Medicinal Attributes of Major Phenylpropanoids Present in Cinnamon Uma Kant Sharma, Amit Kumar Sharma and Abhay K

Total Page:16

File Type:pdf, Size:1020Kb

Medicinal Attributes of Major Phenylpropanoids Present in Cinnamon Uma Kant Sharma, Amit Kumar Sharma and Abhay K Sharma et al. BMC Complementary and Alternative Medicine (2016) 16:156 DOI 10.1186/s12906-016-1147-4 RESEARCH ARTICLE Open Access Medicinal attributes of major phenylpropanoids present in cinnamon Uma Kant Sharma, Amit Kumar Sharma and Abhay K. Pandey* Abstract Background: Excessive production of free radicals has been implicated in many diseases including cancer. They are highly reactive and bring about oxidation of biomolecules i.e., proteins, lipids and nucleic acids which are associated with many degenerative diseases. Natural products acting as antioxidants have ability to neutralize free radicals and their actions and hence they mitigate their harmful effects. The present study was designed to investigate pharmacological properties viz., antioxidant, antibacterial and antiproliferative activities of cinnamaldehyde and eugenol, the two naturally occurring phenylpropanoids present in Cinnamomum spp. and other plants. Methods: The antioxidant potential of test compounds was evaluated by measuring DPPH free radical scavenging, reducing power and metal ion chelating activities. Protection against membrane damage was assayed by inhibition of lipid peroxidation in rat liver homogenate. Antibacterial activity was measured by Kirby-Bauer disc diffusion method while antiproliferative activity of test compounds was measured by sulforhodamine-B (SRB) assay. Results: Eugenol exhibited noticeable antioxidant potential in DPPH radical scavenging (81 %) and reducing power (1.12) assays at 1.0 μM/ml and 0.1 μM/ml concentrations, respectively. IC50 value of eugenol for radical scavenging activity was found to be 0.495 μM/ml. Cinnamaldehyde demonstrated considerable metal ion chelating ability (75 %) at 50 μM/ml and moderate lipo-protective activity in lipid peroxidation assay at 3 μM/ml. In addition cinnamaldehyde also showed appreciable antibacterial activity (zone of inhibition 32–42 mm) against Bacillus cereus (MTCC 6840), Streptococcus mutans (MTCC 497), Proteus vulgaris (MTCC 7299), Salmonella typhi (MTCC 3917) and Bordetella bronchiseptica (MTCC 6838) while eugenol produced moderate activity at 80 μM/disc. Cinnamaldehyde exhibited comparatively better antiproliferative potential against breast (T47D) and lung (NCI-H322) cancer cell lines than eugenol in SRB assay at 50 μM concentration. Conclusion: Cinnamaldehyde possessed metal ion chelating, lipo-protective, antibacterial and antiproliferative activities while eugenol showed potent H-atom donating potential indicating radical quenching and reducing power abilities. Medicinal attributes shown by both the compounds indicated their usefulness in food and pharmaceutical sector. Keywords: Cinnamaldehyde, Eugenol, Phenylpropanoid, Free radical, Antioxidant, Antibacterial, Antiproliferative, Lipoprotective * Correspondence: [email protected] Department of Biochemistry, University of Allahabad, Allahabad 211002, India © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Sharma et al. BMC Complementary and Alternative Medicine (2016) 16:156 Page 2 of 11 Background Spices and aromatic vegetable material of natural origin Free radicals are associated with many degenerative dis- are used in food industries to enhance flavor and fragrance eases including cancer, cardio-vascular diseases, cataract, qualities of food materials. Moreover they are also used as immune system decline and brain dysfunction [1]. Under traditional medicine [14]. Spices are good sources of nat- normal metabolic conditions about 2–5%ofO2 consumed ural antioxidant and antibacterial agents. Cinnamon and by mitochondria is converted to ROS (Reactive oxygen bay leaf are used as spices and obtained from Cinnamo- species) during metabolic process within the body [2]. mum spp. Principle components like cinnamaldehyde, eu- Their excessive production during abnormal conditions is genol, cinnamic acid and cineol etc. are responsible for regulated naturally by antioxidant system [3]. Failure of the antioxidant activity in cinnamon [15]. Very low antioxidant defenses results in a pathophysiological condi- amount of eugenol is usually present in cinnamon bark tion known as oxidative stress. Highly active oxygen and but it is the major component of cinnamon leaf essential nitrogen species (ROS and RNS) are generally considered oil. It is also abundantly present in Syzygium aromaticum to be markers of oxidative stress. They permanently (clove). Both cinnamaldehyde and eugenol belong to phe- modify the genetic material leading to numerous nylpropanoid class of phytochemicals. Cinnamaldehyde degenerative or chronic diseases [4]. Mis-repair of bears an aldehyde group on benzene ring via three carbon DNA damage results in mutations such as base substitu- chain while eugenol has one hydroxy and one methoxy tion and deletion which lead to carcinogenesis [5]. group which are directly attached to the ring (Fig. 1). Antioxidants are a group of substances which are either Eugenol has a wide range of application in perfumes, produced in situ or supplied through food and supple- flavorings, essential oils and in medicine as a local antisep- ments. They protect free radical mediated membrane tic and anesthetic [16]. Present study reports antioxidant, damage because of their scavenging and chelating proper- antibacterial and antiproliferative activities of cinnamal- ties [6, 7]. Butylated hydroxyanisole (BHA) and butylated dehyde and eugenol, the two flavoring phenylpropanoid hydroxytoluene (BHT) are commonly used as synthetic compounds. antioxidant but their uses are restricted by legislative rules because of doubts over their toxic and carcinogenic effects Methods [8]. Antioxidants derived from plants are presumed to be Chemicals safe since they are natural in origin and have capability to Cinnamaldehyde (3-phenyl-2-propenal), eugenol (2-meth- counteract the damaging effect of ROS [9]. oxy-4-(2-propenyl) phenol), DPPH (2, 2-diphenyl-1-picryl Many microorganisms cause food spoilage which is hydrazyl), tert-butyl-4-hydroxytoluene (BHT), butylated one of the most important concerns of the food industry hydroxyanisole (BHA) were obtained from Himedia, Pvt. [10]. Initially, synthetic chemicals were used to prevent Ltd Mumbai, India. microbial contamination as well as oxidation of dietary components so that they remained in their natural form. Assessment of antioxidant ability by in vitro assays Because of the growing concern of consumer about the Free radical (DPPH) scavenging assay side effects of synthetic compounds and want of safer The hydrogen-donating ability of cinnamaldehyde and material for preventing and controlling pathogenic mi- eugenol was examined in the presence of DPPH, a croorganisms in food, natural products are currently stable radical using the method of Singh et al. [17]. being used to prevent microbial contamination [11]. One ml cinnamaldehyde (0.4–4.0 mM/ml) and eugenol Phytochemicals have been reported to modulate human (0.4–4.0 μM/ml) prepared in DMSO were taken in metabolism in a manner beneficial for the prevention of different test tubes and 3 ml of 0.1 mM DPPH solution infectious and degenerative diseases [12, 13]. prepared in methanol was added. The content was mixed Fig. 1 Chemical structures of cinnamaldehyde (3-Phenyl-2-propenal) and eugenol (2-Methoxy-4-(2-propenyl) phenol) Sharma et al. BMC Complementary and Alternative Medicine (2016) 16:156 Page 3 of 11 and allowed to stand at room temperature for 30 min in in vitro lipid peroxidation inhibition assay. 100 μl of dif- dark. Final concentration of cinnamaldehyde and eugenol ferent concentrations of samples was taken in different in reaction mixture was 0.1–1.0 mM/ml and 0.1–1.0 μM/ tubes, followed by addition of 1.0 ml KCl (0.15 M), ml, respectively. The reduction of DPPH free radical was 0.3 ml phosphate buffer and 0.5 ml of tissue homogen- measured by recording the absorbance at 517 nm. BHA ate. Peroxidation was initiated by adding 100 μl FeCl3 was used as standard for comparison. Control tubes con- (0.2 mM). Final concentration of cinnamaldehyde, eu- tained 1 ml DMSO and 3 ml DPPH reagent in reaction genol and BHA (standard) in reaction mixture was mixture. The radical scavenging activities (%) at different 1.0–3.0 μM/ml. After incubation at 37 °C for 30 min, lipid concentrations of the test samples were calculated using peroxidation was monitored by the formation of thiobar- the following formula. bituric acid reactive substances which were estimated by adding 2 ml of ice-cold hydrochloric acid (0.25 N) Free radical scavenging activityðÞ% containing 15 % TCA, 38 % TBA and 0.5 % BHT. ¼ ½ÂðÞAC−AS =AC 100 The reaction mixture was incubated at 80 °C for 1 h followed by cooling and centrifugation. The absorbance of where AC and AS are the absorbance values of the con- the pink supernatant was measured at 532 nm. All analyses trol and the sample, respectively. IC50 value, the concen- were carried out in triplicate and results were expressed as tration of sample exhibiting 50 % free radical scavenging mean ±
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,531,115 B1 Singh Et Al
    USOO6531115B1 (12) United States Patent (10) Patent No.: US 6,531,115 B1 Singh et al. (45) Date of Patent: Mar. 11, 2003 (54) ANALGESIC AND REFRESHING HERBAL SU 1782 589 * 12/1992 COMPOSITION AND A PROCESS FOR WO 9844901 * 10/1998 PREPARING THE SAME OTHER PUBLICATIONS (75) Inventors: Anil Kumar Singh, Lucknow (IN); Farooqi et al (II) “Medicinal Plants in Oral Health Care in Ratan Lal Bindra, Lucknow (IN); India' Jl. Medicinal & Aromatic Plant Sci. 20:441–450, Rashmi Gupta, Lucknow (IN); 1998.* Yogendra Nath Shukla, Lucknow (IN); Sushi Kumar et al “Plants Used Traditionally in the Care of Sushil Kumar, Lucknow (IN) the Tooth CIMAP Medicinal Plants: 80-89, 1994.* Martindale Extra Pharmacopoeia 28' 00, 1982.* (73) Assignee: Council of Scientific & Industrial Rawat et al Biochem Syst. Ecol. 17(1): 35–38, 1989.* Research, New Delhi (IN) Douglas Flavor Ind(2): 152–154, 1971.* (*) Notice: Subject to any disclaimer, the term of this Sharma et all Indian Perfume 27(2): 91–93, 1983.* patent is extended or adjusted under 35 Sharma et al Indian Perfum. 26(2-4): 134-137, 1982." U.S.C. 154(b) by 0 days. Bradu et al Dev. Act. Source of Clove Oil from 'Clocimum Ocimum Gratissimum, 1989.* Androsova Tsitologiya 28(9): 1031-1 Substitute Eugenol (21) Appl. No.: 09/752,822 from “ ” for Clove Oil, 1986.* (22) Filed: Jan. 3, 2001 Nair et al Ind. Perfum. 27(2): 125 Clocimum-Substitute of 7 Eugenol for Clove Oil, 1983.* (51) Int. Cl. ... ... A61K 7/26; A61K 35/78 Subti et al Ind. Perfum 24(2): 66-71 Ocimum Gratissimum (52) U.S.
    [Show full text]
  • (Eugenia Caryophyllata) and Mexican Oregano
    & Bioch ial em b ic ro a c l i T M e c Cano et al., J Microb Biochem Technol 2017, 9:1 f h o Journal of n l o a n l DOI: 10.4172/1948-5948.1000342 o r g u y o J ISSN: 1948-5948 Microbial & Biochemical Technology Research Article Open Access Antifungal Activity of Microcapsulated Clove (Eugenia caryophyllata) and Mexican Oregano (Lippia berlandieri) Essential Oils against Fusarium oxysporum Carlos Estrada-Cano, María Antonieta Anaya Castro, Layla Muñoz-Castellanos, Nubia Amaya-Olivas Antonio García-Triana* and León Hernández-Ochoa* Universidad Autónoma de Chihuahua, Facultad de Ciencias Químicas. Circuito Universitario, Campus Universitario México Abstract The aim of the present study was to determine the antifungal activity of microcapsules of essential oil of clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) against Fusarium oxysporum. Different essential oil to β-cyclodextrin weight ratios were tested, (4:96, 8:92, 12:88 and 16:84 w/w) and encapsulation efficiency same as rate, were determined. GC-MS and GC-FID analysis were also performed to determine. The main oil constituents, which were eugenol and carvacrol in clove and Mexican oregano essential oils respectively and to quantify their ratio in microcapsules. The oxford cup method was used to determine the antifungal inhibitory activity of essentials oils and microcapsules of essential oils. The results showed that the 4:96 ratio (clove essential oil:β-cyclodextrin) gave the highest Eugenol content and the greatest microencapsulation efficiency; and the 8:92 and 12:88 ratios (Mexican oregano essential oil: β-cyclodextrin) gave the highest carvacrol content.
    [Show full text]
  • Versatile and Synergistic Potential of Eugenol
    A tica nal eu yt c ic a a m A r a c t Raja et al., Pharm Anal Acta 2015, 6:5 h a P DOI: 10.4172/2153-2435.1000367 ISSN: 2153-2435 Pharmaceutica Analytica Acta Review Article Open Access Versatile and Synergistic Potential of Eugenol: A Review Mamilla R Charan Raja, Varsha Srinivasan, Sharmila Selvaraj and Santanu Kar Mahapatra* Medicinal Chemistry and Immunology Lab, ASK-II, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India Abstract Eugenol (1-allyl-4-hydroxy-3-methoxybenzene) is the phenolic component of essential oil and the main constituent of Eugenia caryophyllata, Ocimmum gratissimum and several others medicinal plant. In view of its non- mutagenic and non-carcinogenic properties, eugenol is generally regarded as safe by the Food and Agricultural Organization of the United Nations. Eugenol has been recently shown to be effective for antimicrobials and treatment of different life threatening diseases including sepsis, leishmaniasis, and cancer. However overall, activity of eugenol is not discussed elsewhere. In this review, we discuss the current understanding of the mechanisms involved the antioxidant, antimicrobial, anticancer and anti-inflammatory potential of eugenol. Keywords: Eugenol; Antioxidant; Antimicrobials; Anticancer; Anti- orally and rapidly distributed in all organ when administered inflammatory potential intraperitoneally. According to Thompson et al. (1991), metabolism of eugenol resulted in the formation of conjugates with sulfate, glucuronic Introduction acid (major) and glutathione studied in vitro with 1mM concentration (lethal dose). Eugenol is eliminated and excreted as expired CO and Eugenol, a phenolic photochemical extracted from certain 2 essential oils especially from clove oil, nutmeg, cinnamon, basil and through urine studied in rabbit model (WHO, Food additive series 17 bay leaf; possess a range of antimicrobials to anticancer activity.
    [Show full text]
  • Herbs, Spices and Essential Oils
    Printed in Austria V.05-91153—March 2006—300 Herbs, spices and essential oils Post-harvest operations in developing countries UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Telephone: (+43-1) 26026-0, Fax: (+43-1) 26926-69 UNITED NATIONS FOOD AND AGRICULTURE E-mail: [email protected], Internet: http://www.unido.org INDUSTRIAL DEVELOPMENT ORGANIZATION OF THE ORGANIZATION UNITED NATIONS © UNIDO and FAO 2005 — First published 2005 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: - the Director, Agro-Industries and Sectoral Support Branch, UNIDO, Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria or by e-mail to [email protected] - the Chief, Publishing Management Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mail to [email protected] The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the United Nations Industrial Development Organization or of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Obtaining the Essential Oil of Syzygium Aromaticum, Identification of Eugenol and Its Effect on Streptococcus Mutans
    Obtaining the essential oil of Syzygium aromaticum, ORIGINAL ARTICLE identification of eugenol and its effect onStreptococcus mutans. Osvelia Rodríguez1, 2. Abstract: Dental caries is a disease which affects the human oral cavity. Cu- Rosa Sánchez1, 2. rrently, the search for active principles of plants with antimicrobial effect seems María Verde3. promising for dental therapy. In this article the activity of the essential oil of María Núñez3. Syzygium aromaticum (clove) was evaluated with an emphasis on its antimicro- Rocío Ríos1. bial properties. The oil was obtained by hydrodistillation, characterized by thin Abelardo Chávez3. layer chromatography and chemical tests. The main compound was identified in the oil obtained from the flower buds and its antibacterial activity against plank- 1 Universidad Autónoma de Nuevo León, tonic cells Streptcoccus mutans ATCC700611 was assessed by performing serial Monterrey, Nuevo León. México. dilutions, from 15 up to 1000 µg/mL, compared with 0.12% chlorhexidine and 2 Universidad Autónoma de Nuevo León, dimethylsulfoxide. MIC was also determined. Subsequently, UFC was analyzed Escobedo, Nuevo León. México. and compared with CMR® Test Ivoclar Vivadent. The efficiency in obtaining the 3 Universidad Autónoma de Nuevo León, oil was 2.20%. By using the CCD technique, a fraction was revealed by UV light, San Nicolás de los Garza. Nuevo León. corresponding to eugenol. It had a good response for triterpenoids and flavonoids. It showed greater antimicrobial activity at concentrations of 1000, 500 and 250µg/ Corresponding author: Osvelia Rodrí- ml. The MIC and MBC of the oil was 125 to 250µg/mL, respectively. Eugenol guez. Universidad Autónoma de Nuevo was found as an active principle in the oil obtained.
    [Show full text]
  • Diplomarbeit
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OTHES DIPLOMARBEIT Titel der Diplomarbeit Evaluation of the traditional and well-established use of Tormentillae rhizoma, Caryophylli flos and Caryophylli aetheroleum angestrebter akademischer Grad Magister/Magistra der Pharmazie (Mag.pharm.) Verfasserin / Verfasser: Birgit Hochenegg Matrikelnummer: 0202171 Studienrichtung /Studienzweig Pharmazie (lt. Studienblatt): Betreuerin / Betreuer: Univ.-Doz. Dr. Reinhard Länger Wien, am 30. Mai 2010 Acknowledgements I want to thank Univ. – Doz. Dr. Reinhard Länger for his loving care, his expertise and assistance while writing on my diploma thesis. At this point I want to thank my family, especially my mother. Without her support this work would not come off. Thanks to all of you very much. 2 Table of Contents 1. Introduction ............................................................................................................. 5 2. Methodology ........................................................................................................... 7 2.1. Literature search:.........................................................................................................7 2.2. Procedure for the development of community monographs.......................................7 3. Results ..................................................................................................................... 9 3.1. Potentilla erecta (L.) Raeusch., rhizoma .....................................................................9
    [Show full text]
  • Effect of Extraction Solvent on the Phenolic Content, Flavonoid Content and Antioxidant Capacity of Clove Bud
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 11, Issue 3 Ver. I (May.- Jun.2016), PP 33-38 www.iosrjournals.org Effect of Extraction Solvent on the Phenolic Content, Flavonoid Content and Antioxidant Capacity Of Clove Bud Banji Adaramola1 and Adebayo Onigbinde2 1,2Department of Basic Sciences, Chemistry Unit, Babcock University Ilishan Remo, Ogun State Nigeria Abstract: In this research, the effect of extraction solvent on the phenolic content, Flavonoid content and antioxidant capacity of clove bud (Syzygium aromaticum) was investigated. The extraction of clove bud was carried out with water, methanol (80%) and acetone (80%). The Flavonoid and phenolic contents of the extracts were evaluated by standard Aluminum chloride and Folin-Ciocalteu methods respectively while their antioxidant capacity was assayed by determining their total reducing power as well as their free radical scavenging effect on 2, 2-diphenyl-2-picrylhydrazyl (DPPH) radical. The percentage yield of the crude extracts ranged from 15.1±0.32% to 18.33±0.41% with the 80% acetone showing the highest yield while water extract showed the least. The flavonoid contents of all the extracts of clove bud evaluated were higher than the phenolic contents. The highest flavonoid content (501±0.58mgQE/g), phenolic content (200.2mgGAE/g), average percentage DPPH free radical inhibition (73.67±0.34%) and highest reducing power (0.88±0.10) were exhibited by the 80% acetone extract. The water extract on the other-hand gave the lowest values for all the parameters tested with 161.67±0.88mgQE/g, 118.40±0.06 mgGAE/g, 62.05±0.22% and 0.76±0.01 for Flavonoid content, phenolic content, average DPPH free radical inhibition and reducing power respectively.
    [Show full text]
  • Phytochemistry and Pharmacological Aspects of Syzygium Aromaticum
    Journal of Pharmacognosy and Phytochemistry 2019; 8(1): 398-406 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(1): 398-406 Phytochemistry and pharmacological aspects of Received: 18-11-2018 Accepted: 22-12-2018 Syzygium aromaticum: A review K Kaur Department of Chemistry, K Kaur and S Kaushal Punjab Agricultural University Ludhiana, Punjab, India Abstract Syzygium aromaticum (Family Myrtaceace) commonly called clove is most important and second S Kaushal valuable spice in world trade and is widely cultivated in North Maluku Islands in Indonesia. Gas Department of Chemistry, Punjab Agricultural University Chromatography-Mass Spectrometery (GC-MS) studies of essential oil revealed the presence of eugenol Ludhiana, Punjab, India as major compound. Phytochemical analysis of essential oil showed the presence of saponins, alkaloids, flavanoids, glycosides, tannins and steroids. The essential oil of S. aromaticum possess various biological activities such as antibacterial, antifungal, herbicidal, nematicidal, antitumor and anti-inflammatory. This review covers the phytochemistry and pharmacological activities of cloves, it’s essential oil and various extracts. Keywords: Syzygium aromaticum, essential oil, phytochemical, pharmacological activities 1. Introduction The role of plants in human life has been increasing day by day due to advancement in the nutritional and medicinal disciplines. Spices are dried root, seed, bark fruit or flowers of plants which served several functions including flavoring agents, food additives, coloring agents, preservatives and medicines. During prehistoric times the discoveries of spices have been a [65] period of joy as they are used as flavoring agents (Osuntogun et al. 2004) . For aeons now, spices are irreplaceable part of cuisions all over the world.
    [Show full text]
  • Herbal Extract
    Clove(Syzygium aromaticum (L.) Merr. & L.M.Perry) Clove has also been used as a medicinal plant in many cultures including in Ayurveda and Traditional Chinese Medicine as well as western herbal medicine. The main applications were for digestive disorders and pain relief in tooth ache as the oil has an anaesthetic and antiseptic action. The German Commission E has approved the use of clove as a topical antiseptic and anaesthetic. Constituents Clove has a range of constituents including volatile oils, tannins, ferulic acid, gallic acid and gums. The chemical components of the essential oil is primarily the phenol, eugenol (approximately 85%), but it also contains methyl salicylate, pinene and vanillin. Family Actions Myrtaceae. Astringent, anaesthetic, antioxidant, anti-infl ammatory, Parts Used vulnerary, carminative, antibacterial, antifungal. Flower Bud. Pharmacological Activity The research into the whole plant extracts of clove is not Description as extensive as the research into the essential oil of clove Clove is native to Indonesia but is now also grown in or its chief constituent, eugenol. However, given the large Madagascar, Zanzibar, West Indies, Sri Lanka and Pakistan. percentage of essential oil in the extract, similar effects The clove tree is a small, aromatic evergreen tree that may be found with the extract. grows 8 to 12 metres tall and forms a pyramid shape. A member of the Myrtaceae family, the tree has large oblong Antioxideant & immune modulating activity leaves and smooth and greyish bark. The fl owers are Extracts of Syzygium aromaticum, clove essential oil, numerous and appear as clusters at the end of the each and eugenol displayed strong free radical-scavenging branch.
    [Show full text]
  • Comparison of Antimicrobial Activities of Clove Oil & Its
    The Internet Journal of Microbiology ISPUB.COM Volume 7 Number 1 Comparison Of Antimicrobial Activities Of Clove Oil & Its Extract On Some Food Borne Microbes C Gupta, A Garg, R Uniyal, S Gupta Citation C Gupta, A Garg, R Uniyal, S Gupta. Comparison Of Antimicrobial Activities Of Clove Oil & Its Extract On Some Food Borne Microbes. The Internet Journal of Microbiology. 2008 Volume 7 Number 1. Abstract A study was carried out in the comparative analysis of ethanolic extract (50%) of clove & clove oil as natural antimicrobial agents on some food spoilage bacteria. The antibacterial activity of clove oil & its extract (50% ethanol) was tested against ten bacteria (seven Gram positive & three Gram negative) & seven fungi by agar well diffusion assays. The clove oil was found to be better antagonistic agent as compared to its extract counterpart by inhibiting both bacteria & fungi. The oil was found to be very effective with a lowest minimum inhibitory concentration (MIC) of 2.5% (v/v) against Staphylococcus epidermidis & Staphylococcus sp. Amongst the fungi, Aspergillus niger was found to be highly sensitive to the oil. Sodium propionate (standard food preservative) was used as a positive control. Clove oil was found to be more effective as compared to both clove extract & sodium propionate. This study shows the potential of clove oil to be used as food bio-preservative. INTRODUCTION carminative, to increase hydrochloric acid in the stomach The increase of food borne infections has resulted from the and to improve peristalsis (Phyllis & James, 2000). It is also consumption of food contaminated with bacteria and/or their used in dentistry where the essential oil of clove is used for toxins.
    [Show full text]
  • Biological Properties and Prospects for the Application of Eugenol—A Review
    International Journal of Molecular Sciences Review Biological Properties and Prospects for the Application of Eugenol—A Review Magdalena Ulanowska and Beata Olas * Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-42-6354484 Abstract: Eugenol is a phenolic aromatic compound obtained mainly from clove oil. Due to its known antibacterial, antiviral, antifungal, anticancer, anti-inflammatory and antioxidant properties, it has long been used in various areas, such as cosmetology, medicine, and pharmacology. However, high concentrations can be toxic. A dose of 2.5 mg/kg body weight is regarded as safe. This paper reviews the current state of knowledge regarding the activities and application of eugenol and its derivatives and recent research of these compounds. This review is based on information concerning eugenol characteristics and recent research from articles in PubMed. Eugenol remains of great interest to researchers, since its multidirectional action allows it to be a potential component of drugs and other products with therapeutic potential against a range of diseases. Keywords: eugenol; clove oil; antibacterial; antifungal; antioxidant 1. Introduction Eugenol is a well-known and well-studied compound. It was first isolated in 1929 as a volatile compound from Eugenia caryophyllata, and commercial production began in the USA in 1940 [1,2]. Citation: Ulanowska, M.; Olas, B. Due to its numerous properties, eugenol has found a wide range of uses in many Biological Properties and Prospects areas of life. In addition, because of the growing interest in unconventional, traditional for the Application of Eugenol—A Review.
    [Show full text]
  • Vanillin: One Drug, Many Cures∗
    GENERAL ARTICLE Vanillin: One Drug, Many Cures∗ Oshin Gulsia Chemically, ‘vanillin’ belongs to the class of benzaldehydes, its structural formula being 4-hydroxy-3-methoxybenzaldehyde. It is one of the key constituents of vanilla pods, primarily from the species of Vanilla planifolia. However, since it is un- economical to grow vanilla on a large scale, it is prepared syn- thetically to meet the diverse demands of growing food and pharmaceutical industries. Recently, vanillin has warranted the attention of the scientific community because of its versa- Oshin Gulsia is currently pursuing her doctorate in tility and utility. From the medicine cabinet to your savory Food Business Management platter, its ubiquitous presence is what makes one wonder, “is from NIFTEM (de-novo this the next-gen supermolecule we had been waiting for?” Institute under MoFPI). Her doctoral research-work constitutes of modeling Introduction agripreneurship development prospects in Haryana. Her other interests are food The term ‘vanillin’ has been derived from vanilla, its origin being science, neuromarketing, and the Spanish word vainilla, a diminutive form of vaina or sheath poetry. [1]. Vanillin, an aromatic compound, is known to occur naturally as a glycoside bound to sugar (such as glucovanillin in vanilla pods) or as a precursor bound to the large lignin molecules in wood. It has a white crystalline structure and a characteristic pleasant flavor. Researchers have identified it as a phytochemical— glucoumarin—amongst 171 aromatic compounds found in vanilla bean [2]. Vanilla pods consist of vanillic acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, sugars, lipids, minerals, water, and cellu- lose besides vanillin [3].
    [Show full text]