of Syzygium Aromaticum, Identification of Eugenol and Its Effect on Streptococcus Mutans Obtaining the essential oil of Syzygium aromaticum, ORIGINAL ARTICLE identification of eugenol and its effect onStreptococcus mutans. Osvelia Rodríguez1, 2. Abstract: Dental caries is a disease which affects the human oral cavity. Cu- Rosa Sánchez1, 2. rrently, the search for active principles of plants with antimicrobial effect seems María Verde3. promising for dental therapy. In this article the activity of the essential oil of María Núñez3. Syzygium aromaticum (clove) was evaluated with an emphasis on its antimicro- Rocío Ríos1. bial properties. The oil was obtained by hydrodistillation, characterized by thin Abelardo Chávez3. layer chromatography and chemical tests. The main compound was identified in the oil obtained from the flower buds and its antibacterial activity against plank- 1 Universidad Autónoma de Nuevo León, tonic cells Streptcoccus mutans ATCC700611 was assessed by performing serial Monterrey, Nuevo León. México. dilutions, from 15 up to 1000 µg/mL, compared with 0.12% chlorhexidine and 2 Universidad Autónoma de Nuevo León, dimethylsulfoxide. MIC was also determined. Subsequently, UFC was analyzed Escobedo, Nuevo León. México. and compared with CMR® Test Ivoclar Vivadent. The efficiency in obtaining the 3 Universidad Autónoma de Nuevo León, oil was 2.20%. By using the CCD technique, a fraction was revealed by UV light, San Nicolás de los Garza. Nuevo León. corresponding to eugenol. It had a good response for triterpenoids and flavonoids. It showed greater antimicrobial activity at concentrations of 1000, 500 and 250µg/ Corresponding author: Osvelia Rodrí- ml. The MIC and MBC of the oil was 125 to 250µg/mL, respectively. Eugenol guez. Universidad Autónoma de Nuevo was found as an active principle in the oil obtained. Currently, the impact of using León, Facultad de Odontología, Departa- plant extracts has favored the evaluation of alternative, effective and biocompatible mento de Microbiología. Phone:+52 (81) 83465612. E-mail: osvelia.rodriguezl@ antibacterial agents for the formulations of oral hygiene products applied to the uanl.mx. Eduardo Aguirre, Mitras Cen- prevention or treatment of oral diseases. tro, Monterrey Nuevo León CP 64460, Keywords: Eugenol, Streptococcus mutans, Syzygium aromaticum, antimicrobial, México. E-mail:[email protected]. minimum inhibitory concentration MIC. Receipt: 08/21/2014 Revised: 09/09/2014 Cite as: Rodríguez O, Sánchez R, Verde M, Núñez M, Ríos R & Chávez A. Obtaining the Acceptance: 10/01/2014 Online: 10/01/2014 essential oil of Syzygium aromaticum, identification of eugenol and its effect on Streptococcus mutans. J Oral Res 2014; 3(4):218-224. INTRODUCTION. analgesic3, antibacterial4, antiinflammatory5 and antifungal6 The essential clove oil is derived from the flower buds of Syzi- activity, apart from the synergistic antimicrobial activity of gium aromaticum(L.) belonging to the family Myrtaceae. Bet- the essential oil with other plants7 which allows it to be con- ween its chemical components are ß-caryophyllene, which sidered with great potential for dental application8,9. represents 14-21% of its compounds, 10-13% of tannins The oral cavity is considered as an ecosystem. It allows the as well as phenols and sesquiterpenes. The most important development and growth of a wide diversity of microorga- component of the oil is phenylpropene, apart from eugenol, nisms, favored by its temperature and humidity. Streptococcus which is responsible for the characteristic scent of the plant spp have a “cocci” spherical shape and are grouped in chain and its main component. A 49 to 98% of the essential oil is or pairs, do not move and are Gram-positive. Streptococcus contained in the flower buds1,2. mutans is the main organism which colonizes the surfaces of The traditional use of clove is supported by its many the teeth after dental eruption. This organism has a tendency properties which have been described in numerous scienti- to change its morphology, thus it may be found as cocci or fic reports highlighting its antioxidant, hypotensive, dental coccobacillus. It has a diameter of 0.5 to 0.75µm, is facul- 218 ISSN Online 0719-2479 - ©2014 - Official publication of the Facultad de Odontología, Universidad de Concepción - www.joralres.com Rodríguez O, Sánchez R, Verde M, Núñez M, Ríos R & Chávez A. Obtaining the essential oil of Syzygium aromaticum, identification of eugenol and its effect on Streptococcus mutans. J Oral Res 2014; 3(4): 218-224. tative anaerobe α-hemolytic, heterofermentative and has an until its use. outer covering called glycocalyx. It is considered as the main Chemical methods for the identification of functional isolated organism in carious lesions in humans10. It is able to groups and secondary metabolites. acquire new properties which allow the expression of patho- For the partial identification of compounds present in the genicity favoring its virulence in specific environmental con- essential oil, a preliminary phytochemical analysis was ca- ditions. It presents a mechanism of adherence to solid surfaces rried out14. Dilutions of the oil obtained were prepared by so it can colonize the oral cavity and form a bacterial biofilm. taking 100µl aliquot and solubilizing it in 2ml of metha- It can survive in an acidic environment, produce polysaccha- nol (MeOH). They were placed in test tubes and ran various rides associated with the maturation of the plaque and lactic chemical reactions including: Shinoda, Buchard Libermann, acid derived from sugar metabolism. It is identified as a pri- coumarins, 10% sodium hydroxide (NaOH) Baljet for ses- mary pathogen because it interacts specifically with other co- quiterpene lactones, among others15. lonizing microorganisms. Streptococcus mutans has properties Chromatographic analysis in the thin layer. associated with the formation of biofilms, which determine Chromatographic separation was done using Sigma-Al- its virulence in the development of dental caries11. According drich silica gel plates (10x2.5cm). Samples of the oil obtained to the WHO, caries is the main oral disease causing loss of were taken with a capillary and various standard compounds teeth. The pathogenicity of the organism is centered on the which were placed on the plate in three replicates were sub- production of acids and the ability to allow bacterial aggrega- sequently moved with various eluent systems and dried on tion in biofilm formation12. silica, judging the presence of the main components in the This study evaluated the antimicrobial effect of the es- oil by identifying the fractions revealed with cobalt cloride sential oil of Syzigium aromaticum(L.) against Streptococ- (CoCl2) and 254nm ultraviolet (UV) light. cus mutans in planktonic cells. The minimum inhibitory Bacterial strain and growth condition. and bactericidal concentration and the main compound The bacterial strain of Streptcoccus mutans ATCC 700611 in the oil, which is responsible for its antimicrobial pro- was used. It was provided by the Laboratory of Molecular perty, were analyzed. Biology at the Faculty of Odontology, U.A.N.L. It was cul- tivated in Muller Hinton agar for 24 hours at 37ºC, taking MATERIAL AND METHODS. between 4 and 5 colonies of microorganisms to adjust them Plant material and obtaining the essential oil. to the pattern of inoculum of 0.5 on the scale of McFarland, For the purpose of this study, 250g of flower buds of which is equivalent to 1.5x106 CFU. Subsequently, 100µL Syzygium aromatic “clove”, family Myrtaceae, were obtained inoculum was taken for each analysis. from recognized places of selling. They were identified in the Microbiological testing, minimum inhibitory Herbarium of the Department of Botany at the Faculty of concentration. Biological Sciences at the Universidad Autónoma de Nuevo The trials of antimicrobial activity of the oil were León (U.A.N.L), with registration number 025574. performed in Muller Hinton broth. Tubes were prepa- Obtaining the essential oil. red with 800µL of media and dilutions of clove oil, star- The dry flower buds were powdered and placed in a 1000mL ting from a solution of 5mg/ml and assessing increasing flask. Then, 500ml of distilled water were added to obtain the concentrations from 15 to 1000µg/ml, taking aliquots of essential oil through hydrodistillation, by steam distillation 100µl, comparing them in parallel with the controls. Di- using the glass (pyrex) Clevenger-type trap13. Subsequently, it methyl sulfoxide (DMSO) solvent was determined as a was placed in amber vials with screw cap, dried with sodium negative control and 0.12% v/v chlorhexidine® as positive control. MIC was determined as the lowest concentration sulfate (Na2SO4) anhydrous and preserved in refrigeration ISSN Online 0719-2479 - ©2014 - Official publication of the Facultad de Odontología, Universidad de Concepción - www.joralres.com 219 Rodríguez O, Sánchez R, Verde M, Núñez M, Ríos R & Chávez A. Obtaining the essential oil of Syzygium aromaticum, identification of eugenol and its effect on Streptococcus mutans. J Oral Res 2014; 3(4): 218-224. Abundance 8.50 TIC:2600032.D 8000000 7000000 6000000 9.33 5000000 4000000 3000000 2000000 10.52 9.75 1000000 11.35 7.45 8.95 21.48 Time 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 Figure 2. Chromatographic profile of the oil from Sysygium aromaticum. Quantification of the principal component (eugenol), main component in the clove oil by gas chromatography -mass spectrometry. of oil which can inhibit the growth of a microorganism after simmering for 24 hours at 37°C. Results were quali- tatively evaluated and compared. Determination of the minimum bactericidal con- centration. The minimum bactericidal concentration (MBC) was determined on an aliquot of 25µl of each of the samples tested. They were planted by striated in each sector of the plaque, simmering for 24h to 37ºC. It was done in triplicate. MBC is considered the lowest concentration of the oil needed to kill 99% of the initial inoculum after incubation for 24 hours15. The results were compared with the CRT Bacteria test (Ivoclar Vivadent) for counting colony forming Figure 1.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,531,115 B1 Singh Et Al
    USOO6531115B1 (12) United States Patent (10) Patent No.: US 6,531,115 B1 Singh et al. (45) Date of Patent: Mar. 11, 2003 (54) ANALGESIC AND REFRESHING HERBAL SU 1782 589 * 12/1992 COMPOSITION AND A PROCESS FOR WO 9844901 * 10/1998 PREPARING THE SAME OTHER PUBLICATIONS (75) Inventors: Anil Kumar Singh, Lucknow (IN); Farooqi et al (II) “Medicinal Plants in Oral Health Care in Ratan Lal Bindra, Lucknow (IN); India' Jl. Medicinal & Aromatic Plant Sci. 20:441–450, Rashmi Gupta, Lucknow (IN); 1998.* Yogendra Nath Shukla, Lucknow (IN); Sushi Kumar et al “Plants Used Traditionally in the Care of Sushil Kumar, Lucknow (IN) the Tooth CIMAP Medicinal Plants: 80-89, 1994.* Martindale Extra Pharmacopoeia 28' 00, 1982.* (73) Assignee: Council of Scientific & Industrial Rawat et al Biochem Syst. Ecol. 17(1): 35–38, 1989.* Research, New Delhi (IN) Douglas Flavor Ind(2): 152–154, 1971.* (*) Notice: Subject to any disclaimer, the term of this Sharma et all Indian Perfume 27(2): 91–93, 1983.* patent is extended or adjusted under 35 Sharma et al Indian Perfum. 26(2-4): 134-137, 1982." U.S.C. 154(b) by 0 days. Bradu et al Dev. Act. Source of Clove Oil from 'Clocimum Ocimum Gratissimum, 1989.* Androsova Tsitologiya 28(9): 1031-1 Substitute Eugenol (21) Appl. No.: 09/752,822 from “ ” for Clove Oil, 1986.* (22) Filed: Jan. 3, 2001 Nair et al Ind. Perfum. 27(2): 125 Clocimum-Substitute of 7 Eugenol for Clove Oil, 1983.* (51) Int. Cl. ... ... A61K 7/26; A61K 35/78 Subti et al Ind. Perfum 24(2): 66-71 Ocimum Gratissimum (52) U.S.
    [Show full text]
  • (Eugenia Caryophyllata) and Mexican Oregano
    & Bioch ial em b ic ro a c l i T M e c Cano et al., J Microb Biochem Technol 2017, 9:1 f h o Journal of n l o a n l DOI: 10.4172/1948-5948.1000342 o r g u y o J ISSN: 1948-5948 Microbial & Biochemical Technology Research Article Open Access Antifungal Activity of Microcapsulated Clove (Eugenia caryophyllata) and Mexican Oregano (Lippia berlandieri) Essential Oils against Fusarium oxysporum Carlos Estrada-Cano, María Antonieta Anaya Castro, Layla Muñoz-Castellanos, Nubia Amaya-Olivas Antonio García-Triana* and León Hernández-Ochoa* Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas. Circuito Universitario, Campus Universitario México Abstract The aim of the present study was to determine the antifungal activity of microcapsules of essential oil of clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) against Fusarium oxysporum. Different essential oil to β-cyclodextrin weight ratios were tested, (4:96, 8:92, 12:88 and 16:84 w/w) and encapsulation efficiency same as rate, were determined. GC-MS and GC-FID analysis were also performed to determine. The main oil constituents, which were eugenol and carvacrol in clove and Mexican oregano essential oils respectively and to quantify their ratio in microcapsules. The oxford cup method was used to determine the antifungal inhibitory activity of essentials oils and microcapsules of essential oils. The results showed that the 4:96 ratio (clove essential oil:β-cyclodextrin) gave the highest Eugenol content and the greatest microencapsulation efficiency; and the 8:92 and 12:88 ratios (Mexican oregano essential oil: β-cyclodextrin) gave the highest carvacrol content.
    [Show full text]
  • Versatile and Synergistic Potential of Eugenol
    A tica nal eu yt c ic a a m A r a c t Raja et al., Pharm Anal Acta 2015, 6:5 h a P DOI: 10.4172/2153-2435.1000367 ISSN: 2153-2435 Pharmaceutica Analytica Acta Review Article Open Access Versatile and Synergistic Potential of Eugenol: A Review Mamilla R Charan Raja, Varsha Srinivasan, Sharmila Selvaraj and Santanu Kar Mahapatra* Medicinal Chemistry and Immunology Lab, ASK-II, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India Abstract Eugenol (1-allyl-4-hydroxy-3-methoxybenzene) is the phenolic component of essential oil and the main constituent of Eugenia caryophyllata, Ocimmum gratissimum and several others medicinal plant. In view of its non- mutagenic and non-carcinogenic properties, eugenol is generally regarded as safe by the Food and Agricultural Organization of the United Nations. Eugenol has been recently shown to be effective for antimicrobials and treatment of different life threatening diseases including sepsis, leishmaniasis, and cancer. However overall, activity of eugenol is not discussed elsewhere. In this review, we discuss the current understanding of the mechanisms involved the antioxidant, antimicrobial, anticancer and anti-inflammatory potential of eugenol. Keywords: Eugenol; Antioxidant; Antimicrobials; Anticancer; Anti- orally and rapidly distributed in all organ when administered inflammatory potential intraperitoneally. According to Thompson et al. (1991), metabolism of eugenol resulted in the formation of conjugates with sulfate, glucuronic Introduction acid (major) and glutathione studied in vitro with 1mM concentration (lethal dose). Eugenol is eliminated and excreted as expired CO and Eugenol, a phenolic photochemical extracted from certain 2 essential oils especially from clove oil, nutmeg, cinnamon, basil and through urine studied in rabbit model (WHO, Food additive series 17 bay leaf; possess a range of antimicrobials to anticancer activity.
    [Show full text]
  • Herbs, Spices and Essential Oils
    Printed in Austria V.05-91153—March 2006—300 Herbs, spices and essential oils Post-harvest operations in developing countries UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Telephone: (+43-1) 26026-0, Fax: (+43-1) 26926-69 UNITED NATIONS FOOD AND AGRICULTURE E-mail: [email protected], Internet: http://www.unido.org INDUSTRIAL DEVELOPMENT ORGANIZATION OF THE ORGANIZATION UNITED NATIONS © UNIDO and FAO 2005 — First published 2005 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: - the Director, Agro-Industries and Sectoral Support Branch, UNIDO, Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria or by e-mail to [email protected] - the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the United Nations Industrial Development Organization or of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Diplomarbeit
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OTHES DIPLOMARBEIT Titel der Diplomarbeit Evaluation of the traditional and well-established use of Tormentillae rhizoma, Caryophylli flos and Caryophylli aetheroleum angestrebter akademischer Grad Magister/Magistra der Pharmazie (Mag.pharm.) Verfasserin / Verfasser: Birgit Hochenegg Matrikelnummer: 0202171 Studienrichtung /Studienzweig Pharmazie (lt. Studienblatt): Betreuerin / Betreuer: Univ.-Doz. Dr. Reinhard Länger Wien, am 30. Mai 2010 Acknowledgements I want to thank Univ. – Doz. Dr. Reinhard Länger for his loving care, his expertise and assistance while writing on my diploma thesis. At this point I want to thank my family, especially my mother. Without her support this work would not come off. Thanks to all of you very much. 2 Table of Contents 1. Introduction ............................................................................................................. 5 2. Methodology ........................................................................................................... 7 2.1. Literature search:.........................................................................................................7 2.2. Procedure for the development of community monographs.......................................7 3. Results ..................................................................................................................... 9 3.1. Potentilla erecta (L.) Raeusch., rhizoma .....................................................................9
    [Show full text]
  • Effect of Extraction Solvent on the Phenolic Content, Flavonoid Content and Antioxidant Capacity of Clove Bud
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 11, Issue 3 Ver. I (May.- Jun.2016), PP 33-38 www.iosrjournals.org Effect of Extraction Solvent on the Phenolic Content, Flavonoid Content and Antioxidant Capacity Of Clove Bud Banji Adaramola1 and Adebayo Onigbinde2 1,2Department of Basic Sciences, Chemistry Unit, Babcock University Ilishan Remo, Ogun State Nigeria Abstract: In this research, the effect of extraction solvent on the phenolic content, Flavonoid content and antioxidant capacity of clove bud (Syzygium aromaticum) was investigated. The extraction of clove bud was carried out with water, methanol (80%) and acetone (80%). The Flavonoid and phenolic contents of the extracts were evaluated by standard Aluminum chloride and Folin-Ciocalteu methods respectively while their antioxidant capacity was assayed by determining their total reducing power as well as their free radical scavenging effect on 2, 2-diphenyl-2-picrylhydrazyl (DPPH) radical. The percentage yield of the crude extracts ranged from 15.1±0.32% to 18.33±0.41% with the 80% acetone showing the highest yield while water extract showed the least. The flavonoid contents of all the extracts of clove bud evaluated were higher than the phenolic contents. The highest flavonoid content (501±0.58mgQE/g), phenolic content (200.2mgGAE/g), average percentage DPPH free radical inhibition (73.67±0.34%) and highest reducing power (0.88±0.10) were exhibited by the 80% acetone extract. The water extract on the other-hand gave the lowest values for all the parameters tested with 161.67±0.88mgQE/g, 118.40±0.06 mgGAE/g, 62.05±0.22% and 0.76±0.01 for Flavonoid content, phenolic content, average DPPH free radical inhibition and reducing power respectively.
    [Show full text]
  • Phytochemistry and Pharmacological Aspects of Syzygium Aromaticum
    Journal of Pharmacognosy and Phytochemistry 2019; 8(1): 398-406 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(1): 398-406 Phytochemistry and pharmacological aspects of Received: 18-11-2018 Accepted: 22-12-2018 Syzygium aromaticum: A review K Kaur Department of Chemistry, K Kaur and S Kaushal Punjab Agricultural University Ludhiana, Punjab, India Abstract Syzygium aromaticum (Family Myrtaceace) commonly called clove is most important and second S Kaushal valuable spice in world trade and is widely cultivated in North Maluku Islands in Indonesia. Gas Department of Chemistry, Punjab Agricultural University Chromatography-Mass Spectrometery (GC-MS) studies of essential oil revealed the presence of eugenol Ludhiana, Punjab, India as major compound. Phytochemical analysis of essential oil showed the presence of saponins, alkaloids, flavanoids, glycosides, tannins and steroids. The essential oil of S. aromaticum possess various biological activities such as antibacterial, antifungal, herbicidal, nematicidal, antitumor and anti-inflammatory. This review covers the phytochemistry and pharmacological activities of cloves, it’s essential oil and various extracts. Keywords: Syzygium aromaticum, essential oil, phytochemical, pharmacological activities 1. Introduction The role of plants in human life has been increasing day by day due to advancement in the nutritional and medicinal disciplines. Spices are dried root, seed, bark fruit or flowers of plants which served several functions including flavoring agents, food additives, coloring agents, preservatives and medicines. During prehistoric times the discoveries of spices have been a [65] period of joy as they are used as flavoring agents (Osuntogun et al. 2004) . For aeons now, spices are irreplaceable part of cuisions all over the world.
    [Show full text]
  • Herbal Extract
    Clove(Syzygium aromaticum (L.) Merr. & L.M.Perry) Clove has also been used as a medicinal plant in many cultures including in Ayurveda and Traditional Chinese Medicine as well as western herbal medicine. The main applications were for digestive disorders and pain relief in tooth ache as the oil has an anaesthetic and antiseptic action. The German Commission E has approved the use of clove as a topical antiseptic and anaesthetic. Constituents Clove has a range of constituents including volatile oils, tannins, ferulic acid, gallic acid and gums. The chemical components of the essential oil is primarily the phenol, eugenol (approximately 85%), but it also contains methyl salicylate, pinene and vanillin. Family Actions Myrtaceae. Astringent, anaesthetic, antioxidant, anti-infl ammatory, Parts Used vulnerary, carminative, antibacterial, antifungal. Flower Bud. Pharmacological Activity The research into the whole plant extracts of clove is not Description as extensive as the research into the essential oil of clove Clove is native to Indonesia but is now also grown in or its chief constituent, eugenol. However, given the large Madagascar, Zanzibar, West Indies, Sri Lanka and Pakistan. percentage of essential oil in the extract, similar effects The clove tree is a small, aromatic evergreen tree that may be found with the extract. grows 8 to 12 metres tall and forms a pyramid shape. A member of the Myrtaceae family, the tree has large oblong Antioxideant & immune modulating activity leaves and smooth and greyish bark. The fl owers are Extracts of Syzygium aromaticum, clove essential oil, numerous and appear as clusters at the end of the each and eugenol displayed strong free radical-scavenging branch.
    [Show full text]
  • Comparison of Antimicrobial Activities of Clove Oil & Its
    The Internet Journal of Microbiology ISPUB.COM Volume 7 Number 1 Comparison Of Antimicrobial Activities Of Clove Oil & Its Extract On Some Food Borne Microbes C Gupta, A Garg, R Uniyal, S Gupta Citation C Gupta, A Garg, R Uniyal, S Gupta. Comparison Of Antimicrobial Activities Of Clove Oil & Its Extract On Some Food Borne Microbes. The Internet Journal of Microbiology. 2008 Volume 7 Number 1. Abstract A study was carried out in the comparative analysis of ethanolic extract (50%) of clove & clove oil as natural antimicrobial agents on some food spoilage bacteria. The antibacterial activity of clove oil & its extract (50% ethanol) was tested against ten bacteria (seven Gram positive & three Gram negative) & seven fungi by agar well diffusion assays. The clove oil was found to be better antagonistic agent as compared to its extract counterpart by inhibiting both bacteria & fungi. The oil was found to be very effective with a lowest minimum inhibitory concentration (MIC) of 2.5% (v/v) against Staphylococcus epidermidis & Staphylococcus sp. Amongst the fungi, Aspergillus niger was found to be highly sensitive to the oil. Sodium propionate (standard food preservative) was used as a positive control. Clove oil was found to be more effective as compared to both clove extract & sodium propionate. This study shows the potential of clove oil to be used as food bio-preservative. INTRODUCTION carminative, to increase hydrochloric acid in the stomach The increase of food borne infections has resulted from the and to improve peristalsis (Phyllis & James, 2000). It is also consumption of food contaminated with bacteria and/or their used in dentistry where the essential oil of clove is used for toxins.
    [Show full text]
  • Medicinal Attributes of Major Phenylpropanoids Present in Cinnamon Uma Kant Sharma, Amit Kumar Sharma and Abhay K
    Sharma et al. BMC Complementary and Alternative Medicine (2016) 16:156 DOI 10.1186/s12906-016-1147-4 RESEARCH ARTICLE Open Access Medicinal attributes of major phenylpropanoids present in cinnamon Uma Kant Sharma, Amit Kumar Sharma and Abhay K. Pandey* Abstract Background: Excessive production of free radicals has been implicated in many diseases including cancer. They are highly reactive and bring about oxidation of biomolecules i.e., proteins, lipids and nucleic acids which are associated with many degenerative diseases. Natural products acting as antioxidants have ability to neutralize free radicals and their actions and hence they mitigate their harmful effects. The present study was designed to investigate pharmacological properties viz., antioxidant, antibacterial and antiproliferative activities of cinnamaldehyde and eugenol, the two naturally occurring phenylpropanoids present in Cinnamomum spp. and other plants. Methods: The antioxidant potential of test compounds was evaluated by measuring DPPH free radical scavenging, reducing power and metal ion chelating activities. Protection against membrane damage was assayed by inhibition of lipid peroxidation in rat liver homogenate. Antibacterial activity was measured by Kirby-Bauer disc diffusion method while antiproliferative activity of test compounds was measured by sulforhodamine-B (SRB) assay. Results: Eugenol exhibited noticeable antioxidant potential in DPPH radical scavenging (81 %) and reducing power (1.12) assays at 1.0 μM/ml and 0.1 μM/ml concentrations, respectively. IC50 value of eugenol for radical scavenging activity was found to be 0.495 μM/ml. Cinnamaldehyde demonstrated considerable metal ion chelating ability (75 %) at 50 μM/ml and moderate lipo-protective activity in lipid peroxidation assay at 3 μM/ml.
    [Show full text]
  • Biological Properties and Prospects for the Application of Eugenol—A Review
    International Journal of Molecular Sciences Review Biological Properties and Prospects for the Application of Eugenol—A Review Magdalena Ulanowska and Beata Olas * Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-42-6354484 Abstract: Eugenol is a phenolic aromatic compound obtained mainly from clove oil. Due to its known antibacterial, antiviral, antifungal, anticancer, anti-inflammatory and antioxidant properties, it has long been used in various areas, such as cosmetology, medicine, and pharmacology. However, high concentrations can be toxic. A dose of 2.5 mg/kg body weight is regarded as safe. This paper reviews the current state of knowledge regarding the activities and application of eugenol and its derivatives and recent research of these compounds. This review is based on information concerning eugenol characteristics and recent research from articles in PubMed. Eugenol remains of great interest to researchers, since its multidirectional action allows it to be a potential component of drugs and other products with therapeutic potential against a range of diseases. Keywords: eugenol; clove oil; antibacterial; antifungal; antioxidant 1. Introduction Eugenol is a well-known and well-studied compound. It was first isolated in 1929 as a volatile compound from Eugenia caryophyllata, and commercial production began in the USA in 1940 [1,2]. Citation: Ulanowska, M.; Olas, B. Due to its numerous properties, eugenol has found a wide range of uses in many Biological Properties and Prospects areas of life. In addition, because of the growing interest in unconventional, traditional for the Application of Eugenol—A Review.
    [Show full text]
  • Vanillin: One Drug, Many Cures∗
    GENERAL ARTICLE Vanillin: One Drug, Many Cures∗ Oshin Gulsia Chemically, ‘vanillin’ belongs to the class of benzaldehydes, its structural formula being 4-hydroxy-3-methoxybenzaldehyde. It is one of the key constituents of vanilla pods, primarily from the species of Vanilla planifolia. However, since it is un- economical to grow vanilla on a large scale, it is prepared syn- thetically to meet the diverse demands of growing food and pharmaceutical industries. Recently, vanillin has warranted the attention of the scientific community because of its versa- Oshin Gulsia is currently pursuing her doctorate in tility and utility. From the medicine cabinet to your savory Food Business Management platter, its ubiquitous presence is what makes one wonder, “is from NIFTEM (de-novo this the next-gen supermolecule we had been waiting for?” Institute under MoFPI). Her doctoral research-work constitutes of modeling Introduction agripreneurship development prospects in Haryana. Her other interests are food The term ‘vanillin’ has been derived from vanilla, its origin being science, neuromarketing, and the Spanish word vainilla, a diminutive form of vaina or sheath poetry. [1]. Vanillin, an aromatic compound, is known to occur naturally as a glycoside bound to sugar (such as glucovanillin in vanilla pods) or as a precursor bound to the large lignin molecules in wood. It has a white crystalline structure and a characteristic pleasant flavor. Researchers have identified it as a phytochemical— glucoumarin—amongst 171 aromatic compounds found in vanilla bean [2]. Vanilla pods consist of vanillic acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, sugars, lipids, minerals, water, and cellu- lose besides vanillin [3].
    [Show full text]