<<

Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/03/09/jpet.117.247171.DC1

1521-0103/365/2/379–397$35.00 https://doi.org/10.1124/jpet.117.247171 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 365:379–397, May 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics

Minireviews

Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey s

Nicolas Veyres, Adjia Hamadjida, and Philippe Huot Centre de Recherche du Centre Hospitalier de l’Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Downloaded from Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada Received December 13, 2017; accepted March 6, 2018

ABSTRACT jpet.aspetjournals.org The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned predictive value of 87.5% and a false-positive rate of 38.1%, primate is the gold-standard animal model of Parkinson disease whereas the marmoset has a positive predictive value of 76.9% and (PD) and has been used to assess the effectiveness of experimental afalse-positiverateof15.6%.Forparkinsonism, the macaque has a on , , and . Three species positive predictive value of 68.2% and a false-positive rate of have been used in most studies—the macaque, marmoset, and 44.4%, whereas the marmoset has a positive predictive value of squirrel monkey—the last much less so than the first two species; 86.9% and a false-positive rate of 41.7%. No that alleviates however, the predictive value of each species at forecasting clinical psychosis in the clinic has shown at doing so in the

efficacy, or lack thereof, is poorly documented. Here, we have macaque, whereas the marmoset has 100% positive predictive at ASPET Journals on September 24, 2021 reviewed all the published literature detailing pharmacologic studies value. The small number of studies conducted in the squirrel that assessed the effects of experimental drugs on dyskinesia, monkey precluded us from calculating its predictive efficacy. We parkinsonism, and psychosis in each of these species and have hope our results will help in the design of pharmacologic exper- calculated their predictive value of success and failure at the clinical iments and will facilitate the drug discovery and development level. We found that, for dyskinesia, the macaque has a positive process in PD.

Introduction primate when it relates to the effect of drugs on parkinsonian disability or psychosis, nor did it look at differences Since its accidental discovery (Davis et al., 1979; Langston et al., between different primate species when it comes to predicting the 1983), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has clinical effectiveness of an experimental molecule. been used extensively to model Parkinson disease (PD) in a We have therefore conducted a thorough and unbiased breadth of nonhuman primates, enabling the investigation of review of the literature to compare the predictive effectiveness anatomic (Jan et al., 2000; Zeng et al., 2008), behavioral of different MPTP-lesioned primate species on the clinical (Pessiglione et al., 2004a,b), neurochemical (Soghomonian et al., effectiveness of potential antidyskinetic, antiparkinsonian 1994; Huot et al., 2008), and other aspects of the disease. The and agents. MPTP-lesioned primate has also been invaluable in the search for We believe this review comes at a critical time given that it effective antidyskinetic and antiparkinsonian agents. A review has recently been suggested that some primate species might article previously examined the translational predictive value of be more suited than others to conduct behavioral pharmaco- the MPTP-lesioned primate for the development of antidyskinetic logic research (Porras et al., 2012); also, there have been drugs, but it was published more than a decade ago (Fox et al., several failures of high-profile drugs in clinical trials (Cook 2006a), and many drugs have since been tested both in the et al., 2014; Bespalov et al., 2016), emphasizing the need to use primate and in clinical settings. This previous review did not the best animal model possible in preclinical settings to examine the translational predictive value of the MPTP-lesioned maximize chances of success when translating to the clinic.

P.H. holds research support from Parkinson Canada, Fonds de Recherche Québec – Santé, Natural Sciences and Engineering Research Council of Materials and Methods Canada, and the Weston Brain Institute. https://doi.org/10.1124/jpet.117.247171. Three nonhuman primate species have been used in most experiments s This article has supplemental material available at jpet.aspetjournals.org. to determine the antidyskinetic, antiparkinsonian, and antipsychotic

ABBREVIATIONS: L-DOPA, L-3,4-dihydroxyphenylalanine; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PD, Parkinson disease.

379 380 Veyres et al. Downloaded from Fig. 1. A total of 98 experimental drugs were tested in the MPTP-lesioned Fig. 2. A total of 44 drugs that are either clinically approved or that macaque, 97 in the MPTP-lesioned marmoset, and nine in the MPTP- underwent clinical testing in PD were tested in the MPTP-lesioned lesioned squirrel monkey. macaque, 38 in the MPTP-lesioned marmoset, and one in the MPTP- lesioned squirrel monkey. effect of experimental drugs: the macaque [both cynomolgus (Di Paolo et al., 1986) and rhesus (Burns et al., 1983), Macaca fascicularis and Macaca considered. A drug was considered to have antiparkinsonian benefit jpet.aspetjournals.org mulatta, respectively], the common marmoset (Jenner et al., 1984) if it alleviated parkinsonism as monotherapy or as an adjunct to (Callithrix jacchus), and the common squirrel monkey (Langston et al., L-DOPA. Impulse-control disorders (Weintraub et al., 2010) were not 1984) (Saimiri sciureus). For each of these three primate species, we have considered a psychotic manifestation. reviewed all the studies that reported their effect, or lack thereof, on Several studies, especially in the macaque, were performed that dyskinesia, parkinsonism, and psychosis. We then sought which of these administered drugs (e.g., ) to reduce the development of drugs tested in the nonhuman primate underwent clinical testing and dyskinesia and then conducted postmortem experiments; we have compared their preclinical and clinical effects and calculated different included these studies in our analysis, even if their primary endpoint at ASPET Journals on September 24, 2021 predictive values (see Endpoints). was not determination of pharmacologic efficacy. Studies reporting the Inclusion Criteria. The literature search spans from 1983, when effects of experimental drugs on rotational behavior in the hemi-MPTP- the first MPTP-lesioned nonhuman primate was engineered (Burns lesioned primate (e.g., Vermeulen et al., 1995) were not included. et al., 1983), until December 10, 2017. Studies published after this In some instances, conflicting results were obtained with some drugs date, either online or in print format, are not included. (e.g., studies encountered a therapeutic benefit), whereas others did not Only drugs whose preclinical and clinicalefficacy,orlackthereof,were reach similar conclusions; whenever this happened, we calculated the reported in peer-reviewed articles are included in this article. Results predictive values using “best result” (i.e., the one that showed a disseminated solely through abstracts or conference proceedings are therapeutic effect), weighing in the methods used in the studies (Gad, therefore not reported here. We are aware that not all studies conducted 2009), if applicable. For instance, in the case of preladenant, phase on parkinsonian primates have been published and that the results of 2 studies have found antiparkinsonian efficacy (Hauser et al., 2011; some clinical trials have not been disseminated through peer-reviewed Factor et al., 2013), whereas phase 3 studies did not (Hauser et al., 2015; journals; by choosing to include only studies and reports that were Stocchi et al., 2017); but in one instance, the active comparator, published in peer-reviewed journals, we may be introducing a selection (Hauser et al., 2015), was also ineffective, despite proven antiparkinso- bias in our analysis. For instance, although it has been studied in nian benefit in randomized-controlled trials (Parkinson Study Group, (NCT00034814, NCT00108667), the clinical effectiveness of 2005; Rascol et al., 2005), somewhat casting doubt on study conclusion. In will not be discussed here, as the results of the clinical trials where it was this case, we considered that preladenant exerted antiparkinsonian assessed were not published in peer-reviewed scientific journals. In benefit. addition, we have excluded L-3,4-dihydroxyphenylalanine (L-DOPA) and Endpoints. By comparing the outcomes of the primate studies on inhibitors of L-aromatic amino acid decarboxylase [e.g., dyskinesia, parkinsonism, and psychosis, we have calculated, for each (Rinne et al., 1975) and (Marsden et al., 1973)] from our species, the positive predictive value, the negative predictive value, analysis, as these were used in almost all studies cited here to reverse and the false-positive rate. parkinsonism and induce dyskinesia. Here, we define the positive predictive value of a species as the Research Methods. Literature review was conducted primarily percentage of cases for which a primate species has correctly predicted through the United States National Library of Medicine database, that an antidyskinetic or antiparkinsonian benefit would be achieved accessed via PubMed. The search engine Google was used to complete in the clinic. For the positive predictive value (eq. 1), the denominator the literature review and to access articles not indexed in the National was the number of drugs for which a therapeutic effect was achieved in Library of Medicine database. The following terms were used to perform the clinic, whereas the numerator was the number of these drugs that the literature search: abnormal involuntary movements, chorea, cyno- showed efficacy in the primate: molgus, dyskinesia, dyskinetic, dystonia, , hyperactivity, hyperkinesia, L-DOPA, levodopa, macaque, marmoset, monkey, MPTP, number of molecules that showed effect in the primate (1) nonhuman primate, PD, parkinsonian, parkinsonism, primate, psychosis, number of clinically 2 effective molecules rhesus, squirrel monkey, visual hallucinations. Definition of Efficacy. Throughout our literature search, a Here, we define the negative predictive value of a species as the reduction in dyskinesia/psychosis was considered to have occurred percentage of cases for which a primate species has correctly only if statistical significance was reached; trends were not predicted that a lack of antidyskinetic or antiparkinsonian benefit Predictive Value of Parkinsonian Primates in Drug Research 381

TABLE 1 Drugs tested in the MPTP-lesioned macaque The number (n) of studies reporting the effect of each drug is in brackets.

Drug Dyskinesia Parkinsonism Psychosis References 17-a-Estradiol [n = 1] ne ne na Gomez-Mancilla and Bedard (1992b) 17-b-Estradiol [n =2] √√na Gomez-Mancilla and Bedard (1992b), Bélanger et al. (2003a) (-)-3-(3-Hydroxyphenyl)-N-n- Ne √ na Gomez-Mancilla and Bedard (1991) propylpiperone [n =1] (+)-4-Propyl-9-hydroxynaphthoxazine Ne √ na Gomez-Mancilla and Bedard (1991, 1992a), Luquin et al. (1992, [n =7] 1993b), Blanchet et al. (1993, 1994), Belluzzi et al. (1994) (-)-OSU-6162 [n =1] √ ne na Hadj Tahar et al. (2001) 5-MDOT [n =1] √ de na Gomez-Mancilla and Bedard (1993) 8-OH-DPAT [n =1] √ ne na Munoz et al. (2008) A-77,636 [n =2] √ na Blanchet et al. (1993, 1996b) A-86,929 [n =1] √ na Grondin et al. (1997) ADL-5510 [n =1] √ na Koprich et al. (2011) AFQ-056 [n=1] √√na Grégoire et al. (2011) [n =7] √ de na Blanchet et al. (1998), Bibbiani et al. (2005b), Rylander et al. (2010), Bezard et al. (2013b), Grégoire et al. (2013), Ko et al. (2014b), Shen

et al. (2015) Downloaded from Anpirtoline [n =1] √ de na Bézard et al. (2013a) [n =8] ne √ na Filion et al. (1991), Luquin et al. (1993a), Akai et al. (1995), Blanchet et al. (1997), Doan et al. (1999), Silverdale et al. (2002), Bibbiani et al. (2003, 2005a) AQW-051 [n =1] √√na Di Paolo et al. (2014) [n =1] ne √ na Gomez-Mancilla et al. (1991) [n = 1] ne de na Gomez-Mancilla and Bedard (1993)

BP-897 [n =1] √ ne na Bézard et al. (2003) jpet.aspetjournals.org [n] =9 ne √ na Bédard et al. (1986), Falardeau et al. (1988), Gagnon et al. (1990, 1995), Rouillard et al. (1990), Gomez-Mancilla and Bedard (1991), Blanchet et al. (1993), Gomez-Mancilla et al. (1993), Belluzzi et al. (1994) Cabergoline [n = 20] ne √ na Grondin et al. (1996), Morissette et al. (1998, 1999, 2010), Calon et al. (1999, 2000, 2002), Goulet et al. (1999, 2000), Hadj Tahar et al. (2000b), Bélanger et al. (2003b), Samadi et al. (2008a,b,c, 2010), Ouattara et al. (2009, 2010, 2011), Riahi et al. (2011)

CE [ = 1] ne √ na Cao et al. (2007) at ASPET Journals on September 24, 2021 [n =1] √ de na Fidalgo et al. (2015) CI-1041 [n =14] √ ne na Hadj Tahar et al. (2004), Morissette et al. (2006a,b, 2010), Samadi et al. (2008a,b,c, 2010), Ouattara et al. (2009, 2010, 2011), Tamim et al. (2010), Riahi et al. (2011) [n =2] √√na Gomez-Mancilla et al. (1991), Gomez-Mancilla and Bedard (1993) [n =1] √ ne na Grondin et al. (1999b) CLR-151 [n =1] √ de √ Koprich et al. (2013) Co-101,244/PD-174,494 √ ne na Blanchet et al. (1999) [n =1] CP-94,253 [n = 1] ne ne na Munoz et al. (2008) CP-101,606 [n =1] ne √ na Steece-Collier et al. (2000) CX-516 [n = 1] de ne na Konitsiotis et al. (2000) CY-208,243 [n =8] ne √ na Gomez-Mancilla and Bedard (1991, 1992a), Gomez-Mancilla et al. (1992a, 1993), Blanchet et al. (1993), Gagnon et al. (1993, 1995), Luquin et al. (1993b) DHEA [n =2] ne √ na Bélanger et al. (2003a, 2006) Diazepam [n = 1] √ ne na Gomez-Mancilla and Bedard (1993) Dipraglurant [n =1] √ ne na Bezard et al. (2014) Docosahexaenoic acid [n =5] √ ne na Samadi et al. (2006), Mahmoudi et al. (2009), Tamim et al. (2010), Riahi et al. (2012), Grégoire et al. (2015) [n =3] √ de na Bezard et al. (2013b), Pinna et al. (2016), Ko et al. (2017) [n =1] ne √ na Huot et al. (2013) []n =1 ne √ na Gomez-Mancilla et al. (1992b) F-15,599 [n =1] √ ne na Huot et al. (2015b) Famotidine [n =1] √√na Johnston et al. (2010d) Fenobam [n =2] √√na Rylander et al. (2010), Ko et al. (2014b) Fipamezole [n =1] √√na Johnston et al. (2010c) GYKI-47,261 [n =1] √ ne na Bibbiani et al. (2005b) [n =2] √√na Bezard et al. (1999), Grondin et al. (2000) [n = 3] ne/de √ na Grondin et al. (1999a), Bibbiani et al. (2003, Ko et al. (2016) JL-18 [n =1] √ de na Hadj Tahar et al. (2000a) L-745,870 [n =1] √ ne na Huot et al. (2012b) L- [n =1] √ de na Ko et al. (2014a) [n =1] √ ne na Bezard et al. (2004) LY-235,959 [n =1] √ ne na Papa and Chase (1996) MDL-100,453 [n =1] √ ne na Blanchet et al. (1999) Meperidine [n =1] √ ne na Gomez-Mancilla and Bedard (1993) [n =1] √ de na Gomez-Mancilla and Bedard (1993) (continued) 382 Veyres et al.

TABLE 1—Continued

Drug Dyskinesia Parkinsonism Psychosis References MK-801 [n =1] √ de na Gomez-Mancilla and Bedard (1993) ML-218 [n = 1] ne ne na Galvan et al. (2016) [n =2] √√na Samadi et al. (2004), Yan et al. (2014) MPEP [n =7] √ de na Morin et al. (2010, 2013a,b, 2015a,b), Morissette et al. (2016) MTEP [n =2] √ de na Johnston et al. (2010b), Morin et al. (2010) [n =1] √ de na Bézard et al. (2003) [n =1] √ ne na Potts et al. (2015) [n = 2] ne ne na Gomez-Mancilla and Bedard (1993), Samadi et al. (2003) [n = 5] ne/de ne na Samadi et al. (2003, 2005a,c), Tamim et al. (2010), Koprich et al. (2011) NBQX [n =2] ne √ na Klockgether et al. (1991), Luquin et al. (1993b) NNC-01-112 [n =1] √ de na Grondin et al. (1999b) PAMQX [n =1] na √ na Papa et al. (2004) PD-128,907 [n =1] ne √ na Blanchet et al. (1997) Physostigmine [n =1] √ de na Gomez-Mancilla and Bedard (1993) [n =1] √ ne na Vanover et al. (2008) Pioglitazone [n =1] √ de na Huot et al. (2015a) PPI-1011 [n =1] √ ne na Grégoire et al. (2015)

Prazosin [n = 1] ne ne na Visanji et al. (2009b) Downloaded from Preladenant [n =3] ne √ na Hodgson et al. (2010), Pinna et al. (2016), Ko et al. (2017) [n = 1] ne ne na Gomez-Mancilla and Bedard (1992b) [n =1] √ de na Gomez-Mancilla and Bedard (1993) [n =1] √ ne na Oh et al. (2002) [n =12] ne √ na Bédard and Boucher (1989), Gomez-Mancilla and Bedard (1991), Gomez-Mancilla et al. (1992a), Blanchet et al. (1993, 1994), Akai et al. (1995), Grondin et al. (1997), Samadi et al. (2003, 2004,

2005c), Bibbiani et al. (2005b), Hyacinthe et al. (2014) jpet.aspetjournals.org [n =1] ne √ na Greenamyre et al. (1994) Ro-61,8048 [n =6] √ ne na Samadi et al. (2005b), Grégoire et al. (2008), Ouattara et al. (2009), Tamim et al. (2010), Riahi et al. (2012, 2013) Ro 65-6570 [n =1] √ ne na Marti et al. (2012) [n =2] ne √ na Belluzzi et al. (1994), Domino and Ni (1998a) [n =1] √√na Grégoire et al. (2013) [n =2] √ de na Bibbiani et al. (2001), Grégoire et al. (2009) SCH-23,390 [n =3] √ de na Gomez-Mancilla and Bedard (1991), Akai et al. (1995), Grondin

et al. (1999b) at ASPET Journals on September 24, 2021 Simvastatin [n =1] √ ne na Tison et al. (2013) SKF-38,393 [n =6] ne √/ne na Falardeau et al. (1988), Bédard and Boucher (1989), Gagnon et al. (1990), Rouillard et al. (1990), Blanchet et al. (1993), Hyacinthe et al. (2014) SKF-82,958 [n = 18] ne √ na Blanchet et al. (1993, 1994, 1996a,b), Akai et al. (1995), Goulet et al. (1996, 1999), Domino and Ni (1998a), Morissette et al. (1998, 1999), Calon et al. (1999, 2000, 2002), Grondin et al. (1999c), Samadi et al. (2003, 2004, 2005c), Bibbiani et al. (2005b) ST-198 [n =1] √ de na Bézard et al. (2003) [n =3] √ de na Gomez-Mancilla and Bedard (1991), Akai et al. (1995), Grondin et al. (1999b) [n =1] ne √ na McCall et al. (2005) Talampanel [n =1] √√na Konitsiotis et al. (2000) Tamoxifen [n =1] √ ne na Smith et al. (2007) TC-8831 [n =1] √ ne na Johnston et al. (2013b) [n =1] ne √ na Gomez-Mancilla and Bedard (1991) []n =2 ne √ na Domino and Ni (1998a,b) U-91,356-A [n =4] ne √ na Blanchet et al. (1995), Calon et al. (1995), Goulet et al. (1997), Morissette et al. (1997) U-99,194-A [n =1] √ ne na Blanchet et al. (1997) VU-0,476,406 [n =1] √ ne na Shen et al. (2015) [n =1] √ ne na Gomez-Mancilla and Bedard (1993)

de, deleterious; na, not assessed; ne, not effective; √, effective.

number of molecules that did not show effect in the primate wouldbeachievedintheclinic.Forthenegativepredictivevalue (2) (eq. 2), the denominatorwasthenumberofdrugsforwhicha number of clinically 2 ineffective molecules therapeutic effect was not achieved in the clinic, and the numerator was the number of these drugs that did not show efficacy in the Here, we define the false-positive rate of a species as the primate: percentage of cases for which a primate species has incorrectly

number of clinically-ineffective molecules that showed positive effect in the primate (3) number of clinically-ineffective molecules Predictive Value of Parkinsonian Primates in Drug Research 383

TABLE 2 Drugs tested in the MPTP-lesioned marmoset The number (n) of studies reporting the effect of each drug is in brackets.

Drug Dyskinesia Parkinsonism Psychosis References D-(9)-THC ne √ na van Vliet et al. (2008) [n =1] (+)-PHNO ne √ na Nomoto et al. (1987), Close et al. (1990) [n =2] (+)-N-n-propyl-3-(3-hydroxyphenyl)- [(+)-3PPP] ne √ na Close et al. (1990) [n =1] (-)-N-n-propyl-3-(3-hydroxyphenyl)-piperidine (-)-3PPP ne ne Na Close et al. (1990) [n =1] (-)-N-0437 [n =1] ne √ na Löschmann et al. (1989) (-)-OSU-6162 [n =1] √ ne na Ekesbo et al. (1997) 2-amino-5,6-dihydroxytetralin (N,N-dipropyl A-5,6-DTN) ne √ na Close et al. (1990) [n =1] R-(-)-11-OH-NPa [n =1] ne √ na Lincoln et al. (2016) A-66,359 [n = 1] ne de na Gnanalingham et al. (1995c) A-77,636 [n =4] ne √ na Kebabian et al. (1992), Pearce et al. (1995, 1999), Smith et al. (2002a)

A-86,929 [n =3] ne √ na Shiosaki et al. (1996), Pearce et al. (1999), Downloaded from Treseder et al. (2000) ABT-431 [n =1] ne √ na Shiosaki et al. (1996) Amantadine [n =3] √ ne de Hill et al. (2004b), Visanji et al. (2006), Kobylecki et al. (2011) [n =1] ne √ na Jackson et al. (2010) Apomorphine [n =6] ne √ ne Löschmann et al. (1992), Pearce et al. (1995), Fox et al. (2001), Maratos et al. (2003), Visanji et al.

(2006), Lincoln et al. (2016) jpet.aspetjournals.org Atropine [n =2] ne √ ne Close et al. (1990), Jackson et al. (2014) Benztropine [n =1] ne √ na Close et al. (1990) rasofensine [n =1] ne √ na Pearce et al. (2002) Bromocriptine [n =3] ne √ na Close et al. (1990), Pearce et al. (1995, 1998) BTS-74,398 [n =2] ne √/ne na Hansard et al. (2002b, 2004) [n =2] ne √/ne na Hansard et al. (2002b, 2011) Clozapine [n =1] √ ne √ Visanji et al. (2006) CP-101,606 [n =1] ne √ na Nash et al. (2004)

CPP [n =1] ne √ na Löschmann et al. (1991) at ASPET Journals on September 24, 2021 CY-208,243 [n =2] ne √ na Temlett et al. (1988, 1989) [n =1] √ ne ne Henry et al. (2001) Entacapone [n =4] ne √ na Smith et al. (1997, 2003, 2005), Zubair et al. (2007) Fipamezole [n =1] √√na Savola et al. (2003) GBR-12,909 [n =2] ne √ na Hansard et al. (2002a,b) [n =1] √ de √ Visanji et al. (2006) Idazoxan [n =1] √√na Henry et al. (1999) IEM-1460 [n =1] √ ne na Kobylecki et al. (2010) [n =1] ne √ na Nash et al. (2000) Imetit [n =1] √ ne na Gomez-Ramirez et al. (2006) Immepip [n =1] √ ne na Gomez-Ramirez et al. (2006) Istradefylline [n =6] ne √ na Kanda et al. (1998a,b, 2000), Uchida et al. (2014, 2015a,b) J-113,397 [n =1] √ ne na Visanji et al. (2008) JNJ-27,063,699 [n =1] ne √ na Philippens et al. (2014) Levetiracetam [n =3] √ ne na Hill et al. (2003, 2004a,b) LY-141,865 [n =1] ne √ na Nomoto et al. (1985) MDMA [n =1] √√na Iravani et al. (2003) Melanocyte-inhibiting factor [n = 1] ne ne na Katzenschlager et al. (2007) [n =1] √ de √ Hamadjida et al. (2018) [n =1] √ ne √ Hamadjida et al. (2017) [n =2] ne √ na Jenner et al. (2000), van Vliet et al. (2008) N-0437 [n =1] ne √ na Löschmann et al. (1989) N-methyl ne √ na Jackson et al. (2014) [n =1] [n =1] √ ne na Fox et al. (2002) Naltrexone [n =1] √ ne na Henry et al. (2001) Naltrindole [N =1] √ ne na Henry et al. (2001) Neostigmine [n =1] ne √ na Jackson et al. (2014) [n =1] ne √/de na Hansard et al. (2002b) NBQX [n =1] ne √ na Löschmann et al. (1991) [n =2] ne √ na Close et al. (1990), Hansard et al. (2002b) Oxotremorine [n = 1] ne de na Jackson et al. (2014) [n =3] √√na Johnston et al. (2010a), Jones et al. (2010), Tayarani-Binazir et al. (2010a) (continued) 384 Veyres et al.

TABLE 2—Continued

Drug Dyskinesia Parkinsonism Psychosis References [n =5] ne √ na Pearce et al. (1995), Maratos et al. (2003), Fox et al. (2006b), Uchida et al. (2015a,b) Physostigmine [n = 1] ne de na Jackson et al. (2014) [n =4] ne √ na Smith et al. (1996, 2000, 2002b, 2006) [n =4] ne √ na Iravani et al. (2003, 2006), Fox et al. (2006b), Tayarani-Binazir et al. (2010b) Quetiapine [n =1] √ ne √ Visanji et al. (2006) Quinpirole [n =8] ne √ na Nomoto et al. (1988), Close et al. (1990), Löschmann et al. (1992), Gnanalingham et al. (1995a,b), Pearce et al. (1995), Kanda et al. (2000), Treseder et al. (2000) (R)-(+)-OHDPAT [n =1] √ de na Iravani et al. (2006) R-MDMA [n =1] √ ne √ Huot et al. (2011) [n =4] √ de na Löschmann et al. (1992), Gnanalingham et al. (1995c), Ekesbo et al. (1997), Smith et al. (2002a) [n =1] √ ne na Henry et al. (1999) RGFP-109 [n =1] √ ne na Johnston et al. (2013a)

Rimonabant [n =1] √√na van der Stelt et al. (2005) Downloaded from Ro-25,6981 [n =1] ne √ na Löschmann et al. (2004) [n = 13] ne √ na Pearce et al. (1998), Maratos et al. (2001), Hill et al. (2003), Millan et al. (2004), Silverdale et al. (2004), Fox et al. (2006b), Jackson et al. (2007, 2010), Zubair et al. (2007), Stockwell et al. (2008), Johnston et al. (2010a), Uchida et al. (2015a,b)

Rotigotine [n =3] ne √ na Rose et al. (2007), Stockwell et al. (2009, 2010) jpet.aspetjournals.org S-32,504 [n =2] ne √ na Millan et al. (2004), Hill et al. (2006) S-33,084 [n =3] ne √ na Silverdale et al. (2004), Hill et al. (2006), Visanji et al. (2009a) S-MDMA [n =1] de √ ne Huot et al. (2011) S,S- ne √ na Hansard et al. (2011) [n =1] SB-224,289-A [n = 1] ne ne na Jackson et al. (2004) SCH-23,390 [n = 4] ne de na (Temlett et al. (1988), Löschmann et al. (1992),

Gnanalingham et al. (1995c), Smith et al. at ASPET Journals on September 24, 2021 (2002a) Scopolamine [n =2] ne √ na Close et al. (1990), Jackson et al. (2014) [n = 1] ne de na Hansard et al. (2002b) SKF-38,393 [n = 6] ne ne/de na Nomoto et al. (1985, 1988), Close et al. (1990), Löschmann et al. (1992), Gnanalingham et al. (1995a,b) SKF-75,670 [n = 2] ne de na Gnanalingham et al. (1995a,b) SKF-80,723 [n =4] ne √/de na Gnanalingham et al. (1995a,b,c), Kanda et al. (2000) SKF-82,958 [n =2] ne √/de na Gnanalingham et al. (1995a,b) SKF-83,565 [n =1] ne √ na Gnanalingham et al. (1995a) SKF-83,959 [n =3] ne √ na Gnanalingham et al. (1995a,b,c) SKF-99,101-H [n =1] √ ne/de na Jackson et al. (2004) SNC-80 ne √ na Hille et al. (2001) [n =1] ST-1535 ne √ na Rose et al. (2006) [n =1] Sulpiride ne de na Temlett et al. (1988), Jones et al. (2010) [n =2] Terguride [n =1] ne √ na Lange et al. (1992) [n =2] √ ne na Silverdale et al. (2005), Kobylecki et al. (2011) Trihexyphenidyl ne √ na Jackson et al. (2014) [n =1] URB-597 [n = 1] ne ne ne Johnston et al. (2011) UWA-101 []n =2 ne √ ne Huot et al. (2012a), Johnston et al. (2012) UWA-121 [n =1] ne √ ne Huot et al. (2014) UWA-122 [n =1] √√ne Huot et al. (2014) Yohimbine [n =1] √ ne na Henry et al. (1999)

de, deleterious; na, not assessed; ne, not effective; √, effective.

predicted that a lack of antidyskinetic or antiparkinsonian benefit Results would be achieved in the clinic. For the false-positive rate (eq. 3), the denominator was the number of drugs for which a therapeutic Pharmacologic Targets effect was not achieved in the clinic; the numerator was the number Several pharmacologic targets have been modulated in of these clinically ineffective drugs that were deemed to be effective studies performed in the MPTP-lesioned macaque and the in the primate: MPTP-lesioned marmoset. In contrast, only dopaminergic, Predictive Value of Parkinsonian Primates in Drug Research 385

TABLE 3 Drugs tested in the MPTP-lesioned squirrel monkey The number (n) of studies reporting the effect of each drug is in brackets.

Drug Dyskinesia Parkinsonism Psychosis References ABT-089 [n =1] √ ne na Zhang et al. (2014) ABT-107 [n =1] √ ne na Zhang et al. (2013) ABT-126 [n =1] √ ne na Zhang et al. (2015) ABT-894 [n =3] √ ne na Zhang et al. (2013, 2014, 2015) BP-897 [n =1] √ de na Hsu et al. (2004) [n =4] √ ne na Quik et al. (2007, 2013a,b), Zhang et al. (2015) TC-8831 [n =1] √ ne na Zhang et al. (2013) U50-488 [n =1] √ de na Cox et al. (2007) [n =1] √ ne na Zhang et al. (2013)

de, deleterious; na, not assessed; ne, not effective; √, effective. opioidergic and targets have been assessed in Prediction of Antidyskinetic Effect studies conducted in the MPTP-lesioned squirrel monkey (see Of the 64 drugs that were tested in the clinic and in the

Supplemental Table 1 for the pharmacologic profile of all MPTP-lesioned primate, 22 showed antidyskinetic effect in Downloaded from molecules that have been tested in the MPTP-lesioned clinical trials, no antidyskinetic effect was found or reported primate). for 36 drugs, and four drugs showed a deleterious effect on A total of 98 different molecules were assessed in the MPTP- dyskinesia severity (see Supplemental Table 2 for details). lesioned macaque, 97 in the MPTP-lesioned marmoset, and MPTP-Lesioned Macaque. Of the 22 drugs that demon- nine in the MPTP-lesioned squirrel monkey (Fig. 1). Of all the strated an antidyskinetic effect in clinical settings, 16 were

molecules tested in the MPTP-lesioned primate, 64 have been tested in the macaque, and an antidyskinetic effect was jpet.aspetjournals.org assessed at the clinical level or are clinically approved. Of obtained with 14 (87.5% positive predictive value, Fig. 3). Of these, 44 were tested in the macaque, 38 in the marmoset, and the 36 drugs for which no antidyskinetic effect was found or one in the squirrel monkey (Fig. 2). Because very few drugs reported in the clinic, 21 were tested in the macaque. No antidyskinetic effect was encountered or reported with have been tested in the MPTP-lesioned squirrel monkey 13 (61.9% negative predictive efficacy, Fig. 4); an antidyski- compared with the macaque and the marmoset, we do not netic action was found with eight (38.1% false-positive rate, discuss it further in the text, but we have nevertheless

Fig. 5). Of the four drugs that had a deleterious effect on at ASPET Journals on September 24, 2021 included it in the tables. dyskinesia severity in the clinic, two were tested in the We have summarized our research results in tables: macaque, and an exacerbation of dyskinesia could not be • Table 1: drugs tested in the MPTP-lesioned macaque demonstrated in either case. • Table 2: drugs tested in the MPTP-lesioned marmoset MPTP-Lesioned Marmoset. Of the 22 drugs that dem- • Table 3: drugs tested in the MPTP-lesioned squirrel onstrated an antidyskinetic effect in clinical settings, 13 were monkey tested in the marmoset, and an antidyskinetic effect was • Table 4: drugs tested in the MPTP-lesioned primate that obtained with 10 (76.9% positive predictive value, Fig. 3). Of were tested in the clinic or are clinically-available the 36 drugs for which no antidyskinetic effect was found or reported, 22 were tested in the marmoset, and the absence of In each table, the drugs are listed in numerical or - antidyskinetic effect was identified in 19 (86.4% negative betical order. predictive value, Fig. 4), whereas an antidyskinetic action was We have also summarized our results in figures: found with three (15.6% false-positive rates Fig. 5). Of the four • Figure 1: number of drugs tested in the MPTP-lesioned drugs that had a deleterious effect on dyskinesia severity, nonhuman primate three were tested in the marmoset, but an exacerbation of • Figure 2: number of drugs assessed in the clinic or dyskinesia could not be demonstrated in any case. clinically approved that were tested in the MPTP- lesioned nonhuman primate Prediction of Antiparkinsonian Action • Figure 3: antidyskinetic positive predictive value of the Of the 64 drugs that were tested in the clinic and in the MPTP-lesioned nonhuman primate MPTP-lesioned primate, 34 showed an antiparkinsonian • Figure 4: antidyskinetic negative predictive value of the effect in clinical trials; no antiparkinsonian effect was found MPTP-lesioned nonhuman primate or reported for 24 drugs, and five drugs were found to have a • Figure 5: antidyskinetic false positive rate of the MPTP- deleterious effect on parkinsonian disability (see Supplemen- lesioned nonhuman primate tal Table 3 for details). • Figure 6: antiparkinsonian positive predictive value of MPTP-Lesioned Macaque. Of the 34 drugs that showed the MPTP-lesioned nonhuman primate antiparkinsonian effect in clinical trials, 22 were tested in the • Figure 7: antiparkinsonian negative predictive value of macaque, and an antiparkinsonian benefit was obtained with the MPTP-lesioned nonhuman primate 15 (68.2% positive predictive value, Fig. 6). Of the 24 drugs for • Figure 8: antiparkinsonian false positive rate of the which no antiparkinsonian effect was found or reported, MPTP-lesioned nonhuman primate 18 were tested in the macaque, and no antiparkinsonian effect • Figure 9: worsening of parkinsonism positive predictive was encountered or reported with six (33.3% negative pre- value of the MPTP-lesioned nonhuman primate. dictive value, Fig. 7), whereas antiparkinsonian action was 386 Veyres et al.

TABLE 4 Drugs tested in the MPTP-lesioned primate that were tested in the clinic or are clinically available

Drug Dyskinesia Parkinsonism Psychosis References (+)-4-Propyl-9-hydroxynaphthoxazine Ne √ na Stoessl et al. (1985), Grandas et al. (1987), Muenter et al. (1988) ABT-431 Ne √ na Rascol et al. (1999, 2001b) AFQ-056 √/ne ne na Stocchi et al. (2013), Trenkwalder et al. (2016b) Amantadine √√na Parkes et al. (1971), Butzer et al. (1975), Verhagen Metman et al. (1998), Luginger et al. (2000), Del Dotto et al. (2001), Oertel et al. (2017), Pahwa et al. (2017) Apomorphine ne √ na Schwab et al. (1951), Corsini et al. (1979), Stibe et al. (1987) AQW-051 ne ne na Trenkwalder et al. (2016a) Atropine ne √ na Boman and Meurman (1970) Benztropine ne √ na Doshay (1956) ne ne na Frackiewicz et al. (2002) Bromocriptine ne √ na Agid et al. (1979), Quinn et al. (1981), Jellinger (1982), Hely et al. (1994), Montastruc et al. (1994, Castro-Caldas et al. (2006) Bupropion ne √ na Goetz et al. (1984) Cabergoline ne √ na Ahlskog et al. (1996), Rinne et al. (1997), Deuschl et al. (2007) Citalopram √√na Rampello et al. (2002), Pålhagen et al. (2008, 2009) Clonidine na √/de na Shoulson and Chase (1976), Serrano-Dueñas (2000) Clozapine √√√Durif et al. (1997, (2004); The French Clozapine Parkinson Study Downloaded from Group (1999), Parkinson Study Group (1999) CP-101,606 √ ne na Nutt et al. (2008) CY-208,243 ne √ na Tsui et al. (1989), Emre et al. (1992) Diazepam √√na Pourcher et al. (1989) Dipraglurant √ ne na Tison et al. (2016) Eltoprazine √ ne na Svenningsson et al. (2015) Entacapone de √ na Kaakkola et al. (1994), Merello et al. (1994), Fenelon et al. (2003)

Ethosuximide ne ne/de na Pourcher et al. (1992) jpet.aspetjournals.org Famotidine ne ne na Molinari et al. (1995), Mestre et al. (2014) Fipamezole √ ne na Lewitt et al. (2012) Haloperidol √ de na Klawans and Weiner (1974) Idazoxan √/ne ne na Manson et al. (2000), Rascol et al. (2001a) Istradefylline ne √ na Hauser et al. (2003, 2008), LeWitt et al. (2008), Pourcher et al. (2012) L-tryptophan ne ne na Coppen et al. (1972) Levetiracetam √/ne ne ne Wolz et al. (2010), Stathis et al. (2011), Wong et al. (2011) Melanocyte-inhibiting factor ne ne na Gerstenbrand et al. (1975)

Methysergide ne ne na Klawans and Ringel (1973) at ASPET Journals on September 24, 2021 Mianserin na na √ Ikeguchi and Kuroda (1995) Mirtazapine √√√Gordon et al. (2002), Meco et al. (2003), Nagata et al. (2013), Tagai et al. (2013) Modafinil ne ne na Tyne et al. (2007, 2010) Morphine √ de na Berg et al. (1999) Nabilone √ ne na Sieradzan et al. (2001) Naloxone √/ne √/ne na Trabucchi et al. (1982), Fox et al. (2004) Naltrexone √/ne ne na Rascol et al. (1994), Manson et al. (2001) Nicotine na √/ne na Vieregge et al. (2001), Lemay et al. (2004), Villafane et al. (2007) Nomifensine de √ na Teychenne et al. (1976), Bedard et al. (1977), Park et al. (1977, 1981) Pardoprunox ne √ na Bronzova et al. (2010), Sampaio et al. (2011), Rascol et al. (2012) Pergolide ne √ na Lieberman et al. (1986), Wright et al. (1987), Olanow et al. (1994), Mizuno et al. (1995), Oertel et al. (2006) Physostigmine √/ne de na Tarsy et al. (1974), Lindeboom and Lakke (1978), Clough et al. (1984) Pimavanserin ne ne √ Meltzer et al. (2010), Cummings et al. (2014) Pioglitazone ne ne na NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators (2015) Piribedil ne √ na Castro-Caldas et al. (2006), Rascol et al. (2006b) Pramipexole ne √ na Lieberman et al. (1997), Parkinson Study Group (2000b), Poewe et al. (2007) Preladenant de √/ne na Hauser et al. (2011, (2015), Factor et al. (2013), Stocchi et al. (2017) Propranolol √√/ne na Koller and Herbster (1987), Carpentier et al. (1996) Quetiapine √/ne ne/de √/ne Fernandez et al. (1999), (2003), Baron and Dalton (2003), Katzenschlager et al. (2004), Ondo et al. (2005) Remacemide ne ne na Parkinson Study Group (2000a, 2001), Shoulson et al. (2001) Ropinirole ne √ na Rascol et al. (1996, (2000, 2006a), Korczyn et al. (1999) Rotigotine ne √ na Parkinson Study Group (2003), Giladi et al. (2007), LeWitt et al. (2007), Mizuno et al. (2013) Safinamide √√na Borgohain et al. (2014a,b), Cattaneo et al. (2015), Schapira et al. (2017) Sarizotan ne de na Olanow et al. (2004), Goetz et al. (2007, 2008) Scopolamine ne √ na Gruchet (1952), Duvoisin (1967) Sertraline ne ne na Hauser and Zesiewicz (1997), Antonini et al. (2006), Kulisevsky et al. (2008), Marino et al. (2008) Simvastatin ne ne na Tison et al. (2013) SKF-38,393 ne ne na Braun et al. (1987) Sulpiride √ de na Lees et al. (1978) Sumanirole ne √/ne na Barone et al. (2007), Singer et al. (2007) (continued) Predictive Value of Parkinsonian Primates in Drug Research 387

TABLE 4—Continued

Drug Dyskinesia Parkinsonism Psychosis References Terguride ne √ na Filipova et al. (1988), Martignoni et al. (1995) Topiramate ne/de ne na Kobylecki et al. (2014), Goetz et al. (2017) Trihexyphenidyl ne √ na Martin et al. (1974), Lamid and Jenkins (1975) Yohimbine ne √ na Montastruc et al. (1981)

de, deleterious; na, not assessed; ne, not effective; √, effective. found with eight (44.4% false-positive rate, Fig. 8). Of the five primate. No drug that underwent clinical testing or that is drugs that had a deleterious effect on parkinsonian disability, clinically available has demonstrated antipsychotic effect in four were tested in the macaque, and this deleterious effect on the MPTP-lesioned macaque or the MPTP-lesioned squirrel parkinsonism was correctly identified in three (75% predictive monkey. Pimavanserin was not tested in the MPTP-lesioned value, Fig. 9). marmoset, but an antipsychotic benefit was achieved with MPTP-Lesioned Marmoset. Of the 34 drugs that showed clozapine, mianserin, mirtazapine, and quetiapine (100% antiparkinsonian effect in clinical trials, 23 were tested in the positive predictive value).

marmoset; an antiparkinsonian effect was obtained with Downloaded from 20 (86.9% positive predictive value, Fig. 6). Of these, 24 drugs did not find or did not report an antiparkinsonian effect, Discussion 12 were tested in the marmoset, and no antiparkinsonian Here, we have reviewed all the literature published in peer- effect was encountered with six (50.0% negative predictive value, Fig. 7), whereas antiparkinsonian benefit was found reviewed scientific journals that reported the results of with five (41.7% false-positive rate, Fig. 8). Of the five drugs pharmacologic studies conducted in the MPTP-lesioned ma- caque, marmoset, and squirrel monkey in which the effects jpet.aspetjournals.org found to have a deleterious effect on parkinsonian disability, three were tested in the marmoset, all of which hindered of experimental drugs on dyskinesia, parkinsonism, and parkinsonism (100% predictive value, Fig. 9). psychosis was assessed. By comparing the results obtained at the preclinical level with those obtained in clinical settings, we have calculated the predictive value of each Prediction of Antipsychotic Action primate species for these disease manifestations/treat- Of the 64 drugs that were tested in the clinic and in the ment-related complications.

MPTP-lesioned primate, five showed an antipsychotic effect in There are limitations to our analysis that must be men- at ASPET Journals on September 24, 2021 clinical trials/reports (clozapine, mianserin, mirtazapine, tioned. First, as mentioned in the Introduction, the results of pimavanserin, quetiapine). Compared with dyskinesia and several studies, both preclinical and clinical, have not been parkinsonism, the effect of experimental drugs on dopaminer- published; and, although we aimed for exhaustiveness, our gic psychosis has been far less studied in the MPTP-lesioned review is necessarily incomplete, which may have affected the

Fig. 3. The antidyskinetic positive predictive value of the MPTP-lesioned Fig. 4. The antidyskinetic negative predictive value of the MPTP- macaque is 87.5% and 76.9% for the MPTP-lesioned marmoset. lesioned macaque is 61.9% and 86.4% for the MPTP-lesioned marmoset. 388 Veyres et al. Downloaded from

Fig. 5. The antidyskinetic false-positive rate of the MPTP-lesioned Fig. 7. The antiparkinsonian negative predictive value of the MPTP- jpet.aspetjournals.org macaque is 38.1% and 15.6% for the MPTP-lesioned marmoset. lesioned macaque is 33.3% and 50.0% for the MPTP-lesioned marmoset. various rates presented. Second, the methods of the clinical dose administered may be poorly tolerated by patients, which trials cited is highly variable, ranging from observational is why this approach is seldom used in clinical trials. Fourth, reports to randomized controlled trials; they were weighed some clinical trials were performed in early stage PD patients, equally here. Third, the method used in preclinical studies is, whereas the degree of parkinsonism after MPTP administra- at ASPET Journals on September 24, 2021 at times, different from the one used in clinical settings; one tion is severe and would correspond to advanced-stage PD. example is when a low dose of L-DOPA is administered to Finally, as several types of trials are part of our review, in primates in combination with an agent with potential anti- some, PD patients were taking antiparkinsonian , parkinsonian effect as adjunct therapy. Lowering the L-DOPA in addition to L-DOPA, which is generally not the case in

Fig. 6. The antiparkinsonian positive predictive value of the MPTP- Fig. 8. The antiparkinsonian false-positive rate of the MPTP-lesioned lesioned macaque is 68.2% and 86.9% for the MPTP-lesioned marmoset. macaque is 44.4% and 41.7% for the MPTP-lesioned marmoset. Predictive Value of Parkinsonian Primates in Drug Research 389

Authorship Contributions Participated in research design: Veyres, Huot. Performed data analysis: Veyres, Huot. Wrote or contributed to the writing of the manuscript: Veyres, Hamadjida, Huot.

References Gad SC, editor (2009) Clinical Trials Handbook [Internet]. Wiley, Hoboken. Agid Y, Pollak P, Bonnet AM, Signoret JL, and Lhermitte F (1979) Bromocriptine associated with a peripheral blocking agent in treatment of Parkinson’s disease. Lancet 1:570–572. Ahlskog JE, Wright KF, Muenter MD, and Adler CH (1996) Adjunctive cabergoline therapy of Parkinson’s disease: comparison with placebo and assessment of dose responses and duration of effect. Clin Neuropharmacol 19:202–212. Akai T, Ozawa M, Yamaguchi M, Mizuta E, and Kuno S (1995) Behavioral in- volvement of central dopamine D1 and D2 receptors in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-lesioned parkinsonian cynomolgus monkeys. Jpn J Pharmacol 67:117–124. Antonini A, Tesei S, Zecchinelli A, Barone P, De Gaspari D, Canesi M, Sacilotto G, Meucci N, Mariani C, and Pezzoli G (2006) Randomized study of sertraline and low-dose in patients with Parkinson’s disease and : effect on quality of life. Mov Disord 21:1119–1122. Baron MS and Dalton WB (2003) Quetiapine as treatment for dopaminergic-induced Downloaded from in Parkinson’s disease. Mov Disord 18:1208–1209. Barone P, Lamb J, Ellis A, and Clarke Z (2007) Sumanirole versus placebo or ropi- nirole for the adjunctive treatment of patients with advanced Parkinson’s disease. Mov Disord 22:483–489. Bedard P, Parkes JD, and Marsden CD (1977) Nomifensine in Parkinson’s disease. Br J Clin Pharmacol (4 Suppl 2)187S–190S. Bédard PJ and Boucher R (1989) Effect of D1 stimulation in normal and MPTP monkeys. Neurosci Lett 104:223–228. Fig. 9. The worsening of parkinsonism positive predictive value of the Bédard PJ, Di Paolo T, Falardeau P, and Boucher R (1986) Chronic treatment with jpet.aspetjournals.org MPTP-lesioned macaque is 75.0% and 100.0% for the MPTP-lesioned L-DOPA, but not bromocriptine induces dyskinesia in MPTP-parkinsonian mon- keys. Correlation with [3H] binding. Brain Res 379:294–299. marmoset. Bélanger N, Grégoire L, Bédard P, and Di Paolo T (2003a) Estradiol and dehy- droepiandrosterone potentiate levodopa-induced locomotor activity in 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine monkeys. Endocrine 21:97–101. primate studies, and the extent to which these molecules Bélanger N, Grégoire L, Bédard PJ, and Di Paolo T (2006) DHEA improves symp- tomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiol affected the results is undetermined. Aging 27:1684–1693. Keeping these limitations in mind, the following general Bélanger N, Grégoire L, Hadj Tahar A, and Bédard PJ (2003b) Chronic treatment

with small doses of cabergoline prevents dopa-induced dyskinesias in parkinsonian at ASPET Journals on September 24, 2021 conclusions can be drawn: monkeys. Mov Disord 18:1436–1441. • Belluzzi JD, Domino EF, May JM, Bankiewicz KS, and McAfee DA (1994) N-0923, a Relative to the antidyskinetic effect of drugs, the selective dopamine D2 receptor , is efficacious in and monkey models of macaque has higher positive predictive value than the Parkinson’s disease. Mov Disord 9:147–154. Berg D, Becker G, and Reiners K (1999) Reduction of dyskinesia and induction of marmoset, but the marmoset has fewer false-positive akinesia induced by morphine in two parkinsonian patients with severe sciatica. J results than the macaque. Both the macaque and the Neural Transm (Vienna) 106:725–728. Bespalov A, Steckler T, Altevogt B, Koustova E, Skolnick P, Deaver D, Millan MJ, marmoset appear limited when it comes to predicting a Bastlund JF, Doller D, Witkin J, et al. (2016) Failed trials for central nervous detrimental effect of experimental drugs on dyskinesia. system disorders do not necessarily invalidate preclinical models and drug targets. • Nat Rev Drug Discov 15:516. Relative to the antiparkinsonian action of drugs, the Bezard E, Brefel C, Tison F, Peyro-Saint-Paul H, Ladure P, Rascol O, and Gross CE marmoset has a greater positive predictive value and (1999) Effect of the alpha 2 adrenoreceptor antagonist, idazoxan, on motor dis- fewer false-positive results than the macaque; both abilities in MPTP-treated monkey. Prog Neuropsychopharmacol Biol Psychiatry 23:1237–1246. species have high predictive values when it comes to Bézard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C, and Sokoloff P forecasting a potentially deleterious effect of drugs on (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9:762–767. parkinsonism. Bezard E, Hill MP, Crossman AR, Brotchie JM, Michel A, Grimée R, and Klitgaard H • Relatively to the antipsychotic effect of drugs, comments (2004) Levetiracetam improves choreic levodopa-induced dyskinesia in the MPTP- treated macaque. Eur J Pharmacol 485:159–164. can be made only for the marmoset, which has high Bézard E, Muñoz A, Tronci E, Pioli EY, Li Q, Porras G, Björklund A, and Carta M positive predictive value. (2013a) Anti-dyskinetic effect of anpirtoline in animal models of L-DOPA-induced • dyskinesia. Neurosci Res 77:242–246. Compared with the macaque and the marmoset, the Bezard E, Pioli EY, Li Q, Girard F, Mutel V, Keywood C, Tison F, Rascol O, and Poli squirrel monkey has been used in a small number of SM (2014) The mGluR5 negative allosteric modulator dipraglurant reduces dys- kinesia in the MPTP macaque model. Mov Disord 29:1074–1079. studies, and few pharmacologic targets have been Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Björklund A, and Carta M (2013b) assessed in this primate species, which makes it Study of the antidyskinetic effect of eltoprazine in animal models of levodopa- induced dyskinesia. Mov Disord 28:1088–1096. impossible to calculate its predictive value. Bibbiani F, Costantini LC, Patel R, and Chase TN (2005a) Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp At a time when the discovery and development process for Neurol 192:73–78. drugs acting at the central nervous system level are facing Bibbiani F, Oh JD, and Chase TN (2001) 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57: challenges and have been marred by failures of high-profile 1829–1834. candidates, it is our hope that this review will help in the Bibbiani F, Oh JD, Kielaite A, Collins MA, Smith C, and Chase TN (2005b) Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced planning and design of preclinical experiments aimed motor complications in animal models of PD. Exp Neurol 196:422–429. at testing the effects of drugs on L-DOPA–induced dyskinesia, Bibbiani F, Oh JD, Petzer JP, Castagnoli N, Jr, Chen JF, Schwarzschild MA, and Chase TN (2003) A2A antagonist prevents -induced motor parkinsonian disability, and dopaminergic psychosis by help- complications in animal models of Parkinson’s disease. Exp Neurol 184:285–294. ing experimenters and sponsors plan their experiments in the Blanchet P, Bédard PJ, Britton DR, and Kebabian JW (1993) Differential effect of selective D-1 and D-2 on levodopa-induced dyskinesia animal model of PD with the highest translational potential in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- exposed monkeys. J Pharmacol for their specific endpoint. Exp Ther 267:275–279. 390 Veyres et al.

Blanchet PJ, Boucher R, and Bédard PJ (1994) Excitotoxic lateral pallidotomy does Corsini GU, Del Zompo M, Gessa GL, and Mangoni A (1979) Therapeutic efficacy of not relieve L-dopa-induced dyskinesia in MPTP parkinsonian monkeys. Brain Res apomorphine combined with an extracerebral inhibitor of dopamine receptors in 650:32–39. Parkinson’s disease. Lancet 1:954–956. Blanchet PJ, Calon F, Martel JC, Bédard PJ, Di Paolo T, Walters RR, and Piercey Cox H, Togasaki DM, Chen L, Langston JW, Di Monte DA, and Quik M (2007) The MF (1995) Continuous administration decreases and pulsatile administration in- selective kappa- receptor agonist U50,488 reduces L-dopa-induced dyskine- creases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in sias but worsens parkinsonism in MPTP-treated primates. Exp Neurol 205: MPTP-exposed monkeys. J Pharmacol Exp Ther 272:854–859. 101–107. Blanchet PJ, Grondin R, and Bédard PJ (1996a) Dyskinesia and wearing-off following Cummings J, Isaacson S, Mills R, Williams H, Chi-Burris K, Corbett A, Dhall R, dopamine D1 agonist treatment in drug-naive 1-methyl-4-phenyl-1,2,3,6- and Ballard C (2014) Pimavanserin for patients with Parkinson’s disease psycho- tetrahydropyridine-lesioned primates. Mov Disord 11:91–94. sis: a randomised, placebo-controlled phase 3 trial. Lancet 383:533–540. Blanchet PJ, Grondin R, Bédard PJ, Shiosaki K, and Britton DR (1996b) Dopamine Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, and Kopin D1 receptor desensitization profile in MPTP-lesioned primates. Eur J Pharmacol IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine 309:13–20. analogues. Psychiatry Res 1:249–254. Blanchet PJ, Konitsiotis S, and Chase TN (1997) Motor response to a dopamine D3 Del Dotto P, Pavese N, Gambaccini G, Bernardini S, Metman LV, Chase TN, receptor preferring agonist compared to apomorphine in levodopa-primed and Bonuccelli U (2001) Intravenous amantadine improves levadopa-induced dyski- 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. J Pharmacol Exp Ther nesias: an acute double-blind placebo-controlled study. Mov Disord 16:515–520. 283:794–799. Deuschl G, Vaitkus A, Fox GC, Roscher T, Schremmer D, and Gordin A; CAMP Study Blanchet PJ, Konitsiotis S, and Chase TN (1998) Amantadine reduces levodopa- Group (2007) Efficacy and tolerability of entacapone versus cabergoline in par- induced dyskinesias in parkinsonian monkeys. Mov Disord 13:798–802. kinsonian patients suffering from wearing-off. Mov Disord 22:1550–1555. Blanchet PJ, Konitsiotis S, Whittemore ER, Zhou ZL, Woodward RM, and Chase TN Di Paolo T, Bédard P, Daigle M, and Boucher R (1986) Long-term effects of MPTP on (1999) Differing effects of N-methyl-D-aspartate receptor subtype selective antag- central and peripheral catecholamine and indoleamine concentrations in monkeys. onists on dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine Brain Res 379:286–293. monkeys. J Pharmacol Exp Ther 290:1034–1040. Di Paolo T, Grégoire L, Feuerbach D, Elbast W, Weiss M, and Gomez-Mancilla B Boman K and Meurman T (1970) Investigations on the effect of some drugs on the (2014) AQW051, a novel and selective nicotinic receptor a7 partial Parkinsonian rigidity. Acta Neurol Scand 46:71–84. agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt M, Chirilineau D, Stocchi F, effects in parkinsonian monkeys. Parkinsonism Relat Disord 20:1119–1123. Downloaded from Lucini V, Giuliani R, Forrest E, et al.; Study 016 Investigators (2014a) Randomized Doan VD, Grondin R, Hadj Tahar A, Grégoire L, and Bédard PJ (1999) Effect of the trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctua- selective D1 antagonists SCH 23390 and NNC 01-0112 on the delay, duration, and tions. Mov Disord 29:229–237. improvement of behavioral responses to dopaminergic agents in MPTP-treated Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, Stocchi F, monkeys. Clin Neuropharmacol 22:281–287. Lucini V, Giuliani R, Forrest E, et al.; Study 018 Investigators (2014b) Two-year, Domino EF and Ni L (1998a) Trihexyphenidyl interactions with the dopamine D1- randomized, controlled study of safinamide as add-on to levodopa in mid to late selective receptor agonist SKF-82958 and the D2-selective receptor agonist N-0923 Parkinson’s disease. Mov Disord 29:1273–1280. in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced hemiparkinsonian mon- Braun A, Fabbrini G, Mouradian MM, Serrati C, Barone P, and Chase TN (1987) keys. J Pharmacol Exp Ther 284:307–311. Selective D-1 dopamine receptor agonist treatment of Parkinson’s disease. J Domino EF and Ni L (1998b) Trihexyphenidyl potentiation of L-DOPA: reduced ef- jpet.aspetjournals.org Neural Transm (Vienna) 68:41–50. fectiveness three years later in MPTP-induced chronic hemiparkinsonian monkeys. Bronzova J, Sampaio C, Hauser RA, Lang AE, Rascol O, Theeuwes A, van de Witte Exp Neurol 152:238–242. SV, and van Scharrenburg G; Bruegel Study Group (2010) Double-blind study of Doshay LJ (1956) Five-year study of benztropine (cogentin) methanesulfonate; out- pardoprunox, a new partial dopamine agonist, in early Parkinson’s disease. Mov come in three hundred two cases of paralysis agitans. J Am Med Assoc 162: Disord 25:738–746. 1031–1034. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, and Kopin IJ (1983) A Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M, Thobois S, Broussolle E, primate model of parkinsonism: selective destruction of dopaminergic neurons in and Rascol O (2004) Clozapine improves dyskinesias in Parkinson disease: a the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahy- double-blind, placebo-controlled study. Neurology 62:381–388. dropyridine. Proc Natl Acad Sci USA 80:4546–4550. Durif F, Vidailhet M, Assal F, Roche C, Bonnet AM, and Agid Y (1997) Low-dose

Butzer JF, Silver DE, and Sahs AL (1975) Amantadine in Parkinson’s disease. A clozapine improves dyskinesias in Parkinson’s disease. Neurology 48:658–662. at ASPET Journals on September 24, 2021 double-blind, placebo-controlled, crossover study with long-term follow-up. Neu- Duvoisin RC (1967) Cholinergic- antagonism in parkinsonism. Arch rology 25:603–606. Neurol 17:124–136. Calon F, Goulet M, Blanchet PJ, Martel JC, Piercey MF, Bédard PJ, and Di Paolo T Ekesbo A, Andrén PE, Gunne LM, and Tedroff J (1997) (-)-OSU 6162 inhibits (1995) Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Neuro- with changes in dopamine and GABAA receptors in the striatopallidal complex. report 8:2567–2570. Brain Res 680:43–52. Emre M, Rinne UK, Rascol A, Lees A, Agid Y, and Lataste X (1992) Effects of a Calon F, Morissette M, Ghribi O, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, selective partial D1 agonist, CY 208-243, in de novo patients with Parkinson dis- and Di Paolo T (2002) Alteration of glutamate receptors in the striatum of dyski- ease. Mov Disord 7:239–243. netic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following do- Factor SA, Wolski K, Togasaki DM, Huyck S, Cantillon M, Ho TW, Hauser RA, pamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry 26: and Pourcher E (2013) Long-term safety and efficacy of preladenant in subjects 127–138. with fluctuating Parkinson’s disease. Mov Disord 28:817–820. Calon F, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, and Di Paolo T Falardeau P, Bouchard S, Bédard PJ, Boucher R, and Di Paolo T (1988) Behavioral (1999) Chronic D1 and D2 dopaminomimetic treatment of MPTP-denervated and biochemical effect of chronic treatment with D-1 and/or D-2 dopamine agonists monkeys: effects on basal ganglia GABA(A)/benzodiazepine receptor complex and in MPTP monkeys. Eur J Pharmacol 150:59–66. GABA content. Neurochem Int 35:81–91. Fénelon G, Giménez-Roldán S, Montastruc JL, Bermejo F, Durif F, Bourdeix I, Péré Calon F, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, and Di Paolo T JJ, Galiano L, and Schadrack J (2003) Efficacy and tolerability of entacapone in (2000) 125I-CGP 64213 binding to GABA(B) receptors in the brain of monkeys: patients with Parkinson’s disease treated with levodopa plus a dopamine agonist effect of MPTP and dopaminomimetic treatments. Exp Neurol 163:191–199. and experiencing wearing-off motor fluctuations. A randomized, double-blind, Cao X, Liang L, Hadcock JR, Iredale PA, Griffith DA, Menniti FS, Factor S, multicentre study. J Neural Transm (Vienna) 110:239–251. Greenamyre JT, and Papa SM (2007) Blockade of type 1 receptors Fernandez HH, Friedman JH, Jacques C, and Rosenfeld M (1999) Quetiapine for the augments the antiparkinsonian action of levodopa without affecting dyskinesias in treatment of drug-induced psychosis in Parkinson’s disease. Mov Disord 14: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J Phar- 484–487. macol Exp Ther 323:318–326. Fernandez HH, Trieschmann ME, Burke MA, Jacques C, and Friedman JH (2003) Carpentier AF, Bonnet AM, Vidailhet M, and Agid Y (1996) Improvement of Long-term outcome of quetiapine use for psychosis among Parkinsonian patients. levodopa-induced dyskinesia by propranolol in Parkinson’s disease. Neurology 46: Mov Disord 18:510–514. 1548–1551. Fidalgo C, Ko WK, Tronci E, Li Q, Stancampiano R, Chuan Q, Bezard E, and Carta M Castro-Caldas A, Delwaide P, Jost W, Merello M, Williams A, Lamberti P, Aguilar M, (2015) Effect of blockade on L-DOPA-induced dyskinesia in Del Signore S, and Cesaro P; Parkinson-Control Study Group (2006) The animal models of Parkinson’s disease. Neuroscience 298:389–396. Parkinson-control study: a 1-year randomized, double-blind trial comparing pir- Filion M, Tremblay L, and Bédard PJ (1991) Effects of dopamine agonists on the ibedil (150 mg/day) with bromocriptine (25 mg/day) in early combination with spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced levodopa in Parkinson’s disease. Mov Disord 21:500–509. parkinsonism. Brain Res 547:152–161. Cattaneo C, Ferla RL, Bonizzoni E, and Sardina M (2015) Long-term effects of Filipová M, Filip V, Macek Z, Müllerová S, Marková J, Kás S, Zizková B, Krivka J, safinamide on dyskinesia in mid- to late-stage Parkinson’s disease: a post-hoc Votavová M, and Krejcová H (1988) Terguride in parkinsonism: a multicenter trial. analysis. J Parkinsons Dis 5:475–481. Eur Arch Psychiatry Neurol Sci 237:298–303. Close SP, Elliott PJ, Hayes AG, and Marriott AS (1990) Effects of classical and novel Fox S, Silverdale M, Kellett M, Davies R, Steiger M, Fletcher N, Crossman A, agents in a MPTP-induced reversible model of Parkinson’s disease. Psychophar- and Brotchie J (2004) Non-subtype-selective opioid receptor antagonism in treat- macology (Berl) 102:295–300. ment of levodopa-induced motor complications in Parkinson’s disease. Mov Disord Clough CG, Bergmann KJ, and Yahr MD (1984) Cholinergic and dopaminergic 19:554–560. mechanisms in Parkinson’s disease after long-term L-DOPA administration. Adv Fox SH, Henry B, Hill M, Crossman A, and Brotchie J (2002) Stimulation of can- Neurol 40:131–140. nabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, and Pangalos nonhuman primate model of Parkinson’s disease. Mov Disord 17:1180–1187. MN (2014) Lessons learned from the fate of AstraZeneca’s drug pipeline: a five- Fox SH, Henry B, Hill MP, Peggs D, Crossman AR, and Brotchie JM (2001) Neural dimensional framework. Nat Rev Drug Discov 13:419–431. mechanisms underlying peak-dose dyskinesia induced by levodopa and apomor- Coppen A, Metcalfe M, Carroll JD, and Morris JG (1972) Levodopa and L-tryptophan phine are distinct: evidence from the effects of the alpha(2) adrenoceptor antago- therapy in Parkinsonism. Lancet 1:654–658. nist idazoxan. Mov Disord 16:642–650. Predictive Value of Parkinsonian Primates in Drug Research 391

Fox SH, Lang AE, and Brotchie JM (2006a) Translation of nondopaminergic treat- Goulet M, Grondin R, Morissette M, Maltais S, Falardeau P, Bédard PJ, and Di Paolo ments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates T (2000) Regulation by chronic treatment with cabergoline of dopamine D1 and D2 to phase IIa clinical studies: keys to success and roads to failure. Mov Disord 21: receptor levels and their expression in the striatum of Parkinsonian-monkeys. Prog 1578–1594. Neuropsychopharmacol Biol Psychiatry 24:607–617. Fox SH, Visanji NP, Johnston TH, Gomez-Ramirez J, Voon V, and Brotchie JM Goulet M, Morissette M, Calon F, Blanchet PJ, Falardeau P, Bédard PJ, and Di Paolo (2006b) Dopamine receptor agonists and levodopa and inducing psychosis-like T (1997) Continuous or pulsatile chronic D2 dopamine receptor agonist (U91356A) behavior in the MPTP primate model of Parkinson disease. Arch Neurol 63: treatment of drug-naive 4-phenyl-1,2,3,6-tetrahydropyridine monkeys differen- 1343–1344. tially regulates brain D1 and D2 receptor expression: in situ hybridization histo- Frackiewicz EJ, Jhee SS, Shiovitz TM, Webster J, Topham C, Dockens RC, Whigan chemical analysis. Neuroscience 79:497–507. D, Salazar DE, and Cutler NR (2002) Brasofensine treatment for Parkinson’s Goulet M, Morissette M, Grondin R, Falardeau P, Bédard PJ, Rostène W, and Di disease in combination with levodopa/carbidopa. Ann Pharmacother 36:225–230. Paolo T (1999) Neurotensin receptors and dopamine transporters: effects of The French Clozapine Parkinson Study Group (1999) Clozapine in drug-induced MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse 32: psychosis in Parkinson’s disease. Lancet 353:2041–2042. 153–164. Gagnon C, Bédard PJ, and Di Paolo T (1990) Effect of chronic treatment of MPTP Grandas F, Quinn N, Critchley P, Rohan A, Marsden CD, and Stahl SM (1987) monkeys with dopamine D-1 and/or D-2 receptor agonists. Eur J Pharmacol 178: Antiparkinsonian activity of a single oral dose of PHNO. Mov Disord 2:47–51. 115–120. Greenamyre JT, Eller RV, Zhang Z, Ovadia A, Kurlan R, and Gash DM (1994) Gagnon C, Gomez-Mancilla B, Bédard PJ, and Di Paolo T (1993) Chronic CY 208-243 Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in treatment of MPTP-monkeys causes regional changes of dopamine and GABAA rodent and primate models of Parkinson’s disease. Ann Neurol 35:655–661. receptors. Neurosci Lett 163:31–35. Grégoire L, Jourdain VA, Townsend M, Roach A, and Di Paolo T (2013) Safinamide Gagnon C, Gomez-Mancilla B, Markstein R, Bédard PJ, and Di Paolo T (1995) Effect reduces dyskinesias and prolongs L-DOPA antiparkinsonian effect in parkinsonian of adding the D-1 agonist CY 208-243 to chronic bromocriptine treatment of MPTP- monkeys. Parkinsonism Relat Disord 19:508–514. monkeys: regional changes of brain dopamine receptors. Prog Neuro- Grégoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, psychopharmacol Biol Psychiatry 19:667–676. Sahasranaman S, Gomez-Mancilla B, and Di Paolo T (2011) The acute anti- Galvan A, Devergnas A, Pittard D, Masilamoni G, Vuong J, Daniels JS, Morrison RD, parkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate Lindsley CW, and Wichmann T (2016) Lack of antiparkinsonian effects of systemic receptor type 5 antagonist, in l-Dopa-treated parkinsonian monkeys. Parkinsonism injections of the specific T-type blocker ML218 in MPTP-treated Relat Disord 17:270–276. Downloaded from monkeys. ACS Chem Neurosci 7:1543–1551. Grégoire L, Rassoulpour A, Guidetti P, Samadi P, Bédard PJ, Izzo E, Schwarcz R, Gerstenbrand F, Binder H, Kozma C, Pusch ST, and Reisner Th (1975) Infusion and Di Paolo T (2008) Prolonged 3-hydroxylase inhibition reduces therapy with mif (melanocyte inhibiting factor) in Parkinson’s disease (author’s development of levodopa-induced dyskinesias in parkinsonian monkeys. Behav transl). Wien Klin Wochenschr 87:822–823. Brain Res 186:161–167. Giladi N, Boroojerdi B, Korczyn AD, Burn DJ, Clarke CE, and Schapira AH; SP513 Grégoire L, Samadi P, Graham J, Bédard PJ, Bartoszyk GD, and Di Paolo T (2009) investigators (2007) Rotigotine in early Parkinson’s disease: a Low doses of sarizotan reduce dyskinesias and maintain antiparkinsonian efficacy randomized, double-blind, controlled study versus placebo and ropinirole. Mov of L-Dopa in parkinsonian monkeys. Parkinsonism Relat Disord 15:445–452. Disord 22:2398–2404. Grégoire L, Smith T, Senanayake V, Mochizuki A, Miville-Godbout E, Goodenowe D, Gnanalingham KK, Erol DD, Hunter AJ, Smith LA, Jenner P, and Marsden CD and Di Paolo T (2015) Plasmalogen precursor analog treatment reduces levodopa- jpet.aspetjournals.org (1995a) Differential anti-parkinsonian effects of D1 dopamine ago- induced dyskinesias in parkinsonian monkeys. Behav Brain Res 286:328–337. nists with varying in the MPTP-treated common marmoset. Psycho- Grondin R, Bédard PJ, Britton DR, and Shiosaki K (1997) Potential therapeutic use pharmacology (Berl) 117:275–286. of the selective dopamine D1 receptor agonist, A-86929: an acute study in par- Gnanalingham KK, Hunter AJ, Jenner P, and Marsden CD (1995b) The differential kinsonian levodopa-primed monkeys. Neurology 49:421–426. behavioural effects of benzazepine D1 dopamine agonists with varying efficacies, Grondin R, Bédard PJ, Hadj Tahar A, Grégoire L, Mori A, and Kase H (1999a) co-administered with quinpirole in primate and rodent models of Parkinson’s Antiparkinsonian effect of a new selective adenosine A2A in disease. Psychopharmacology (Berl) 117:287–297. MPTP-treated monkeys. Neurology 52:1673–1677. Gnanalingham KK, Hunter AJ, Jenner P, and Marsden CD (1995c) Selective dopa- Grondin R, Doan VD, Grégoire L, and Bédard PJ (1999b) D1 receptor blockade im- mine antagonist pretreatment on the antiparkinsonian effects of benzazepine D1 proves L-dopa-induced dyskinesia but worsens parkinsonism in MPTP monkeys.

dopamine agonists in rodent and primate models of Parkinson’s disease—the dif- Neurology 52:771–776. at ASPET Journals on September 24, 2021 ferential effects of D1 dopamine antagonists in the primate. Psychopharmacology Grondin R, Goulet M, Di Paolo T, and Bédard PJ (1996) Cabergoline, a long-acting (Berl) 117:403–412. dopamine D2-like receptor agonist, produces a sustained antiparkinsonian effect Goetz CG, Damier P, Hicking C, Laska E, Müller T, Olanow CW, Rascol O, and Russ with transient dyskinesias in parkinsonian drug-naive primates. Brain Res 735: H (2007) Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double- 298–306. blind placebo-controlled trial. Mov Disord 22:179–186. Grondin R, Goulet M, Morissette M, Bédard PJ, and Di Paolo T (1999c) Dopamine D1 Goetz CG, Laska E, Hicking C, Damier P, Müller T, Nutt J, Warren Olanow C, Rascol receptor mRNA and receptor levels in the striatum of MPTP monkeys chronically O, and Russ H (2008) Placebo influences on dyskinesia in Parkinson’s disease. Mov treated with SKF-82958. Eur J Pharmacol 378:259–263. Disord 23:700–707. Grondin R, Hadj Tahar A, Doan VD, Ladure P, and Bédard PJ (2000) Nora- Goetz CG, Stebbins GT, Chung KA, Nicholas AP, Hauser RA, Merkitch D, and Stacy drenoceptor antagonism with idazoxan improves L-dopa-induced dyskinesias in MA (2017) Topiramate as an adjunct to amantadine in the treatment of dyskinesia MPTP monkeys. Naunyn Schmiedebergs Arch Pharmacol 361:181–186. in parkinson’s disease: a randomized, double-blind, placebo-controlled multicenter Gruchet R (1952) Scopolamine in parkinsonism. Therapie 7:114–121. study. Mov Disord 32:1335–1336. Hadj Tahar A, Bélanger N, Bangassoro E, Grégoire L, and Bédard PJ (2000a) Goetz CG, Tanner CM, and Klawans HL (1984) Bupropion in Parkinson’s disease. Antidyskinetic effect of JL-18, a clozapine analog, in parkinsonian monkeys. Eur J Neurology 34:1092–1094. Pharmacol 399:183–186. Gomez-Mancilla B and Bédard PJ (1991) Effect of D1 and D2 agonists and antago- Hadj Tahar A, Ekesbo A, Grégoire L, Bangassoro E, Svensson KA, Tedroff J, nists on dyskinesia produced by L-dopa in 1-methyl-4-phenyl-1,2,3,6- and Bédard PJ (2001) Effects of acute and repeated treatment with a novel do- tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther 259:409–413. pamine D2 receptor on L-DOPA-induced dyskinesias in MPTP monkeys. Gomez-Mancilla B and Bédard PJ (1992a) Effect of chronic treatment with (1)- Eur J Pharmacol 412:247–254. PHNO, a D2 agonist in MPTP-treated monkeys. Exp Neurol 117:185–188. Hadj Tahar A, Grégoire L, Bangassoro E, and Bédard PJ (2000b) Sustained caber- Gomez-Mancilla B and Bédard PJ (1992b) Effect of estrogen and progesterone on goline treatment reverses levodopa-induced dyskinesias in parkinsonian monkeys. L-dopa induced dyskinesia in MPTP-treated monkeys. Neurosci Lett 135:129–132. Clin Neuropharmacol 23:195–202. Gomez-Mancilla B and Bédard PJ (1993) Effect of nondopaminergic drugs on L-dopa- Hadj Tahar A, Grégoire L, Darré A, Bélanger N, Meltzer L, and Bédard PJ (2004) induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 16:418–427. Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug- Gomez-Mancilla B, Boucher R, and Bédard PJ (1991) Effect of clonidine and atropine naive parkinsonian monkeys. Neurobiol Dis 15:171–176. on rest in the MPTP monkey model of parkinsonism. Clin Neuropharmacol Hamadjida A, Nuara SG, Gourdon JC, and Huot P (2018) The effect of mianserin on 14:359–366. the severity of psychosis and dyskinesia in the parkinsonian marmoset. Prog Gomez-Mancilla B, Boucher R, and Bédard PJ (1992a) Effect of LY 171555 and CY Neuropsychopharmacol Biol Psychiatry 81:367–371. 208-243 on tremor suppression in the MPTP monkey model of parkinsonism. Mov Hamadjida A, Nuara SG, Veyres N, Frouni I, Kwan C, Sid-Otmane L, Harraka MJ, Disord 7:43–47. Gourdon JC, and Huot P (2017) The effect of mirtazapine on dopaminergic psy- Gomez-Mancilla B, Boucher R, Gagnon C, Di Paolo T, Markstein R, and Bédard PJ chosis and dyskinesia in the parkinsonian marmoset. Psychopharmacology (Berl) (1993) Effect of adding the D1 agonist CY 208-243 to chronic bromocriptine 234:905–911. treatment. I: evaluation of motor parameters in relation to striatal catecholamine Hansard MJ, Jackson MJ, Smith LA, Rose S, and Jenner P (2011) A major metabolite of content and dopamine receptors. Mov Disord 8:144–150. bupropion reverses motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- Gomez-Mancilla B, Latulippe JF, Boucher R, and Bédard PJ (1992b) Effect of etho- treated common marmosets. Behav Pharmacol 22:269–274. suximide on rest tremor in the MPTP monkey model. Mov Disord 7:137–141. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, and Jenner P (2002a) Dopamine Gomez-Ramirez J, Johnston TH, Visanji NP, Fox SH, and Brotchie JM (2006) His- reuptake inhibition and failure to evoke dyskinesia in MPTP-treated primates. Eur tamine H3 receptor agonists reduce L-dopa-induced chorea, but not dystonia, in J Pharmacol 451:157–160. the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, and Jenner P (2002b) Dopamine, 21:839–846. but not or serotonin, reuptake inhibition reverses motor deficits in Gordon PH, Pullman SL, Louis ED, Frucht SJ, and Fahn S (2002) Mirtazapine in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Pharmacol Exp Parkinsonian tremor. Parkinsonism Relat Disord 9:125–126. Ther 303:952–958. Goulet M, Grondin R, Blanchet PJ, Bédard PJ, and Di Paolo T (1996) Dyskinesias Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, and Jenner P (2004) The and tolerance induced by chronic treatment with a D1 agonist administered in monoamine reuptake inhibitor BTS 74 398 fails to evoke established dyskinesia pulsatile or continuous mode do not correlate with changes of putaminal D1 re- but does not synergise with levodopa in MPTP-treated primates. Mov Disord 19: ceptors in drug-naive MPTP monkeys. Brain Res 719:129–137. 15–21. 392 Veyres et al.

Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, Huyck S, Ikeguchi K and Kuroda A (1995) Mianserin treatment of patients with psychosis and Wolski K (2011) Preladenant in patients with Parkinson’s disease and motor induced by antiparkinsonian drugs. Eur Arch Psychiatry Clin Neurosci 244: fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 10: 320–324. 221–229. Iravani MM, Jackson MJ, Kuoppamäki M, Smith LA, and Jenner P (2003) 3,4- Hauser RA, Hubble JP, and Truong DD; Istradefylline US-001 Study Group (2003) methylenedioxymethamphetamine (ecstasy) inhibits dyskinesia expression and Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in ad- normalizes motor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated vanced PD. Neurology 61:297–303. primates. J Neurosci 23:9107–9115. Hauser RA, Shulman LM, Trugman JM, Roberts JW, Mori A, Ballerini R, Iravani MM, Tayarani-Binazir K, Chu WB, Jackson MJ, and Jenner P (2006) In and Sussman NM; Istradefylline 6002-US-013 Study Group (2008) Study of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates, the selective istradefylline in patients with Parkinson’s disease on levodopa with motor fluc- 5-hydroxytryptamine 1a agonist (R)-(1)-8-OHDPAT inhibits levodopa-induced tuations. Mov Disord 23:2177–2185. dyskinesia but only withincreased motor disability. J Pharmacol Exp Ther 319: Hauser RA, Stocchi F, Rascol O, Huyck SB, Capece R, Ho TW, Sklar P, Lines C, 1225–1234. Michelson D, and Hewitt D (2015) Preladenant as an adjunctive therapy with Jackson MJ, Al-Barghouthy G, Pearce RK, Smith L, Hagan JJ, and Jenner P (2004) levodopa in Parkinson disease: two randomized clinical trials and lessons learned. Effect of 5-HT1B/D receptor agonist and antagonist administration on motor JAMA Neurol 72:1491–1500. function in haloperidol and MPTP-treated common marmosets. Pharmacol Bio- Hauser RA and Zesiewicz TA (1997) Sertraline for the treatment of depression in chem Behav 79:391–400. Parkinson’s disease. Mov Disord 12:756–759. Jackson MJ, Andree TH, Hansard M, Hoffman DC, Hurtt MR, Kehne JH, Pitler TA, Hely MA, Morris JG, Reid WG, O’Sullivan DJ, Williamson PM, Rail D, Broe GA, Smith LA, Stack G, and Jenner P (2010) The dopamine D(2) receptor partial ag- and Margrie S (1994) The Sydney multicentre study of Parkinson’s disease: a onist aplindore improves motor deficits in MPTP-treated common marmosets alone randomised, prospective five year study comparing low dose bromocriptine with and combined with L-dopa. J Neural Transm (Vienna) 117:55–67. low dose levodopa-carbidopa. J Neurol Neurosurg Psychiatry 57:903–910. Jackson MJ, Smith LA, Al-Barghouthy G, Rose S, and Jenner P (2007) Decreased Henry B, Fox SH, Crossman AR, and Brotchie JM (2001) Mu- and delta-opioid re- expression of l-dopa-induced dyskinesia by switching to ropinirole in MPTP-treated ceptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned pri- common marmosets. Exp Neurol 204:162–170. mate model of Parkinson’s disease. Exp Neurol 171:139–146. Jackson MJ, Swart T, Pearce RK, and Jenner P (2014) Cholinergic manipulation of Henry B, Fox SH, Peggs D, Crossman AR, and Brotchie JM (1999) The alpha2- motor disability and L-DOPA-induced dyskinesia in 1-methyl-4-phenyl-1,2,3,6- receptor antagonist idazoxan reduces dyskinesia and enhances anti- tetrahydropyridine (MPTP)-treated common marmosets. J Neural Transm Downloaded from parkinsonian actions of L-dopa in the MPTP-lesioned primate model of Parkinson’s (Vienna) 121:163–169. disease. Mov Disord 14:744–753. Jan C, François C, Tandé D, Yelnik J, Tremblay L, Agid Y, and Hirsch E (2000) Hill MP, Bezard E, McGuire SG, Crossman AR, Brotchie JM, Michel A, Grimée R, Dopaminergic innervation of the pallidum in the normal state, in MPTP-treated and Klitgaard H (2003) Novel antiepileptic drug levetiracetam decreases dyski- monkeys and in parkinsonian patients. Eur J Neurosci 12:4525–4535. nesia elicited by L-dopa and ropinirole in the MPTP-lesioned marmoset. Mov Jellinger K (1982) Adjuvant treatment of Parkinson’s disease with dopamine ago- Disord 18:1301–1305. nists: open trial with bromocriptine and CU 32-085. J Neurol 227:75–88. Hill MP, Brotchie JM, Crossman AR, Bezard E, Michel A, Grimée R, and Klitgaard H Jenner P, Rupniak NM, Rose S, Kelly E, Kilpatrick G, Lees A, and Marsden CD (2004a) Levetiracetam interferes with the L-dopa priming process in MPTP- (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the lesioned drug-naive marmosets. Clin Neuropharmacol 27:171–177. common marmoset. Neurosci Lett 50:85–90. jpet.aspetjournals.org Hill MP, Ravenscroft P, Bezard E, Crossman AR, Brotchie JM, Michel A, Grimée R, Jenner P, Zeng BY, Smith LA, Pearce RK, Tel B, Chancharme L, and Moachon G and Klitgaard H (2004b) Levetiracetam potentiates the antidyskinetic action of (2000) Antiparkinsonian and neuroprotective effects of modafinil in the mptp- amantadine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned treated common marmoset. Exp Brain Res 133:178–188. primate model of Parkinson’s disease. J Pharmacol Exp Ther 310:386–394. Johnston LC, Jackson MJ, Rose S, McCreary AC, and Jenner P (2010a) Pardoprunox Hill MP, Ravenscroft P, McGuire SG, Brotchie JM, Crossman AR, Rochat C, reverses motor deficits but induces only mild dyskinesia in MPTP-treated common and Millan MJ (2006) Antiparkinsonian effects of the novel D3/D2 dopamine re- marmosets. Mov Disord 25:2059–2066. ceptor agonist, S32504, in MPTP-lesioned marmosets: mediation by D2, not D3, Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, and Brotchie JM (2010b) Re- dopamine receptors. Mov Disord 21:2090–2095. duction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate Hille CJ, Fox SH, Maneuf YP, Crossman AR, and Brotchie JM (2001) Anti- receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the

parkinsonian action of a delta opioid agonist in rodent and primate models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkin- at ASPET Journals on September 24, 2021 Parkinson’s disease. Exp Neurol 172:189–198. son ’s disease. J Pharmacol Exp Ther 333:865–873. Hodgson RA, Bedard PJ, Varty GB, Kazdoba TM, Di Paolo T, Grzelak ME, Pond AJ, Johnston TH, Fox SH, Piggott MJ, Savola JM, and Brotchie JM (2010c) The a2 Hadjtahar A, Belanger N, Gregoire L, et al. (2010) Preladenant, a selective A(2A) fipamezole improves quality of levodopa action in Parkin- receptor antagonist, is active in primate models of movement disorders. Exp Neurol sonian primates. Mov Disord 25:2084–2093. 225:384–390. Johnston TH, Huot P, Damude S, Fox SH, Jones SW, Rusche JR, and Brotchie JM Hsu A, Togasaki DM, Bezard E, Sokoloff P, Langston JW, Di Monte DA, and Quik M (2013a) RGFP109, a histone deacetylase inhibitor attenuates L-DOPA-induced (2004) Effect of the D3 dopamine receptor BP897 [N-[4-(4-(2- dyskinesia in the MPTP-lesioned marmoset: a proof-of-concept study. Parkinson- methoxyphenyl)piperazinyl)butyl]-2-naphthamide] on L-3,4-dihydroxyphenylalanine- ism Relat Disord 19:260–264. induced dyskinesias and parkinsonism in squirrel monkeys. JPharmacolExpTher Johnston TH, Huot P, Fox SH, Koprich JB, Szeliga KT, James JW, Graef JD, 311:770–777. Letchworth SR, Jordan KG, Hill MP, et al. (2013b) TC-8831, a nicotinic acetyl- Huot P, Johnston TH, Fox SH, and Brotchie JM (2015a) Pioglitazone may impair receptor agonist, reduces L-DOPA-induced dyskinesia in the MPTP ma- L-DOPA anti-parkinsonian efficacy in the MPTP-lesioned macaque: results of a caque. Neuropharmacology 73:337–347. pilot study. Synapse 69:99–102. Johnston TH, Huot P, Fox SH, Wakefield JD, Sykes KA, Bartolini WP, Milne GT, Huot P, Johnston TH, Fox SH, Newman-Tancredi A, and Brotchie JM (2015b) The Pearson JP, and Brotchie JM (2011) Fatty acid amide hydrolase (FAAH) inhibition highly-selective 5-HT(1A) agonist F15599 reduces L-DOPA-induced dyskinesia reduces L-3,4-dihydroxyphenylalanine-induced hyperactivity in the 1-methyl-4- without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. phenyl-1,2,3,6-tetrahydropyridine-lesioned non- primate model of Parkin- Neuropharmacology 97:306–311. son’s disease. J Pharmacol Exp Ther 336:423–430. Huot P, Johnston TH, Gandy MN, Reyes MG, Fox SH, Piggott MJ, and Brotchie JM Johnston TH, Millar Z, Huot P, Wagg K, Thiele S, Salomonczyk D, Yong-Kee CJ, (2012a) The monoamine re-uptake inhibitor UWA-101 improves motor fluctuations Gandy MN, McIldowie M, Lewis KD, et al. (2012) A novel MDMA analogue, UWA- in the MPTP-lesioned common marmoset. PLoS One 7:e45587. 101, that lacks psychoactivity and cytotoxicity, enhances L-DOPA benefit in par- Huot P, Johnston TH, Koprich JB, Aman A, Fox SH, and Brotchie JM (2012b) L- kinsonian primates. FASEB J 26:2154–2163. 745,870 reduces L-DOPA-induced dyskinesia in the 1-methyl-4-phenyl-1,2,3,6- Johnston TH, van der Meij A, Brotchie JM, and Fox SH (2010d) Effect of histamine tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol H2 receptor antagonism on levodopa-induced dyskinesia in the MPTP-macaque Exp Ther 342:576–585. model of Parkinson’s disease. Mov Disord 25:1379–1390. Huot P, Johnston TH, Lewis KD, Koprich JB, Reyes MG, Fox SH, Piggott MJ, Jones CA, Johnston LC, Jackson MJ, Smith LA, van Scharrenburg G, Rose S, Jenner and Brotchie JM (2011) Characterization of 3,4-methylenedioxymethamphetamine PG, and McCreary AC (2010) An in vivo pharmacological evaluation of pardopru- (MDMA) in vitro and in the MPTP-lesioned primate: R-MDMA re- nox (SLV308)–a novel combined dopamine D(2)/D(3) receptor partial agonist and duces severity of dyskinesia, whereas S-MDMA extends duration of ON-time. J 5-HT(1A) receptor agonist with efficacy in experimental models of Parkinson’s Neurosci 31:7190–7198. disease. Eur Neuropsychopharmacol 20:582–593. Huot P, Johnston TH, Lewis KD, Koprich JB, Reyes MG, Fox SH, Piggott MJ, Kaakkola S, Teräväinen H, Ahtila S, Rita H, and Gordin A (1994) Effect of entaca- and Brotchie JM (2014) UWA-121, a mixed dopamine and serotonin re-uptake pone, a COMT inhibitor, on clinical disability and levodopa in par- inhibitor, enhances L-DOPA anti-parkinsonian action without worsening dyski- kinsonian patients. Neurology 44:77–80. nesia or psychosis-like behaviours in the MPTP-lesioned common marmoset. Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Neuropharmacology 82:76–87. and Jenner P (1998a) Adenosine A2A antagonist: a novel antiparkinsonian agent Huot P, Johnston TH, Snoeren T, Koprich JB, Hill MP, Fox SH, and Brotchie JM that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43: (2013) Use of catechol-O-methyltransferase inhibition to minimize L-3,4- 507–513. dihydroxyphenylalanine-induced dyskinesia in the 1-methyl-4-phenyl-1,2,3,6- Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, tetrahydropyridine-lesioned macaque. Eur J Neurosci 37:831–838. and Jenner P (2000) Combined use of the adenosine A(2A) antagonist KW-6002 Huot P, Lévesque M, Morissette M, Calon F, Dridi M, Di Paolo T, and Parent A (2008) with L-DOPA or with selective D1 or D2 dopamine agonists increases anti- L-Dopa treatment abolishes the numerical increase in striatal dopaminergic neu- parkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol rons in parkinsonian monkeys. J Chem Neuroanat 35:77–84. 162:321–327. Hyacinthe C, Barraud Q, Tison F, Bezard E, and Ghorayeb I (2014) D1 receptor Kanda T, Tashiro T, Kuwana Y, and Jenner P (1998b) Adenosine A2A receptors agonist improves -wake parameters in experimental parkinsonism. Neurobiol modify motor function in MPTP-treated common marmosets. Neuroreport 9: Dis 63:20–24. 2857–2860. Predictive Value of Parkinsonian Primates in Drug Research 393

Katzenschlager R, Jackson MJ, Rose S, Stockwell K, Tayarani-Binazir KA, Zubair M, Lieberman A, Ranhosky A, and Korts D (1997) Clinical evaluation of pramipexole in Smith LA, Jenner P, and Lees AJ (2007) Antiparkinsonian activity of L-propyl-L- advanced Parkinson’s disease: results of a double-blind, placebo-controlled, leucyl-glycinamide or melanocyte-inhibiting factor in MPTP-treated common parallel-group study. Neurology 49:162–168. marmosets. Mov Disord 22:715–719. Lieberman AN, Gopinathan G, and Neophytides A (1986) Efficacy of pergolide and Katzenschlager R, Manson AJ, Evans A, Watt H, and Lees AJ (2004) Low dose . Eur Neurol 25:86–90. quetiapine for drug induced dyskinesias in Parkinson’s disease: a double blind Lincoln L, Fisher R, Jackson MJ, Jenner P, Neumeyer J, Sromek AW, Lees AJ, cross over study. J Neurol Neurosurg Psychiatry 75:295–297. and Rose S (2016) Oral r-(-)-11-o-valeryl-n-n-propylnoraporphine reverses motor Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber deficits in mptp-treated marmosets. Mov Disord 31:1381–1388. R, and Williams M (1992) A-77636: a potent and selective dopamine D1 receptor Lindeboom SF and Lakke JP (1978) Deanol and physostigmine in the treatment of agonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229: L-dopa-induced dyskinesias. Acta Neurol Scand 58:134–138. 203–209. Löschmann PA, Chong PN, Nomoto M, Tepper PG, Horn AS, Jenner P, and Marsden Klawans HL and Ringel SP (1973) A clinical study of methysergide in Parkinsonism: CD (1989) Stereoselective reversal of MPTP-induced parkinsonism in the mar- evidence against a mechanism. J Neurol Sci 19:399–405. moset after dermal application of N-0437. Eur J Pharmacol 166:373–380. Klawans HL, Jr and Weiner WJ (1974) Attempted use of haloperidol in the treatment Löschmann PA, De Groote C, Smith L, Wüllner U, Fischer G, Kemp JA, Jenner P, of L-dopa induced dyskinesias. J Neurol Neurosurg Psychiatry 37:427–430. and Klockgether T (2004) Antiparkinsonian activity of Ro 25-6981, a NR2B subunit Klockgether T, Turski L, Honoré T, Zhang ZM, Gash DM, Kurlan R, specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp and Greenamyre JT (1991) The AMPA receptor antagonist NBQX has anti- Neurol 187:86–93. parkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Löschmann PA, Lange KW, Kunow M, Rettig KJ, Jähnig P, Honoré T, Turski L, Ann Neurol 30:717–723. Wachtel H, Jenner P, and Marsden CD (1991) Synergism of the AMPA-antagonist Ko WK, Li Q, and Bezard E (2014a) Effects of L-tryptophan on L-DOPA-induced NBQX and the NMDA-antagonist CPP with L-dopa in models of Parkinson’s dis- dyskinesia in the L-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated ease. J Neural Transm Park Dis Dement Sect 3:203–213. macaque model of Parkinson’s disease. Neurosci Lett 566:72–76. Löschmann PA, Smith LA, Lange KW, Jähnig P, Jenner P, and Marsden CD (1992) Ko WK, Pioli E, Li Q, McGuire S, Dufour A, Sherer TB, Bezard E, and Facheris MF Motor activity following the administration of selective D-1 and D-2 dopaminergic (2014b) Combined fenobam and amantadine treatment promotes robust anti- drugs to MPTP-treated common marmosets. Psychopharmacology (Berl) 109: dyskinetic effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- 49–56. lesioned primate model of Parkinson’s disease. Mov Disord 29:772–779. Luginger E, Wenning GK, Bösch S, and Poewe W (2000) Beneficial effects of aman- Downloaded from Ko WKD, Camus SM, Li Q, Yang J, McGuire S, Pioli EY, and Bezard E (2016) An tadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 15: evaluation of istradefylline treatment on Parkinsonian motor and cognitive deficits 873–878. in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque models. Luquin MR, Laguna J, Herrero MT, and Obeso JA (1993a) Behavioral tolerance to Neuropharmacology 110 (Pt A):48–58. repeated apomorphine administration in parkinsonian monkeys. J Neurol Sci 114: Ko WKD, Li Q, Cheng LY, Morelli M, Carta M, and Bezard E (2017) A preclinical 40–44. study on the combined effects of repeated eltoprazine and preladenant treatment Luquin MR, Laguna J, and Obeso JA (1992) Selective D2 receptor stimulation in- for alleviating L-DOPA-induced dyskinesia in Parkinson’s disease. Eur J Phar- duces dyskinesia in parkinsonian monkeys. Ann Neurol 31:551–554. macol 813:10–16. Luquin MR, Obeso JA, Laguna J, Guillén J, and Martínez-Lage JM (1993b) The Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, and Silverdale MA AMPA receptor antagonist NBQX does not alter the motor response induced by jpet.aspetjournals.org (2014) Randomized of topiramate for levodopa-induced dyskinesia in selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol 235: Parkinson’s disease. Parkinsonism Relat Disord 20:452–455. 297–300. Kobylecki C, Cenci MA, Crossman AR, and Ravenscroft P (2010) Calcium-permeable Mahmoudi S, Samadi P, Gilbert F, Ouattara B, Morissette M, Grégoire L, Rouillard AMPA receptors are involved in the induction and expression of l-DOPA-induced C, Di Paolo T, and Lévesque D (2009) Nur77 mRNA levels and L-Dopa-induced dyskinesia in Parkinson’s disease. J Neurochem 114:499–511. dyskinesias in MPTP monkeys treated with docosahexaenoic acid. Neurobiol Dis Kobylecki C, Hill MP, Crossman AR, and Ravenscroft P (2011) Synergistic anti- 36:213–222. dyskinetic effects of topiramate and amantadine in animal models of Parkinson’s Manson AJ, Iakovidou E, and Lees AJ (2000) Idazoxan is ineffective for levodopa- disease. Mov Disord 26:2354–2363. induced dyskinesias in Parkinson’s disease. Mov Disord 15:336–337. Koller WC and Herbster G (1987) Adjuvant therapy of parkinsonian tremor. Arch Manson AJ, Katzenschlager R, Hobart J, and Lees AJ (2001) High dose naltrexone

Neurol 44:921–923. for dyskinesias induced by levodopa. J Neurol Neurosurg Psychiatry 70:554–556. at ASPET Journals on September 24, 2021 Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, and Chase TN (2000) AMPA Maratos EC, Jackson MJ, Pearce RK, Cannizzaro C, and Jenner P (2003) Both short- receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. and long-acting D-1/D-2 dopamine agonists induce less dyskinesia than L-DOPA in Neurology 54:1589–1595. the MPTP-lesioned common marmoset (Callithrix jacchus). Exp Neurol 179: Koprich JB, Fox SH, Johnston TH, Goodman A, Le Bourdonnec B, Dolle RE, 90–102. DeHaven RN, DeHaven-Hudkins DL, Little PJ, and Brotchie JM (2011) The se- Maratos EC, Jackson MJ, Pearce RK, and Jenner P (2001) Antiparkinsonian activity lective mu-opioid receptor antagonist ADL5510 reduces levodopa-induced dyski- and dyskinesia risk of ropinirole and L-DOPA combination therapy in drug naïve nesia without affecting antiparkinsonian action in MPTP-lesioned macaque model MPTP-lesioned common marmosets (Callithrix jacchus). Mov Disord 16:631–641. of Parkinson’s disease. Mov Disord 26:1225–1233. Marino S, Sessa E, Di Lorenzo G, Digangi G, Alagna A, Bramanti P, and Di Bella P Koprich JB, Huot P, Fox SH, Jarvie K, Lang AE, Seeman P, and Brotchie JM (2013) (2008) Sertraline in the treatment of depressive disorders in patients with Par- The effects of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and kinson’s disease. Neurol Sci 29:391–395. psychosis in parkinsonian macaques. Prog Neuropsychopharmacol Biol Psychiatry Marsden CD, Parkes JD, and Rees JE (1973) A year’s comparison of treatment of 43:151–156. patients with parkinson’s disease with levodopa combined with carbidopa versus Korczyn AD, Brunt ER, Larsen JP, Nagy Z, Poewe WH, and Ruggieri S (1999) A treatment with levodopa alone. Lancet 2:1459–1462. 3-year randomized trial of ropinirole and bromocriptine in early Parkinson’s dis- Marti M, Rodi D, Li Q, Guerrini R, Fasano S, Morella I, Tozzi A, Brambilla R, ease. The 053 Study Group. Neurology 53:364–370. Calabresi P, Simonato M, et al. (2012) Nociceptin/orphanin FQ receptor agonists Kulisevsky J, Pagonabarraga J, Pascual-Sedano B, Gironell A, García-Sánchez C, attenuate L-DOPA-induced dyskinesias. J Neurosci 32:16106–16119. and Martínez-Corral M (2008) Motor changes during sertraline treatment in de- Martignoni E, Pacchetti C, Aufdembrinke B, Godi L, Albani G, Mancini F, and Nappi pressed patients with Parkinson’s disease*. Eur J Neurol 15:953–959. G (1995) Terguride in stable Parkinson’s disease. Funct Neurol 10:143–146. Lamid S and Jenkins RB (1975) Crossover clinical trial of benapryzine and trihex- Martin WE, Loewenson RB, Resch JA, and Baker AB (1974) A controlled study yphenidyl in Parkinsonian patients. J Clin Pharmacol 15:622–626. comparing trihexyphenidyl hydrochloride plus levodopa with placebo plus levodopa Lange KW, Löschmann PA, Wachtel H, Horowski R, Jähnig P, Jenner P, in patients with Parkinson’s disease. Neurology 24:912–919. and Marsden CD (1992) Terguride stimulates locomotor activity at 2 months but McCall RB, Lookingland KJ, Bédard PJ, and Huff RM (2005) Sumanirole, a highly not 10 months after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of dopamine D2-selective receptor agonist: in vitro and in vivo pharmacological common marmosets. Eur J Pharmacol 212:247–252. characterization and efficacy in animal models of Parkinson’s disease. J Pharmacol Langston JW, Ballard P, Tetrud JW, and Irwin I (1983) Chronic Parkinsonism in Exp Ther 314:1248–1256. humans due to a product of meperidine-analog synthesis. Science 219:979–980. Meco G, Fabrizio E, Di Rezze S, Alessandri A, and Pratesi L (2003) Mirtazapine in Langston JW, Forno LS, Rebert CS, and Irwin I (1984) Selective nigral toxicity after L-dopa-induced dyskinesias. Clin Neuropharmacol 26:179–181. systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in Meltzer HY, Mills R, Revell S, Williams H, Johnson A, Bahr D, and Friedman JH the squirrel monkey. Brain Res 292:390–394. (2010) Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of Lees AJ, Lander CM, and Stern GM (1978) and sulpiride in Parkinson’s parkinson’s disease psychosis. Neuropsychopharmacology 35:881–892. disease. Lancet 2:1205. Merello M, Lees AJ, Webster R, Bovingdon M, and Gordin A (1994) Effect of enta- Lemay S, Chouinard S, Blanchet P, Masson H, Soland V, Beuter A, and Bédard MA capone, a peripherally acting catechol-O-methyltransferase inhibitor, on the motor (2004) Lack of efficacy of a nicotine transdermal treatment on motor and cognitive response to acute treatment with levodopa in patients with Parkinson’s disease. J deficits in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 28: Neurol Neurosurg Psychiatry 57:186–189. 31–39. Mestre TA, Shah BB, Connolly BS, de Aquino C, Al Dhakeel A, Walsh R, Ghate T, Lui LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, and Sussman NM; JP, and Fox SH (2014) Famotidine, a histamine H2 receptor antagonist, does not 6002-US-005 Study Group (2008) Adenosine A2A receptor antagonist istradefylline reduce levodopa-induced dyskinesia in Parkinson’s disease: a proof-of-concept (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, study. Mov Disord Clin Pract (Hoboken) 1:219–224. multicenter clinical trial (6002-US-005). Ann Neurol 63:295–302. Millan MJ, Di Cara B, Hill M, Jackson M, Joyce JN, Brotchie J, McGuire S, Cross- Lewitt PA, Hauser RA, Lu M, Nicholas AP, Weiner W, Coppard N, Leinonen M, man A, Smith L, Jenner P, et al. (2004) S32504, a novel naphtoxazine agonist at and Savola JM (2012) Randomized clinical trial of fipamezole for dyskinesia in dopamine D3/D2 receptors. II. Actions in rodent, primate, and cellular models of Parkinson disease (FJORD study). Neurology 79:163–169. antiparkinsonian activity in comparison to ropinirole. J Pharmacol Exp Ther 309: LeWitt PA, Lyons KE, and Pahwa R; SP 650 Study Group (2007) Advanced 921–935. Parkinson disease treated with rotigotine transdermal system: PREFER study. Mizuno Y, Kondo T, and Narabayashi H (1995) Pergolide in the treatment of Par- Neurology 68:1262–1267. kinson’s disease. Neurology 45(3 Suppl 3):S13–S21. 394 Veyres et al.

Mizuno Y, Nomoto M, Kondo T, Hasegawa K, Murata M, Takeuchi M, Ikeda J, Oertel W, Eggert K, Pahwa R, Tanner CM, Hauser RA, Trenkwalder C, Ehret R, Tomida T, and Hattori N; Rotigotine Trial Group (2013) Transdermal rotigotine in Azulay JP, Isaacson S, Felt L, et al. (2017) Randomized, placebo-controlled trial of early stage Parkinson’s disease: a randomized, double-blind, placebo-controlled ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskine- trial. Mov Disord 28:1447–1450. sia in Parkinson’s disease (EASE LID 3). Mov Disord 31:1701–1709. Molinari SP, Kaminski R, Di Rocco A, and Yahr MD (1995) The use of famotidine in Oertel WH, Wolters E, Sampaio C, Gimenez-Roldan S, Bergamasco B, Dujardin M, the treatment of Parkinson’s disease: a pilot study. J Neural Transm Park Dis Grosset DG, Arnold G, Leenders KL, Hundemer HP, et al. (2006) Pergolide versus Dement Sect 9:243–247. levodopa monotherapy in early Parkinson’s disease patients: the PELMOPET Montastruc JL, Puech AJ, Clanet M, Guiraud-Chaumeil B, and Rascol A (1981) study. Mov Disord 21:343–353. Yohimbine in treatment of Parkinson’s disease: preliminary results (author’s Oh JD, Bibbiani F, and Chase TN (2002) Quetiapine attenuates levodopa-induced transl). Nouv Presse Med 10:1331–1332. motor complications in rodent and primate parkinsonian models. Exp Neurol 177: Montastruc JL, Rascol O, Senard JM, and Rascol A (1994) A randomised controlled 557–564. study comparing bromocriptine to which levodopa was later added, with levodopa Olanow CW, Damier P, Goetz CG, Mueller T, Nutt J, Rascol O, Serbanescu A, alone in previously untreated patients with Parkinson’s disease: a five year follow Deckers F, and Russ H (2004) Multicenter, open-label, trial of sarizotan in up. J Neurol Neurosurg Psychiatry 57:1034–1038. Parkinson disease patients with levodopa-induced dyskinesias (the SPLENDID Morin N, Grégoire L, Gomez-Mancilla B, Gasparini F, and Di Paolo T (2010) Effect of study). Clin Neuropharmacol 27:58–62. the metabotropic type 5 antagonists MPEP and MTEP in Olanow CW, Fahn S, Muenter M, Klawans H, Hurtig H, Stern M, Shoulson I, Kurlan parkinsonian monkeys. Neuropharmacology 58:981–986. R, Grimes JD, Jankovic J, et al. (1994) A multicenter double-blind placebo- Morin N, Grégoire L, Morissette M, Desrayaud S, Gomez-Mancilla B, Gasparini F, controlled trial of pergolide as an adjunct to Sinemet in Parkinson’s disease. Mov and Di Paolo T (2013a) MPEP, an mGlu5 receptor antagonist, reduces the devel- Disord 9:40–47. opment of L-DOPA-induced motor complications in de novo parkinsonian monkeys: Ondo WG, Tintner R, Voung KD, Lai D, and Ringholz G (2005) Double-blind, placebo- biochemical correlates. Neuropharmacology 66:355–364. controlled, unforced titration parallel trial of quetiapine for dopaminergic-induced Morin N, Morissette M, Grégoire L, and Di Paolo T (2015a) Effect of a chronic hallucinations in Parkinson’s disease. Mov Disord 20:958–963. treatment with an mGlu5 receptor antagonist on brain serotonin markers in par- Ouattara B, Belkhir S, Morissette M, Dridi M, Samadi P, Grégoire L, Meltzer LT, kinsonian monkeys. Prog Neuropsychopharmacol Biol Psychiatry 56:27–38. and Di Paolo T (2009) Implication of NMDA receptors in the antidyskinetic activity Morin N, Morissette M, Grégoire L, Gomez-Mancilla B, Gasparini F, and Di Paolo T of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced (2013b) Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes dyskinesias. J Mol Neurosci 38:128–142. Downloaded from basal ganglia glutamate neurotransmission in L-DOPA-treated parkinsonian Ouattara B, Grégoire L, Morissette M, Gasparini F, Vranesic I, Bilbe G, Johns DR, monkeys. Neuropharmacology 73:216–231. Rajput A, Hornykiewicz O, Rajput AH, et al. (2011) Metabotropic glutamate re- Morin N, Morissette M, Grégoire L, Rajput A, Rajput AH, and Di Paolo T (2015b) ceptor type 5 in levodopa-induced motor complications. Neurobiol Aging 32: Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor 1286–1295. complications. Neuropharmacology 99:356–368. Ouattara B, Hoyer D, Grégoire L, Morissette M, Gasparini F, Gomez-Mancilla B, Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bédard PJ, and Di Paolo and Di Paolo T (2010) Changes of AMPA receptors in MPTP monkeys with T (2006a) Prevention of dyskinesia by an NMDA receptor antagonist in MPTP levodopa-induced dyskinesias. Neuroscience 167:1160–1167. monkeys: effect on adenosine A2A receptors. Synapse 60:239–250. Pahwa R, Tanner CM, Hauser RA, Isaacson SH, Nausieda PA, Truong DD, Agarwal Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bédard PJ, and Di Paolo P, Hull KL, Lyons KE, Johnson R, et al. (2017) ADS-5102 (Amantadine) extended- jpet.aspetjournals.org T (2006b) Prevention of levodopa-induced dyskinesias by a selective NR1A/2B release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID N-methyl-D-aspartate receptor antagonist in parkinsonian monkeys: implication of study): a randomized clinical trial. JAMA Neurol 74:941–949. preproenkephalin. Mov Disord 21:9–17. Pålhagen SE, Carlsson M, Curman E, Wålinder J, and Granérus AK (2008) De- Morissette M, Goulet M, Grondin R, Blanchet P, Bédard PJ, Di Paolo T, pressive illness in Parkinson’s disease–indication of a more advanced and wide- and Lévesque D (1998) Associative and limbic regions of monkey striatum express spread neurodegenerative process? Acta Neurol Scand 117:295–304. high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist re- Pålhagen SE, Ekberg S, Wålinder J, Granérus AK, and Granerus G (2009) HMPAO placement therapies. Eur J Neurosci 10:2565–2573. SPECT in Parkinson’s disease (PD) with major depression (MD) before and after Morissette M, Goulet M, Soghomonian JJ, Blanchet PJ, Calon F, Bédard PJ, and Di treatment. J Neurol 256:1510–1518. Paolo T (1997) Preproenkephalin mRNA expression in the caudate-putamen of Papa SM, Auberson YP, and Greenamyre JT (2004) Prolongation of levodopa re-

MPTP monkeys after chronic treatment with the D2 agonist U91356A in contin- sponses by glycineB antagonists in parkinsonian primates. Ann Neurol 56: at ASPET Journals on September 24, 2021 uous or intermittent mode of administration: comparison with L-DOPA therapy. 723–727. Brain Res Mol Brain Res 49:55–62. Papa SM and Chase TN (1996) Levodopa-induced dyskinesias improved by a gluta- Morissette M, Grondin R, Goulet M, Bédard PJ, and Di Paolo T (1999) Differential mate antagonist in Parkinsonian monkeys. Ann Neurol 39:574–578. regulation of striatal preproenkephalin and preprotachykinin mRNA levels in Park DM, Findley LJ, Hanks G, and Sandler M (1981) Nomifensine: effect in Par- MPTP-lesioned monkeys chronically treated with dopamine D1 or D2 receptor kinsonian patients not receiving levodopa. J Neurol Neurosurg Psychiatry 44: agonists. J Neurochem 72:682–692. 352–354. Morissette M, Morin N, Grégoire L, Rajput A, Rajput AH, and Di Paolo T (2016) Park DM, Findley LJ, and Teychenne PF (1977) Nomifensine in parkinsonism. Br J Brain a7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and par- Clin Pharmacol (4 Suppl 2)185S–186S. kinsonian patients. Biochem Pharmacol 109:62–69. Parkes JD, Baxter RC, Curzon G, Knill-Jones RP, Knott PJ, Marsden CD, Tattersall Morissette M, Samadi P, Hadj Tahar A, Bélanger N, and Di Paolo T (2010) Striatal R, and Vollum D (1971) Treatment of Parkinson’s disease with amantadine and Akt/GSK3 signaling pathway in the development of L-Dopa-induced dyskinesias in levodopa: a one-year study. Lancet 1:1083–1086. MPTP monkeys. Prog Neuropsychopharmacol Biol Psychiatry 34:446–454. Parkinson Study Group (1999) Low-dose clozapine for the treatment of drug-induced Muenter MD, Ahlskog JE, Bell G, and McManis P (1988) PHNO [(1)-4-propyl-9- psychosis in Parkinson’s disease. N Engl J Med 340:757–763. hydroxynaphthoxazine]: a new and effective anti-Parkinson’s disease agent. Neu- Parkinson Study Group (2000a) A multicenter randomized controlled trial of rema- rology 38:1541–1545. cemide hydrochloride as monotherapy for PD. Neurology 54:1583–1588. Muñoz A, Li Q, Gardoni F, Marcello E, Qin C, Carlsson T, Kirik D, Di Luca M, Parkinson Study Group (2000b) Pramipexole vs levodopa as initial treatment for Björklund A, Bezard E, et al. (2008) Combined 5-HT1A and 5-HT1B receptor ag- Parkinson disease: a randomized controlled trial. JAMA 284:1931–1938. onists for the treatment of L-DOPA-induced dyskinesia. Brain 131:3380–3394. Parkinson Study Group (2001) Evaluation of dyskinesias in a pilot, randomized, Nagata T, Shinagawa S, Tagai K, and Nakayama K (2013) A case in which mirta- placebo-controlled trial of remacemide in advanced Parkinson disease. Arch Neurol zapine reduced auditory hallucinations in a patient with Parkinson disease. Int 58:1660–1668. Psychogeriatr 25:1199–1201. Parkinson Study Group (2003) A controlled trial of rotigotine monotherapy in early Nash JE, Fox SH, Henry B, Hill MP, Peggs D, McGuire S, Maneuf Y, Hille C, Brotchie Parkinson’s disease. Arch Neurol 60:1721–1728. JM, and Crossman AR (2000) Antiparkinsonian actions of ifenprodil in the MPTP- Parkinson Study Group (2005) A randomized placebo-controlled trial of rasagiline in lesioned marmoset model of Parkinson’sdisease.Exp Neurol 165:136–142. levodopa-treated patients with Parkinson disease and motor fluctuations: the Nash JE, Ravenscroft P, McGuire S, Crossman AR, Menniti FS, and Brotchie JM PRESTO study. Arch Neurol 62:241–248. (2004) The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates Pearce RK, Banerji T, Jenner P, and Marsden CD (1998) De novo administration of L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTP- effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. treated marmoset. Mov Disord 13:234–241. Exp Neurol 188:471–479. Pearce RK, Jackson M, Britton DR, Shiosaki K, Jenner P, and Marsden CD (1999) NINDS Exploratory Trials in Parkinson Disease (NET-PD) FS-ZONE Investigators Actions of the D1 agonists A-77636 and A-86929 on locomotion and dyskinesia in (2015) Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double- MPTP-treated L-dopa-primed common marmosets. Psychopharmacology (Berl) blind, randomised trial. Lancet Neurol 14:795–803. 142:51–60. Nomoto M, Jenner P, and Marsden CD (1985) The dopamine D2 agonist LY 141865, Pearce RK, Jackson M, Smith L, Jenner P, and Marsden CD (1995) Chronic L-DOPA but not the D1 agonist SKF 38393, reverses parkinsonism induced by 1-methyl-4- administration induces dyskinesias in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine- phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Lett treated common marmoset (Callithrix jacchus). Mov Disord 10:731–740. 57:37–41. Pearce RK, Smith LA, Jackson MJ, Banerji T, Scheel-Krüger J, and Jenner P (2002) Nomoto M, Jenner P, and Marsden CD (1988) The D1 agonist SKF 38393 inhibits the The monoamine reuptake blocker brasofensine reverses akinesia without dyski- antiparkinsonian activity of the D2 agonist LY 171555 in the MPTP-treated nesia in MPTP-treated and levodopa-primed common marmosets. Mov Disord 17: marmoset. Neurosci Lett 93:275–280. 877–886. Nomoto M, Stahl S, Jenner P, and Marsden CD (1987) Antiparkinsonian activity of Pessiglione M, Guehl D, Hirsch EC, Féger J, and Tremblay L (2004a) Disruption of (1)-PHNO in the MPTP-treated common marmoset. Mov Disord 2:37–45. self-organized actions in monkeys with progressive MPTP-induced parkinsonism. Nutt JG, Gunzler SA, Kirchhoff T, Hogarth P, Weaver JL, Krams M, Jamerson B, I. Effects of task complexity. Eur J Neurosci 19:426–436. Menniti FS, and Landen JW (2008) Effects of a NR2B selective NMDA glutamate Pessiglione M, Guehl D, Jan C, François C, Hirsch EC, Féger J, and Tremblay L antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord 23: (2004b) Disruption of self-organized actions in monkeys with progressive MPTP- 1860–1866. induced parkinsonism: II. Effects of reward preference. Eur J Neurosci 19:437–446. Predictive Value of Parkinsonian Primates in Drug Research 395

Philippens IH, Joosen MJ, Ahnaou A, Andres I, and Drinkenburg WP (2014) Anti- comparison of cabergoline and levodopa. The PKDS009 collaborative study group. Parkinson effects of a selective alpha2C-adrenoceptor antagonist in the MPTP Neurology 48:363–368. marmoset model. Behav Brain Res 269:81–86. Rose S, Jackson MJ, Smith LA, Stockwell K, Johnson L, Carminati P, and Jenner P Pinna A, Ko WK, Costa G, Tronci E, Fidalgo C, Simola N, Li Q, Tabrizi MA, Bezard E, (2006) The novel adenosine A2a receptor antagonist ST1535 potentiates the effects Carta M, et al. (2016) Antidyskinetic effect of A2A and 5HT1A/1B receptor ligands of a threshold dose of L-DOPA in MPTP treated common marmosets. Eur J in two animal models of Parkinson’s disease. Mov Disord 31:501–511. Pharmacol 546:82–87. Poewe WH, Rascol O, Quinn N, Tolosa E, Oertel WH, Martignoni E, Rupp M, Rose S, Scheller DK, Breidenbach A, Smith L, Jackson M, Stockwell K, and Jenner P and Boroojerdi B; SP 515 Investigators (2007) Efficacy of pramipexole and trans- (2007) Plasma levels of rotigotine and the reversal of motor deficits in MPTP- dermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, treated primates. Behav Pharmacol 18:155–160. randomised controlled trial. Lancet Neurol 6:513–520. Rouillard C, Bédard PJ, and Di Paolo T (1990) Effects of chronic treatment of MPTP Porras G, Li Q, and Bezard E (2012) Modeling Parkinson’s disease in primates: the monkeys with bromocriptine alone or in combination with SKF 38393. Eur J MPTP model. Cold Spring Harb Perspect Med 2:a009308. Pharmacol 185:209–215. Potts LF, Park ES, Woo JM, Dyavar Shetty BL, Singh A, Braithwaite SP, Voronkov Rylander D, Iderberg H, Li Q, Dekundy A, Zhang J, Li H, Baishen R, Danysz W, M, Papa SM, and Mouradian MM (2015) Dual k-agonist/m-antagonist opioid re- Bezard E, and Cenci MA (2010) A mGluR5 antagonist under clinical development ceptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neuro- striatal changes in the nonhuman primate model of Parkinson disease. Ann Neurol biol Dis 39:352–361. 77:930–941. Samadi P, Grégoire L, and Bédard PJ (2003) Opioid antagonists increase the dys- Pourcher E, Bonnet AM, Kefalos J, Dubois B, and Agid Y (1989) Effects of ety- kinetic response to dopaminergic agents in parkinsonian monkeys: interaction and diazepam on levodopa-induced diphasic dyskinesias in Parkin- between dopamine and opioid systems. Neuropharmacology 45:954–963. son’s disease. Mov Disord 4:195–201. Samadi P, Grégoire L, and Bédard PJ (2004) The opioid agonist morphine decreases Pourcher E, Fernandez HH, Stacy M, Mori A, Ballerini R, and Chaikin P (2012) the dyskinetic response to dopaminergic agents in parkinsonian monkeys. Neuro- Istradefylline for Parkinson’s disease patients experiencing motor fluctuations: biol Dis 16:246–253. results of the KW-6002-US-018 study. Parkinsonism Relat Disord 18:178–184. Samadi P, Grégoire L, Hadj Tahar A, Di Paolo T, Rouillard C, and Bédard PJ (2005a) Pourcher E, Gomez-Mancilla B, and Bédard PJ (1992) Ethosuximide and tremor in Naltrexone in the short-term decreases antiparkinsonian response to l-Dopa and in Parkinson’s disease: a pilot study. Mov Disord 7:132–136. the long-term increases dyskinesias in drug-naïve parkinsonian monkeys. Neuro- Quik M, Cox H, Parameswaran N, O’Leary K, Langston JW, and Di Monte D (2007) pharmacology 49:165–173. Downloaded from Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann Neurol Samadi P, Grégoire L, Morissette M, Calon F, Hadj Tahar A, Bélanger N, Dridi M, 62:588–596. Bédard PJ, and Di Paolo T (2008a) Basal ganglia group II metabotropic glutamate Quik M, Mallela A, Chin M, McIntosh JM, Perez XA, and Bordia T (2013a) Nicotine- receptors specific binding in non-human primate model of L-Dopa-induced dyski- mediated improvement in L-dopa-induced dyskinesias in MPTP-lesioned monkeys nesias. Neuropharmacology 54:258–268. is dependent on dopamine nerve terminal function. Neurobiol Dis 50:30–41. Samadi P, Grégoire L, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger Quik M, Mallela A, Ly J, and Zhang D (2013b) Nicotine reduces established levodopa- N, Meltzer LT, Bédard PJ, and Di Paolo T (2008b) mGluR5 metabotropic induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 28: glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 29: 1398–1406. 1040–1051. Quinn N, Illas A, Lhermitte F, and Agid Y (1981) Bromocriptine and in Samadi P, Grégoire L, Rassoulpour A, Guidetti P, Izzo E, Schwarcz R, and Bédard PJ jpet.aspetjournals.org the treatment of Parkinson disease. Neurology 31:662–667. (2005b) Effect of kynurenine 3-hydroxylase inhibition on the dyskinetic and anti- Rampello L, Chiechio S, Raffaele R, Vecchio I, and Nicoletti F (2002) The SSRI, parkinsonian responses to levodopa in Parkinsonian monkeys. Mov Disord 20: citalopram, improves bradykinesia in patients with Parkinson’s disease treated 792–802. with L-dopa. Clin Neuropharmacol 25:21–24. Samadi P, Grégoire L, Rouillard C, and Bédard PJ (2005c) Dyskinesias occur in Rascol O, Arnulf I, Peyro-Saint Paul H, Brefel-Courbon C, Vidailhet M, Thalamas C, response to saline and naltrexone alone after priming with combination of dopa- Bonnet AM, Descombes S, Bejjani B, Fabre N, et al. (2001a) Idazoxan, an alpha-2 minergic agents and naltrexone in the MPTP parkinsonian monkeys. Neurobiol Dis antagonist, and L-DOPA-induced dyskinesias in patients with Parkinson’s disease. 19:266–272. Mov Disord 16:708–713. Samadi P, Grégoire L, Rouillard C, Bédard PJ, Di Paolo T, and Lévesque D (2006) Rascol O, Blin O, Thalamas C, Descombes S, Soubrouillard C, Azulay P, Fabre N, Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-

Viallet F, Lafnitzegger K, Wright S, et al. (1999) ABT-431, a D1 receptor agonist 1,2,3,6-tetrahydropyridine monkeys. Ann Neurol 59:282–288. at ASPET Journals on September 24, 2021 , has efficacy in Parkinson’s disease. Ann Neurol 45:736–741. Samadi P, Morissette M, Calon F, Hadj Tahar A, Dridi M, Belanger N, Meltzer LT, Rascol O, Bronzova J, Hauser RA, Lang AE, Sampaio C, Theeuwes A, and van de Bédard PJ, and Di Paolo T (2008c) Normalization of GABAA receptor specific Witte SV (2012) Pardoprunox as adjunct therapy to levodopa in patients with binding in the substantia nigra reticulata and the prevention of L-dopa-induced Parkinson’s disease experiencing motor fluctuations: results of a double-blind, dyskinesias in MPTP parkinsonian monkeys. Synapse 62:101–109. randomized, placebo-controlled, trial. Parkinsonism Relat Disord 18:370–376. Samadi P, Morissette M, Lévesque D, and Di Paolo T (2010) BDNF levels are not Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, and Lang AE (2000) A related with levodopa-induced dyskinesias in MPTP monkeys. Mov Disord 25: five-year study of the incidence of dyskinesia in patients with early Parkinson’s 116–121. disease who were treated with ropinirole or levodopa. N Engl J Med 342: Sampaio C, Bronzova J, Hauser RA, Lang AE, Rascol O, van de Witte SV, 1484–1491. and Theeuwes AA; Rembrandt/Vermeer Study Groups (2011) Pardoprunox in early Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, and Abdalla M; Parkinson’s disease: results from 2 large, randomized double-blind trials. Mov 056 Study Group (2006a) Development of dyskinesias in a 5-year trial of ropinirole Disord 26:1464–1476. and L-dopa. Mov Disord 21:1844–1850. Savola JM, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG, Fox SH, Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, and Tolosa E; Crossman AR, and Brotchie JM (2003) Fipamezole (JP-1730) is a potent al- LARGO study group (2005) Rasagiline as an adjunct to levodopa in patients with pha2 antagonist that reduces levodopa-induced dyskine- Parkinson’s disease and motor fluctuations (LARGO, lasting effect in adjunct sia in the MPTP-lesioned primate model of Parkinson’sdisease.Mov Disord therapy with rasagiline given once daily, study): a randomised, double-blind, 18:872–883. parallel-group trial. Lancet 365:947–954. Schapira AH, Fox SH, Hauser RA, Jankovic J, Jost WH, Kenney C, Kulisevsky J, Rascol O, Dubois B, Caldas AC, Senn S, Del Signore S, and Lees A; Parkinson Pahwa R, Poewe W, and Anand R (2017) Assessment of safety and efficacy of REGAIN Study Group (2006b) Early piribedil monotherapy of Parkinson’s disease: safinamide as a levodopa adjunct in patients with Parkinson disease and motor a planned seven-month report of the REGAIN study. Mov Disord 21:2110–2115. fluctuations: a randomized clinical trial. JAMA Neurol 74:216–224. Rascol O, Fabre N, Blin O, Poulik J, Sabatini U, Senard JM, Ané M, Montastruc JL, Schwab RS, Amador LV, and Lettvin JY (1951) Apomorphine in Parkinson’s disease. and Rascol A (1994) Naltrexone, an opiate antagonist, fails to modify motor Trans Am Neurol Assoc 56:251–253. symptoms in patients with Parkinson’s disease. Mov Disord 9:437–440. Serrano-Dueñas M (2000) Acute pharmacological test with clonidine for the tremor in Rascol O, Lees AJ, Senard JM, Pirtosek Z, Montastruc JL, and Fuell D (1996) patients with Parkinson disease. Rev Neurol 30:910–913. Ropinirole in the treatment of levodopa-induced motor fluctuations in patients Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig with Parkinson’s disease. Clin Neuropharmacol 19:234–245. RR, Lindsley CW, et al. (2015) M4 muscarinic receptor signaling ameliorates Rascol O, Nutt JG, Blin O, Goetz CG, Trugman JM, Soubrouillard C, Carter JH, striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron 88: Currie LJ, Fabre N, Thalamas C, et al. (2001b) Induction by dopamine D1 receptor 762–773. agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson Shiosaki K, Jenner P, Asin KE, Britton DR, Lin CW, Michaelides M, Smith L, disease. Arch Neurol 58:249–254. Bianchi B, Didomenico S, Hodges L, et al. (1996) ABT-431: the diacetyl prodrug of Riahi G, Morissette M, Lévesque D, Rouillard C, Samadi P, Parent M, and Di Paolo T A-86929, a potent and selective dopamine D1 receptor agonist: in vitro charac- (2012) Effect of chronic l-DOPA treatment on 5-HT(1A) receptors in parkinsonian terization and effects in animal models of Parkinson’s disease. J Pharmacol Exp monkey brain. Neurochem Int 61:1160–1171. Ther 276:150–160. Riahi G, Morissette M, Parent M, and Di Paolo T (2011) Brain 5-HT(2A) receptors in Shoulson I and Chase TN (1976) Clonidine and the anti-parkinsonian response to MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33:1823–1831. L-DOPA or piribedil. Neuropharmacology 15:25–27. Riahi G, Morissette M, Samadi P, Parent M, and Di Paolo T (2013) Basal ganglia Shoulson I, Penney J, McDermott M, Schwid S, Kayson E, Chase T, Fahn S, serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia. Greenamyre JT, Lang A, Siderowf A, et al.; Parkinson Study Group (2001) A Biochem Pharmacol 86:970–978. randomized, controlled trial of remacemide for motor fluctuations in Parkinson’s Rinne UK, Birket-Smith E, Dupont E, Hansen E, Hyyppä M, Marttila R, Mikkelsen disease. Neurology 56:455–462. B, Pakkenberg H, and Presthus J (1975) Levodopa alone and in combination with a Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, and Brotchie JM (2001) peripheral decarboxylase inhibitor benserazide (Madopar) in the treatment of reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot Parkinson’s disease: a controlled clinical trial. J Neurol 211:1–9. study. Neurology 57:2108–2111. Rinne UK, Bracco F, Chouza C, Dupont E, Gershanik O, Marti Masso JF, Montastruc Silverdale MA, Crossman AR, and Brotchie JM (2002) Striatal AMPA receptor JL, Marsden CD, Dubini A, Orlando N, et al. (1997) Cabergoline in the treatment of binding is unaltered in the MPTP-lesioned macaque model of Parkinson’s disease early Parkinson’s disease: results of the first year of treatment in a double-blind and dyskinesia. Exp Neurol 174:21–28. 396 Veyres et al.

Silverdale MA, Nicholson SL, Crossman AR, and Brotchie JM (2005) Topiramate l-dopa improves efficacy and decreases dyskinesia in MPTP treated common reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of marmosets. Exp Neurol 226:320–327. Parkinson’s disease. Mov Disord 20:403–409. Tayarani-Binazir KA, Jackson MJ, Rose S, Olanow CW, and Jenner P (2010b) Pra- Silverdale MA, Nicholson SL, Ravenscroft P, Crossman AR, Millan MJ, and Brotchie mipexole combined with levodopa improves motor function but reduces dyskinesia JM (2004) Selective blockade of D(3) dopamine receptors enhances the anti- in MPTP-treated common marmosets. Mov Disord 25:377–384. parkinsonian properties of ropinirole and levodopa in the MPTP-lesioned primate. Temlett JA, Chong PN, Oertel WH, Jenner P, and Marsden CD (1988) The D-1 Exp Neurol 188:128–138. dopamine receptor partial agonist, CY 208-243, exhibits antiparkinsonian activity Singer C, Lamb J, Ellis A, and Layton G; Sumanirole for Early Parkinson’s Disease in the MPTP-treated marmoset. Eur J Pharmacol 156:197–206. Study Group (2007) A comparison of sumanirole versus placebo or ropinirole for the Temlett JA, Quinn NP, Jenner PG, Marsden CD, Pourcher E, Bonnet AM, Agid Y, treatment of patients with early Parkinson’s disease. Mov Disord 22:476–482. Markstein R, and Lataste X (1989) Antiparkinsonian activity of CY 208-243, a Smith CP, Oh JD, Bibbiani F, Collins MA, Avila I, and Chase TN (2007) Tamoxifen partial D-1 dopamine receptor agonist, in MPTP-treated marmosets and patients effect on L-DOPA induced response complications in parkinsonian rats and pri- with Parkinson’s disease. Mov Disord 4:261–265. mates. Neuropharmacology 52:515–526. Teychenne PF, Park DM, Findley LJ, Rose FC, and Calne DB (1976) Nomifensine in Smith L, De Salvia M, Jenner P, and Marsden CD (1996) An appraisal of the anti- parkinsonism. J Neurol Neurosurg Psychiatry 39:1219–1221. parkinsonian activity of piribedil in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- Tison F, Keywood C, Wakefield M, Durif F, Corvol JC, Eggert K, Lew M, Isaacson S, treated common marmosets. Mov Disord 11:125–135. Bezard E, Poli SM, et al. (2016) A phase 2A trial of the novel mGluR5-negative Smith LA, Gordin A, Jenner P, and Marsden CD (1997) Entacapone enhances allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s levodopa-induced reversal of motor disability in MPTP-treated common marmo- disease. Mov Disord 31:1373–1380. sets. Mov Disord 12:935–945. Tison F, Nègre-Pagès L, Meissner WG, Dupouy S, Li Q, Thiolat ML, Thiollier T, Smith LA, Jackson MG, Bonhomme C, Chezaubernard C, Pearce RK, and Jenner P Galitzky M, Ory-Magne F, Milhet A, et al. (2013) Simvastatin decreases levodopa- (2000) Transdermal administration of piribedil reverses MPTP-induced motor induced dyskinesia in monkeys, but not in a randomized, placebo-controlled, deficits in the common marmoset. Clin Neuropharmacol 23:133–142. multiple cross-over (“n-of-1”) exploratory trial of simvastatin against levodopa- Smith LA, Jackson MJ, Al-Barghouthy G, and Jenner P (2002a) The actions of a D-1 induced dyskinesia in Parkinson’s disease patients. Parkinsonism Relat Disord 19: agonist in MPTP treated primates show dependence on both D-1 and D-2 receptor 416–421. function and tolerance on repeated administration. J Neural Transm (Vienna) 109: Trabucchi M, Bassi S, and Frattola L (1982) Effect of naloxone on the “on-off’ syn- 123–140. drome in patients receiving long-term levodopa therapy. Arch Neurol 39:120–121. Downloaded from Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W, Trenkwalder C, Berg D, Rascol O, Eggert K, Ceballos-Baumann A, Corvol JC, Storch and Jenner P (2005) Multiple small doses of levodopa plus entacapone produce A, Zhang L, Azulay JP, Broussolle E, et al. (2016a) A placebo-controlled trial of continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP- AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov treated drug-naive primates. Mov Disord 20:306–314. Disord 31:1049–1054. Smith LA, Jackson MJ, Hansard MJ, Maratos E, and Jenner P (2003) Effect of Trenkwalder C, Stocchi F, Poewe W, Dronamraju N, Kenney C, Shah A, von Raison pulsatile administration of levodopa on dyskinesia induction in drug-naïve MPTP- F, and Graf A (2016b) Mavoglurant in Parkinson’s patients with l-Dopa-induced treated common marmosets: effect of dose, frequency of administration, and brain dyskinesias: two randomized phase 2 studies. Mov Disord 31:1054–1058. exposure. Mov Disord 18:487–495. Treseder SA, Jackson M, and Jenner P (2000) The effects of central aromatic amino Smith LA, Jackson MJ, Johnston L, Kuoppamaki M, Rose S, Al-Barghouthy G, Del acid DOPA decarboxylase inhibition on the motor actions of L-DOPA and dopamine jpet.aspetjournals.org Signore S, and Jenner P (2006) Switching from levodopa to the long-acting dopa- agonists in MPTP-treated primates. Br J Pharmacol 129:1355–1364. mine D2/D3 agonist piribedil reduces the expression of dyskinesia while main- Tsui JK, Wolters EC, Peppard RF, and Calne DB (1989) A double-blind, placebo- taining effective motor activity in MPTP-treated primates. Clin Neuropharmacol controlled, dose-ranging study to investigate the safety and efficacy of CY 208-243 29:112–125. in patients with Parkinson’s disease. Neurology 39:856–858. Smith LA, Tel BC, Jackson MJ, Hansard MJ, Braceras R, Bonhomme C, Chezau- Tyne H, Brooks J, Taylor J, Vinjamuri S, Baker G, and Steiger M (2007) A double bernard C, Del Signore S, Rose S, and Jenner P (2002b) Repeated administration of blind placebo controlled study of modafinil for Parkinson’s disease related . piribedil induces less dyskinesia than L-dopa in MPTP-treated common marmo- Parkinsonism Relat Disord 13 (Suppl 2):S113–S114. sets: a behavioural and biochemical investigation. Mov Disord 17:887–901. Tyne HL, Taylor J, Baker GA, and Steiger MJ (2010) Modafinil for Parkinson’s Soghomonian JJ, Pedneault S, Audet G, and Parent A (1994) Increased glutamate disease fatigue. J Neurol 257:452–456.

decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated pri- Uchida S, Soshiroda K, Okita E, Kawai-Uchida M, Mori A, Jenner P, and Kanda T at ASPET Journals on September 24, 2021 mates. J Neurosci 14:6256–6265. (2015a) The adenosine A2A receptor antagonist, istradefylline enhances anti- Stathis P, Konitsiotis S, Tagaris G, and Peterson D; VALID-PD Study Group (2011) parkinsonian activity induced by combined treatment with low doses of L-DOPA Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s and dopamine agonists in MPTP-treated common marmosets. Eur J Pharmacol disease. Mov Disord 26:264–270. 766:25–30. Steece-Collier K, Chambers LK, Jaw-Tsai SS, Menniti FS, and Greenamyre JT (2000) Uchida S, Soshiroda K, Okita E, Kawai-Uchida M, Mori A, Jenner P, and Kanda T Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit- (2015b) The adenosine A2A receptor antagonist, istradefylline enhances the anti- containing N-methyl-d-aspartate receptors. Exp Neurol 163:239–243. parkinsonian activity of low doses of dopamine agonists in MPTP-treated common Stibe C, Lees A, and Stern G (1987) Subcutaneous infusion of apomorphine and marmosets. Eur J Pharmacol 747:160–165. in the treatment of parkinsonian on-off fluctuations. Lancet 1:871. Uchida S, Tashiro T, Kawai-Uchida M, Mori A, Jenner P, and Kanda T (2014) Stocchi F, Rascol O, Destee A, Hattori N, Hauser RA, Lang AE, Poewe W, Stacy M, Adenosine A2A-receptor antagonist istradefylline enhances the motor response of Tolosa E, Gao H, et al. (2013) AFQ056 in Parkinson patients with levodopa-induced L-DOPA without worsening dyskinesia in MPTP-treated common marmosets. J dyskinesia: 13-week, randomized, dose-finding study. Mov Disord 28:1838–1846. Pharmacol Sci 124:480–485. Stocchi F, Rascol O, Hauser RA, Huyck S, Tzontcheva A, Capece R, Ho TW, Sklar P, van der Stelt M, Fox SH, Hill M, Crossman AR, Petrosino S, Di Marzo V, Lines C, Michelson D, et al.; Preladenant Early Parkinson Disease Study Group and Brotchie JM (2005) A role for endocannabinoids in the generation of parkin- (2017) Randomized trial of preladenant, given as monotherapy, in patients with sonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate early Parkinson disease. Neurology 88:2198–2206. models of Parkinson’s disease. FASEB J 19:1140–1142. Stockwell KA, Scheller D, Rose S, Jackson MJ, Tayarani-Binazir K, Iravani MM, van Vliet SA, Vanwersch RA, Jongsma MJ, Olivier B, and Philippens IH (2008) Smith LA, Olanow CW, and Jenner P (2009) Continuous administration of roti- Therapeutic effects of Delta9-THC and modafinil in a marmoset Parkinson model. gotine to MPTP-treated common marmosets enhances anti-parkinsonian activity Eur Neuropsychopharmacol 18:383–389. and reduces dyskinesia induction. Exp Neurol 219:533–542. Vanover KE, Betz AJ, Weber SM, Bibbiani F, Kielaite A, Weiner DM, Davis RE, Stockwell KA, Scheller DK, Smith LA, Rose S, Iravani MM, Jackson MJ, and Jenner Chase TN, and Salamone JD (2008) A 5-HT2A receptor inverse agonist, ACP-103, P (2010) Continuous rotigotine administration reduces dyskinesia resulting from reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey pulsatile treatment with rotigotine or L-DOPA in MPTP-treated common mar- model. Pharmacol Biochem Behav 90:540–544. mosets. Exp Neurol 221:79–85. Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Stockwell KA, Virley DJ, Perren M, Iravani MM, Jackson MJ, Rose S, and Jenner P and Chase TN (1998) Amantadine as treatment for dyskinesias and motor fluc- (2008) Continuous delivery of ropinirole reverses motor deficits without dyskinesia tuations in Parkinson’s disease. Neurology 50:1323–1326. induction in MPTP-treated common marmosets. Exp Neurol 211:172–179. Vermeulen RJ, Drukarch B, Sahadat MC, Goosen C, Schoffelmeer AN, Wolters EC, Stoessl AJ, Mak E, and Calne DB (1985) (1)-4-Propyl-9-hydroxynaphthoxazine and Stoof JC (1995) Morphine and naltrexone modulate D2 but not D1 receptor (PHNO), a new dopaminomimetic, in treatment of parkinsonism. Lancet 2: induced motor behavior in MPTP-lesioned monkeys. Psychopharmacology (Berl) 1330–1331. 118:451–459. Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, Wictorin K, Keywood C, Vieregge A, Sieberer M, Jacobs H, Hagenah JM, and Vieregge P (2001) Transdermal Shankar B, Lowe DA, Björklund A, and Widner H (2015) Eltoprazine counteracts nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology 57: l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain 1032–1035. 138:963–973. Villafane G, Cesaro P, Rialland A, Baloul S, Azimi S, Bourdet C, Le Houezec J, Tagai K, Nagata T, Shinagawa S, Tsuno N, Ozone M, and Nakayama K (2013) Macquin-Mavier I, and Maison P (2007) Chronic high dose transdermal nicotine in Mirtazapine improves visual hallucinations in Parkinson’s disease: a case report. Parkinson’s disease: an open trial. Eur J Neurol 14:1313–1316. Psychogeriatrics 13:103–107. Visanji NP, de Bie RM, Johnston TH, McCreary AC, Brotchie JM, and Fox SH (2008) Tamim MK, Samadi P, Morissette M, Grégoire L, Ouattara B, Lévesque D, Rouillard The nociceptin/orphanin FQ (NOP) receptor antagonist J-113397 enhances the C, and Di Paolo T (2010) Effect of non-dopaminergic drug treatment on Levodopa effects of levodopa in the MPTP-lesioned nonhuman primate model of Parkinson’s induced dyskinesias in MPTP monkeys: common implication of striatal neuro- disease. Mov Disord 23:1922–1925. peptides. Neuropharmacology 58:286–296. Visanji NP, Fox SH, Johnston T, Reyes G, Millan MJ, and Brotchie JM (2009a) Tarsy D, Leopold N, and Sax DS (1974) Physostigmine in choreiform movement Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced disorders. Neurology 24:28–33. dyskinesia in animal models of Parkinson’s disease. Neurobiol Dis 35:184–192. Tayarani-Binazir K, Jackson MJ, Rose S, McCreary AC, and Jenner P (2010a) The Visanji NP, Fox SH, Johnston TH, Millan MJ, and Brotchie JM (2009b) partial dopamine agonist pardoprunox (SLV308) administered in combination with Alpha1-adrenoceptors mediate dihydroxyphenylalanine-induced activity in Predictive Value of Parkinsonian Primates in Drug Research 397

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaques. JPharma- Zeng BY, Iravani MM, Jackson MJ, Rose S, Parent A, and Jenner P (2010) Mor- col Exp Ther 328:276–283. phological changes in serotoninergic neurites in the striatum and globus pallidus Visanji NP, Gomez-Ramirez J, Johnston TH, Pires D, Voon V, Brotchie JM, and Fox in levodopa primed MPTP treated common marmosets with dyskinesia. Neurobiol SH (2006) Pharmacological characterization of psychosis-like behavior in the Dis 40:599–607. MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 21: Zhang D, Bordia T, McGregor M, McIntosh JM, Decker MW, and Quik M (2014) ABT- 1879–1891. 089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, Whet- Parkinson’s disease. Mov Disord 29:508–517. teckey J, Wunderlich GR, and Lang AE (2010) Impulse control disorders in Zhang D, Mallela A, Sohn D, Carroll FI, Bencherif M, Letchworth S, and Quik M Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 67: (2013) Nicotinic receptor agonists reduce L-DOPA-induced dyskinesias in a mon- 589–595. key model of Parkinson’s disease. J Pharmacol Exp Ther 347:225–234. Wolz M, Löhle M, Strecker K, Schwanebeck U, Schneider C, Reichmann H, Grählert Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW, and Quik M X, Schwarz J, and Storch A (2010) Levetiracetam for levodopa-induced dyskinesia (2015) a7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with in Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. J severe nigrostriatal damage. Mov Disord 30:1901–1911. Neural Transm (Vienna) 117:1279–1286. Zubair M, Jackson MJ, Tayarani-Binazir K, Stockwell KA, Smith LA, Rose S, Olanow Wong KK, Alty JE, Goy AG, Raghav S, Reutens DC, and Kempster PA (2011) A W, and Jenner P (2007) The administration of entacapone prevents L-dopa-induced randomized, double-blind, placebo-controlled trial of levetiracetam for dyskinesia dyskinesia when added to dopamine agonist therapy in MPTP-treated primates. in Parkinson’s disease. Mov Disord 26:1552–1555. Exp Neurol 208:177–184. Wright A, Lees AJ, and Stern GM (1987) Mesulergine and pergolide in previously untreated Parkinson’s disease. J Neurol Neurosurg Psychiatry 50:482–484. Address correspondence to: Philippe Huot, Montreal Neurological In- Yan T, Rizak JD, Yang S, Li H, Huang B, Ma Y, and Hu X (2014) Acute morphine stitute, 3801 University St, BT 209, Montreal, QC, Canada H3A 2B4. E-mail: treatments alleviate tremor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- [email protected] treated monkeys. PLoS One 9:e88404. Downloaded from jpet.aspetjournals.org at ASPET Journals on September 24, 2021 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Table S1: pharmacological profile of the drugs assessed in the MPTP-lesioned primate

drug category references

D-(9)-THC cannabinoid (Felder et al., CB1,2 agonist (dronabinol) agonist 1995)

(-)-3-(3- (Arnt et al.,

hydroxyphenyl)-N-n- D2 agonist, s ligand D2 agonist 1983; Iyengar et

propylpiperone al., 1991)

(+)-4-propyl-9- (Martin et al., hydroxynaphthoxazine D2 agonist, a2 ligand D2 agonist 1985) (PHNO)

(+)-N-n-propyl-3-(3- (Close et al., hydroxyphenyl)- D2 agonist D2 agonist 1990) piperidine [(+)-3PPP]

(-)-N-n-propyl-3-(3- (Close et al., hydroxyphenyl)- D2 partial agonist D2 partial agonist 1990) piperidine (-)-3PPP

(Loschmann et (-)-N-0437 D2-like agonist D2 agonist al., 1989)

(Burstein et al., (-)-OSU-6162 (PNU- D2 partial agonist, 5-HT2A D2 partial agonist 2011; Carlsson 96,391) partial agonist et al., 2011)

2-amino-5,6- (Mulder et al., D2 agonist D2 agonist dihydroxytetralin 1980; Gower

1 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (N,N-dipropyl A-5,6- and Marriott,

DTN) 1982)

(Tricklebank et

5-MDOT (5-MeO- non-selective 5-HT al., 1985; 5-HT agonist DMT) receptor agonist Spencer et al.,

1987)

(Lejeune et al., 8-OH-DPAT 5-HT1A agonist 5-HT1A agonist 1997)

17-alpha-oestradiol oestrogen receptor agonist, (Kuiper et al., oestrogen agonist (alfatradiol) 5a-reductase inhibitor 1997)

(Kuiper et al., 17-beta-oestradiol oestrogen receptor agonist oestrogen agonist 1997)

(Vanover et al., A-66,359 D1 antagonist D1 antagonist 1991)

(Kebabian et al., A-77,636 D1 agonist D1 agonist 1992)

(Michaelides et

al., 1995; A-86,929 D1 agonist D1 agonist Ehrlich et al.,

1997)

(Marks et al., ABT-089 () b2 nACh agonist 2009)

2 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (Malysz et al., ABT-107 a7 nACh agonist nicotinic agonist 2010)

(Zhang et al.,

ABT-126 (nelonicline) a7 nACh agonist nicotinic agonist 2015; Haig et

al., 2016)

(Shiosaki et al., ABT-431 (adrogolide) D1 agonist D1 agonist 1996)

ABT-894 (sofinicline) a4b2 nACh agonist nicotinic agonist (Ji et al., 2007)

(Koprich et al., ADL-5510 µ antagonist µ antagonist 2011)

AFQ-056 (Vranesic et al., mGlu5 NAM mGlu5 NAM (mavoglurant) 2014)

(Matsubayashi

NMDA antagonist, s1 et al., 1997;

amantadine agonist, a7 nACh NMDA antagonist Peeters et al.,

antagonist 2004; Blanpied

et al., 2005)

(Schlicker et al., anpirtoline 5-HT1B > 5-HT1A agonist 5-HT1B agonist 1992)

dopamine partial (Heinrich et al., aplindore (DAB-452) D2,3 partial agonist agonist 2006)

D1 agonist, D2,3,4 partial (Millan et al., apomorphine dopamine agonist agonist, 5-HT2A,2B, 2002; Newman-

3 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther

antagonist, 5-HT1A partial Tancredi et al.,

agonist, a2A partial agonist, 2002a;

a2B,2C antagonist Newman-

Tancredi et al.,

2002b)

nicotinic partial (Feuerbach et AQW-051 a7 nACh partial agonist agonist al., 2015)

muscarinic (Hirose et al., atropine M1,2,3,4,5 antagonist antagonist 2001)

(Hirst et al., baclofen GABAB agonist GABAB agonist 2003)

benztropine M1,2 antagonist, DAT muscarinic (Newman et al.,

(benzatropine) inhibitor antagonist 1995)

(Bezard et al.,

BP-897 D3 partial agonist D3 partial agonist 2003; Pilleri and

Antonini, 2015)

non-selective brasofensine (NS-2214, DAT, NET, SERT monoamine re- (Singh, 2000) BMS-204,756) inhibitor uptake inhibitor

D2,3-preferential dopamine

bromocriptine (CB- agonist, 5-HT1A,1D partial (Millan et al., dopamine agonist 154) agonist, a2A,2B,2C 2002)

antagonist

4 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther non-selective (Cheetham et DAT, NET, SERT BTS-74,398 monoamine re- al., 1998; Singh, inhibitor uptake inhibitor 2000)

(Carroll et al., dual monoamine bupropion DAT, NET inhibitor 2009; Lapinsky re-uptake inhibitor et al., 2009)

D2,3 partial agonist, 5- (Millan et al., cabergoline HT1A,1D,2A,2B agonist, dopamine agonist 2002) a2A,2C antagonist

cannabinoid (Cao et al., CE CB1 antagonist antagonist 2007)

(Ben-Daniel et citalopram SERT inhibitor SERT inhibitor al., 2008)

(Barton and CI-1041 (, White, 2004; PD-196,860, Co- NR2B antagonist NMDA antagonist Barton et al., 200,461) 2004)

(Ernsberger et

clonidine a2A,2B,2C agonist, I1 agonist a2 agonist al., 1987; Jasper

et al., 1998)

H1 antagonist, 5- (Lahti et al., atypical anti- clozapine HT2A,2B,2C,6,7 antagonist, 1993; Schotte et psychotic a1A,1B,1D antagonist, D4 al., 1996;

5 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther

antagonist, 5-HT1A,1F Yoshio et al.,

agonist 2001; Booth et

al., 2002; Knight

et al., 2004;

Purohit et al.,

2005)

D2 fast-off (Koprich et al., CLR-151 D2 antagonist antagonist 2013)

Co-101,244/PD- (Gill et al., NR2B antagonist NMDA antagonist 174,494 (Ro-631,908) 2002)

(Koe et al., CP-94,253 5-HT1B-preferential agonist 5-HT1B agonist 1992)

(Chenard et al.,

CP-101,606 1995; NR2B antagonist NMDA antagonist () Brimecombe et

al., 1997)

(Feng et al., CPP NR2A,2B,2C,2D antagonist NMDA antagonist 2004)

(Krintel et al., CX-516 (BDP-12) GluA2 PAM 2013)

(Andersen and CY-208,243 D1,2 agonist dopamine agonist Jansen, 1990)

6 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther

5-HT2A,2C,6,7 antagonist, H1 (Leysen et al.,

cyproheptadine antagonist, a1B,1D 5-HT antagonist 1981; Hoyer et

antagonist al., 1994)

(Bergeron et al.,

androgen receptor agonist, 1996; Maurice

a- and b-oestrogen et al., 1997;

DHEA receptor agonist, GABAA androgen agonist Sousa and

NAM, NMDA PAM, s1 Ticku, 1997;

agonist Chen et al.,

2005)

(Pritchett et al., diazepam GABAA PAM GABAA PAM 1989)

dipraglurant (ADX- (Chae et al., mGlu5 NAM mGlu5 NAM 48,621) 2013)

(Lampen et al.,

2001; Itoh et al., FFA1 agonist, RXR-a docosahexaenoic acid RXR agonist 2003; Motter agonist, TRPA1 agonist and Ahern,

2012)

eltoprazine (DU- 5-HT1A,1B agonist, 5-HT2C (Schipper et al., 5-HT1A,1B agonist 28,853) antagonist 1990)

(Lotta et al., entacapone (OR-611) COMT inhibitor COMT inhibitor 1995)

7 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther T-type calcium channel T-type calcium (Gomora et al., ethosuximide antagonist channel antagonist 2001)

(Newman- preferential post-synaptic F-15,599 5-HT1A agonist Tancredi et al., 5-HT1A agonist 2009)

famotidine H2 antagonist H2 antagonist (Chremos, 1987)

(Porter et al., fenobam mGlu5 NAM mGlu5 NAM 2005)

(Johnston et al., fipamezole (JP-1730) a2A,2B,2C antagonist a2 antagonist 2010)

GBR-12,909 (Andersen, DAT inhibitor DAT inhibitor () 1989)

(Abraham et al., GYKI-47,261 AMPA antagonist AMPA antagonist 2000)

(Sunahara et al.,

D2-like antagonist, D1 1991; Tice et al.,

haloperidol antagonist, a1 antagonist, D2 antagonist 1994; Kroeze et

s1 antagonist al., 2003; Cobos

et al., 2007)

(Doxey et al.,

1984; idazoxan a2 antagonist, I2 agonist a2 antagonist Regunathan and

Reis, 1996)

8 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (Schlesinger et IEM-1460 AMPA antagonist AMPA antagonist al., 2005)

(Reynolds and

Miller, 1989; ifenprodil NR1,2 antagonist NMDA antagonist Korinek et al.,

2011)

(Garbarg et al.,

imetit H3,4 agonist H3,4 agonist 1992; Liu et al.,

2001)

(Liu et al., 2001;

immepip H3,4 agonist H3,4 agonist Kitbunnadaj et

al., 2003)

istradefylline (KW- (Fredholm et al., A2A antagonist A2A antagonist 6002) 2011)

(Kawamoto et

J-113,397 ORL-1 antagonist ORL-1 antagonist al., 1999; Ozaki

et al., 2000)

dopamine (Liegeois et al., JL-18 D2,4 antagonist antagonist 1995)

(Philippens et JNJ-27,063,699 a2C antagonist a2 antagonist al., 2014)

(Patel et al., L-745,870 D4 antagonist D4 antagonist 1997)

9 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (Fernstrom, L-tryptophan 5-HT precursor 5-HT agonist 1983)

(Lynch et al., levetiracetam SV2A antagonist SV2A antagonist 2004)

(Tsuruta et al., LY-141,865 D2 agonist D2 agonist 1981)

(Schoepp et al., LY-235,959 (active NMDA antagonist NMDA antagonist 1991; Herman et isomer of LY-274,614) al., 1995)

NR2A-preferential (Blanchet et al., MDL-100,453 NMDA antagonist antagonist 1999)

(Battaglia et al.,

DAT inhibitor, SERT 1988; Nash et dual monoamine MDMA inhibitor, 5-HT2A partial al., 1994; re-uptake inhibitor agonist Verrico et al.,

2007)

melanocyte-inhibiting

factor (Pro-Leu-Gly- (Verma et al., NH2, melanostatin, D2,4 PAM, opiate D2 PAM 2005; Pan and MSH release- antagonist Kastin, 2007) inhibiting hormone,

MIF-1)

10 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (Poulain et al., meperidine () µ > k > d agonist opioid agonist 2001)

(Leysen et al.,

1981; Hoyer et

5-HT1D,1F,2A,2C antagonist, al., 1994; methysergide 5-HT antagonist 5-HT2B agonist Bonhaus et al.,

1997; Rothman

et al., 2000)

(Hyttel, 1982;

de Boer et al.,

5-HT2A,2C,3 antagonist, 1988; Hyttel, atypical anti- mianserin a1,2A,2C antagonist, H1 1994; Kooyman depressant antagonist et al., 1994;

Fernandez et al.,

2005)

(de Boer, 1996;

Tatsumi et al., a2A,2C antagonist, 5- mirtazapine (ORG- atypical anti- 1997; Anttila HT2A,2C,3 antagonist, H1 3770) depressant and Leinonen, antagonist 2001; Fernandez

et al., 2005)

NMDA antagonist, a7 (Amador and MK-801 () NMDA antagonist nACh antagonist Dani, 1991)

11 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther T-type calcium channel T-type calcium (Xiang et al., ML-218 antagonist channel antagonist 2011)

(Seeman et al., D2 partial agonist, DAT non-selective DAT 2009; modafinil inhibitor – not fully inhibitor Zolkowska et characterised al., 2009)

(Poulain et al., morphine µ > k > d agonist opioid agonist 2001)

(Gasparini et al.,

MPEP mGlu5 NAM, mGlu4 PAM mGlu5 NAM 1999; Mathiesen

et al., 2003)

(Cosford et al., MTEP mGlu5 NAM mGlu5 NAM 2003)

(Van der Weide

et al., 1986; Van N-0437 D2-like agonist D2 agonist der Weide et al.,

1988)

(Dowling and

Charlton, 2006; muscarinic N-methyl scopolamine M1,3 antagonist Fruchart- antagonist Gaillard et al.,

2006)

12 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther cannabinoid (Blaazer et al., nabilone CB1,2 agonist agonist 2011)

(Sautel et al.,

D2,3 antagonist, 5-HT1A dopamine 1995; Newman- nafadotride agonist antagonist Tancredi et al.,

1998)

(Poulain et al., nalbuphine µ > k > d agonist opioid agonist 2001)

(Poulain et al., naloxone µ = k > d antagonist opioid antagonist 2001)

(Emmerson et

al., 1994; naltrexone µ > k > d antagonist opioid antagonist Koprich et al.,

2011)

(Portoghese et naltrindole d > µ = k antagonist opioid antagonist al., 1988)

AMPA > kainate (Sheardown et NBQX AMPA antagonist antagonist al., 1990)

(Kavitha et al., neostigmine AChE inhibitor ChE inhibitor 2007)

non-selective nACh (Benowitz, nicotine nicotinic agonist agonist 2009)

13 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (Wong et al., nisoxetine (LY-94,939) NET inhibitor NET inhibitor 1982)

(Andersen et al.,

1992; Nielsen NNC-01-112 D1 antagonist D1 antagonist and Andersen,

1992)

(Richelson and

Nelson, 1984; nomifensine (HOE- dual monoamine DAT = NET inhibitor, Close et al., 984) re-uptake inhibitor 1990; Tatsumi et

al., 1997)

(Jakubik et al., oxotremorine M1,2,3,4 agonist 1997)

PAMQX (CGP- NMDA antagonist (at (Ametamey et NMDA antagonist 78,608) site) al., 2000)

(Glennon et al., pardoprunox (SLV- D2,3 partial agonist, 5-HT1A dopamine partial 2006; Jones et 308) agonist agonist al., 2010)

(DeWald et al.,

1990; Akunne et

PD-128,907 D2,3 agonist dopamine agonist al., 1995;

Pugsley et al.,

1995)

14 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther

5-HT1A,1D partial agonist,

5-HT2A,2B agonist, D2 pergolide (LY- (Millan et al., agonist, D3,4 partial dopamine agonist 127,809) 2002) agonist, a2A,2B,2C partial

agonist

AChE inhibitor, BuChE (Luo et al., physostigmine ChE inhibitor inhibitor 2006)

pimavanserin (ACP- 5-HT2A inverse (Vanover et al., 5-HT2A,2C inverse agonist 103) agonist 2006)

(Smith, 2001; PPARg > a agonist, pioglitazone PPARg agonist Paddock et al., mitoNEET ligand 2007)

a1A,2A,2C antagonist, D2,3

partial agonist, D4 (Millan et al., piribedil dopamine agonist antagonist, 5-HT1A partial 2002)

agonist

lipid plasmalogen plasmalogen ( et al., PPI-1011 precursor precursor 2011)

(Newman- D2S agonist, D2L,3,4 partial pramipexole dopamine agonist Tancredi et al., agonist 2002a)

(Ford et al., a1A,1B,1C antagonist a1 antagonist 1997)

15 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther preladenant (SCH- (Hodgson et al., A2A antagonist A2A antagonist 420,814) 2009)

(Rupprecht et

al., 1993;

Falkenstein et

al., 1998; Meyer

et al., 1998a;

Meyer et al., nPR agonist, mPR agonist, 1998b; Baulieu PGRMC1 agonist, s1 progesterone PR agonist and agonist, nACh NAM, MR Schumacher, antagonist 2000; Maurice

et al., 2001;

Attardi et al.,

2007;

Johannessen et

al., 2011)

propranolol b1,2 antagonist b antagonist (Baker, 2005)

H1 antagonist, D2 (Schotte et al., antagonist, 5-HT2A atypical anti- 1996; Arnt and quetiapine antagonist, 5-HT1A,1B psychotic Skarsfeldt, agonist, a1A,1B,2C 1998; Richelson antagonist

16 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther and Souder,

2000)

quinpirole (LY- (Millan et al., D2-like agonist D2 agonist 171,555) 2002)

R-(-)-11-OH-NPa (Neumeyer et (apomorphine D1,2 agonist D1,2 agonist al., 1988) derivative)

(Lejeune et al., (R)-(+)-OHDPAT 5-HT1A agonist 5-HT1A agonist 1997)

(Lyon et al.,

1986; Battaglia

et al., 1988; 5-HT2A partial R-MDMA 5-HT2A partial agonist Nash et al., agonist 1994; Verrico et

al., 2007; Huot

et al., 2011)

(Wichmann et raclopride D2,3 antagonist D2,3 antagonist al., 1999)

(Weinshank et rauwolscine (iso- al., 1992; Uhlen yohimbine, a- a2A,2B,2C antagonist, 5- a2 antagonist et al., 1994; yohimbine, HT1D,2D antagonist Wainscott et al., corynanthidine) 1998)

17 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (Subramaniam

NMDA antagonist, Na+ et al., 1996; remacemide NMDA antagonist channel blocker Santangeli et al.,

2002)

RGFP-109 HDAC1,3 inhibitor HDAC inhibitor (Rai et al., 2010)

(SR- cannabinoid (Seely et al., CB1 antagonist 141,716) antagonist 2012)

(Fischer et al., Ro-25,6981 NR2B antagonist NMDA antagonist 1997)

kynurenine 3- kynurenine 3-hydroxylase (Rover et al., Ro-61,8048 hydroxylase inhibitor 1997) inhibitor

(Wichmann et NOP receptor agonist, µ > Ro 65-6570 opioid ligand al., 1999; Toll et k > d ligand al., 2016)

(Eden et al.,

ropinirole (SKF- 1991; Millan et D2,3,4 agonist dopamine agonist 101,468-A) al., 2002; Millan

et al., 2004b)

D1,2,3,4,5 agonist, a1A,B (Beaulieu et al., rotigotine (N-0427, N- ligand, a2A,2B,2C ligand, 5- dopamine agonist 1984; Belluzzi 0923) HT1A partial agonist, 5- et al., 1994; HT7 ligand

18 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Scheller et al.,

2009)

(Millan et al.,

S-32,504 D2,3 agonist dopamine agonist 2004a; Millan et

al., 2004b)

(Cussac et al.,

S-33,084 D3 antagonist D3 antagonist 2000; Millan et

al., 2000a)

(Verrico et al., SERT > DAT inhibitor, dual monoamine S-MDMA 2007; Huot et monoamine releaser re-uptake inhibitor al., 2011)

NET > DAT inhibitor, dual monoamine (Damaj et al., S,S-hydroxybupropion a4b2 nACh antagonist re-uptake inhibitor 2004)

MAO-B inhibitor, (Caccia et al.,

safinamide glutamate release inhibitor, MAO-B inhibitor 2006; Fariello,

Na+ channel blocker 2007)

sarizotan (EMD- 5-HT1A agonist, D2,3,4 (Bartoszyk et 5-HT1A agonist 128,130) antagonist al., 2004)

5-HT1B inverse (Selkirk et al., SB-224,289-A 5-HT1B inverse agonist agonist 1998)

D1 antagonist, 5-HT2C (Millan et al., SCH-23,390 D1 antagonist agonist 2001)

19 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther scopolamine muscarinic (Huang et al., M1,2,3,4 antagonist (hyoscine) antagonist 2001)

(Owens et al., sertraline SERT inhibitor SERT inhibitor 2001)

HMG-CoA reductase HMG-CoA (Hartman et al., simvastatin inhibitor reductase inhibitor 1992)

(Andersen and

Jansen, 1990; SKF-38,393 D1,5 partial agonist D1 partial agonist Sunahara et al.,

1991)

(Andersen and

Jansen, 1990; SKF-75,670 D1 partial agonist D1 partial agonist Gnanalingham

et al., 1995)

(Gnanalingham

et al., 1995; SKF-80,723 D1 agonist D1 agonist Kanda et al.,

2000)

(Gnanalingham

et al., 1995; D1 agonist, oestrogen SKF-82,958 D1 agonist Domino and Ni, receptor-a agonist 1998; Walters et

al., 2002)

20 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther (Gnanalingham SKF-83,565 D1 partial agonist D1 partial agonist et al., 1995)

(Gnanalingham D1 agonist, D2 partial et al., 1995; agonist, s1 allosteric Rashid et al., SKF-83,959 ligand, DAT inhibitor, D1 agonist 2007; Fang et NET inhibitor, SERT al., 2013; Guo et inhibitor al., 2013)

5-HT1B,1D > 5-HT1A (Hatcher et al., SKF-99,101-H 5-HT1B,1D agonist agonist 1995)

(Bilsky et al.,

SNC-80 d agonist d agonist 1995; Metcalf et

al., 2012)

(Bezard et al., ST-198 D3 antagonist D3 antagonist 2003)

(Stasi et al., ST-1535 A2A > A1 antagonist A2A antagonist 2006)

(Maitre et al., D2,3 antagonist, carbonic 1994; Burris et sulpiride anhydrase inhibitor, GHB D2,3 antagonist al., 1995; Sethi ligand et al., 2013)

sumanirole (PNU- (McCall et al., D2 agonist D2 agonist 95,666) 2005)

21 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther talampanel (GYKI- (Wang and Niu, GluA2 antagonist AMPA antagonist 537,773, LY-300,164) 2013)

oestrogen receptor a and b oestrogen receptor (Kuiper et al., tamoxifen modulator modulator 1997)

(Johnston et al.,

TC-8831 b2 nACh agonist nicotinic agonist 2013; Quik et

al., 2013)

a1A,2A,2B,2C antagonist, D2,3

partial agonist, D4 terguride (trans- (Millan et al., antagonist, 5-HT1A,1D,2A D2 partial agonist dihydro-lisuride) 2002) partial agonist, 5-HT2B

antagonist

Na+ channel blocker,

GABAA enhancer, AMPA topiramate AMPA antagonist (Perucca, 1997) antagonist, carbonic

anhydrase inhibitor

muscarinic (Giachetti et al., trihexyphenidyl M1 antagonist antagonist 1986)

(Von

U50-488 k agonist opioid agonist Voigtlander and

Lewis, 1982)

(Black et al., U-91,356-A D2 agonist D2 agonist 1997)

22 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther U-99,194-A (PNU- (Audinot et al., D3 antagonist D3 antagonist 99,194-A) 1998)

(Mor et al., URB-597 (KDS-4103) FAAH inhibitor FAAH inhibitor 2004)

UWA-101 (a- dual monoamine (Johnston et al., DAT = SERT inhibitor cyclopropyl-MDMA) re-uptake inhibitor 2012)

dual monoamine (Huot et al., UWA-121 DAT > SERT inhibitor re-uptake inhibitor 2014)

(Huot et al., UWA-122 SERT inhibitor SERT inhibitor 2014)

non-selective nACh (Mihalak et al., varenicline nicotinic agonist agonist/partial agonist 2006)

(Shen et al., VU-0,476,406 M4 PAM muscarinic PAM 2015)

(Bylund et al.,

1992; Adham et

al., 1993;

a2A,2B,2C antagonist, 5- Devedjian et al., yohimbine a2 antagonist HT1A,1B,1D,1F,2B antagonist 1994; Bonhaus

et al., 1999;

Millan et al.,

2000b)

23 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther 5-HT: 5-hydroxytryptamine (serotonin); a: alpha adrenoceptor (except when followed by nACh, where they correspond to a sub-unit); b: beta adrenoceptor (except when followed by nACh, where they correspond to a sub-unit); d: delta opioid receptor; k opioid receptor; µ opiod receptor; s: sigma receptor; A: ; AChE: acetylcholinesterase; AMPA: α- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; BuChE: butyrylcholinesterase;

CB: ; ChE: ; COMT: catechol-O-methyltransferase; D: dopamine receptor; DAT: ; FAAH: fatty acid amide hydrolase; FFA: free fatty acid receptor; GABA: gamma-aminobutyric acid; GHB: gamma-hydroxybutyric acid;

GluA: AMPA receptor sub-unit; H: ; HDAC: histone deacetylase; HMG-CoA:

3-hydroxy-3-methylglutaryl-coenzyme A; I: imidazoline receptor; M: muscarinic receptor;

MAO-B: ; MDMA: 3,4-methylenedioxymethamphetamine; mGlu: metabotropic glutamate receptor; MPR: membrane progesterone receptor; MR: mineralocorticoid receptor; Na+: ; nACh: nicotinic ; NAM: negative allosteric modulator; NET: noradrenaline transporter; NMDA: N-methyl-D-aspartate; NOP: nociceptin receptor; NPR: natriuretic peptide receptor; NR: NMDA receptor sub-unit; ORL: opioid receptor- like; PAM: positive allosteric modulator; PGRMC1: progesterone receptor membrane component

1; PPAR: peroxisome proliferator-activated receptor; PR: progesterone receptor; RXR: retinoid X receptor; SERT: serotonin transporter; SV: synaptic vesicle glycoprotein; TRPA: transient receptor potential channel ankyrin.

24 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Table S2: comparison of the anti-dyskinetic action of drugs across species

marmose drug human macaque squirrel monkey t

(+)-4-propyl-9-

hydroxynaphth ne na ne na

oxazine

ABT-431 ne ne ne na

AFQ-056 Ö/ne Ö na na

amantadine Ö Ö Ö na

apomorphine ne ne ne na

AQW051 ne Ö na na

atropine ne ne ne na

benztropine ne na ne na

brasofensine ne na ne na

bromocriptine ne ne ne na

bupropion ne na ne na

cabergoline ne ne na na

citalopram Ö Ö na na

clonidine na Ö na na

clozapine Ö Ö Ö na

CP-101,606 Ö ne ne na

25 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther CY-208,243 ne ne ne na

diazepam Ö Ö na na

dipraglurant Ö Ö na na

eltoprazine Ö Ö na na

entacapone de ne ne na

ethosuximide ne ne na na

famotidine ne Ö na na

fipamezole Ö Ö Ö na

haloperidol Ö na Ö na

idazoxan Ö/ne Ö Ö na

istradefylline ne ne ne na

L-tryptophan na Ö na ne

levetiracetam Ö/ne Ö Ö na

melanocyte- ne na ne na inhibiting factor

methysergide ne Ö na na

mianserin na na Ö na

mirtazapine Ö na Ö na

modafinil ne na na na

morphine Ö Ö na na

nabilone Ö na Ö na

naloxone Ö/ne Ö na na

26 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther naltrexone Ö/ne ne/de Ö na

nicotine na na na Ö

nomifensine de na ne na

pardoprunox ne na Ö na

pergolide ne na ne na

physostigmine Ö/ne Ö ne na

pimavanserin ne Ö na na

pioglitazone ne Ö na na

piribedil ne na ne na

pramipexole ne na ne na

preladenant de ne na na

propranolol Ö Ö na na

quetiapine Ö/ne Ö Ö na

remacemide ne ne na na

ropinirole ne na ne na

rotigotine ne ne ne na

safinamide Ö Ö na na

sarizotan ne Ö na na

scopolamine ne na ne na

sertraline ne na na na

simvastatin ne Ö na na

sulpiride Ö Ö ne na

27 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther sumanirole ne ne na na

terguride ne ne ne na

topiramate de/ne na Ö na

trihexyphenidyl ne ne ne na

yohimbine na Ö Ö na

Ö: effective; ne: not effective; de: deleterious; na: not assessed

28 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Table S3: comparison of the anti-parkinsonian action of drugs across species

marmose drug human macaque squirrel monkey t

(+)-4-propyl-9-

hydroxynaphth Ö na Ö na

oxazine

ABT-431 Ö Ö Ö na

AFQ-056 ne Ö na na

amantadine Ö/ne ne/de ne na

apomorphine Ö Ö Ö na

AQW-051 ne Ö na na

atropine Ö Ö Ö na

benztropine Ö na Ö na

brasofensine ne na Ö na

bromocriptine Ö Ö Ö na

bupropion Ö na Ö na

cabergoline Ö Ö na na

citalopram Ö/ne de na na

clonidine Ö Ö/de na na

clozapine Ö ne ne na

CP-101,606 ne Ö Ö na

29 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther CY-208,243 Ö Ö Ö na

diazepam Ö ne na na

dipraglurant ne ne na na

eltoprazine ne de na na

entacapone Ö Ö Ö na

ethosuximide ne/de Ö na na

famotidine ne Ö na na

fipamezole ne Ö Ö na

haloperidol de na de na

idazoxan ne Ö Ö na

istradefylline Ö Ö Ö na

L-tryptophan ne de na na

levetiracetam ne ne ne na

melanocyte- ne na ne na inhibiting factor

methysergide ne de na na

mianserin na na de na

mirtazapine Ö na ne na

modafinil ne na Ö na

morphine de Ö na na

nabilone ne na ne na

naloxone Ö/ne ne na na

30 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther naltrexone ne ne ne na

nicotine Ö/ne na na ne

nomifensine Ö na Ö na

pardoprunox Ö na Ö na

pergolide Ö na Ö na

physostigmine de de de na

pimavanserin ne ne na na

pioglitazone ne de na na

piribedil Ö na Ö na

pramipexole Ö na Ö na

preladenant Ö Ö na na

propranolol Ö/ne de na na

quetiapine ne/de ne ne na

remacemide ne Ö na na

ropinirole Ö na Ö na

rotigotine Ö Ö Ö na

safinamide Ö Ö na na

sarizotan de de na na

scopolamine Ö na Ö na

sertraline ne na de na

simvastatin ne ne na na

sulpiride de de de na

31 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther sumanirole Ö Ö na na

terguride Ö Ö Ö na

topiramate ne na ne na

trihexyphenidyl Ö Ö Ö na

yohimbine Ö ne ne na

Ö: effective; ne: not effective; de: deleterious; na: not assessed

32 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Supplementary references

Abraham G, Solyom S, Csuzdi E, Berzsenyi P, Ling I, Tarnawa I, Hamori T, Pallagi I, Horvath K,

Andrasi F, Kapus G, Harsing LG, Jr., Kiraly I, Patthy M and Horvath G (2000) New non

competitive AMPA antagonists. Bioorg Med Chem 8:2127-2143.

Adham N, Kao HT, Schecter LE, Bard J, Olsen M, Urquhart D, Durkin M, Hartig PR, Weinshank

RL and Branchek TA (1993) Cloning of another human serotonin receptor (5-HT1F): a

fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad

Sci U S A 90:408-412.

Akunne HC, Towers P, Ellis GJ, Dijkstra D, Wikstrom H, Heffner TG, Wise LD and Pugsley TA

(1995) Characterization of binding of [3H]PD 128907, a selective dopamine D3 receptor

agonist ligand, to CHO-K1 cells. Life Sci 57:1401-1410.

Amador M and Dani JA (1991) MK-801 inhibition of nicotinic acetylcholine receptor channels.

Synapse 7:207-215.

Ametamey SM, Kokic M, Carrey-Remy N, Blauenstein P, Willmann M, Bischoff S, Schmutz M,

Schubiger PA and Auberson YP (2000) Synthesis, radiolabelling and biological

characterization of (D)-7-iodo-N-(1-phosphonoethyl)-5-aminomethylquinoxaline-2,3-

dione, a glycine-binding site antagonist of NMDA receptors. Bioorg Med Chem Lett 10:75-

78.

Andersen PH (1989) The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of

action. Eur J Pharmacol 166:493-504.

Andersen PH, Gronvald FC, Hohlweg R, Hansen LB, Guddal E, Braestrup C and Nielsen EB

(1992) NNC-112, NNC-687 and NNC-756, new selective and highly potent dopamine D1

receptor antagonists. Eur J Pharmacol 219:45-52.

33 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Andersen PH and Jansen JA (1990) Dopamine receptor agonists: selectivity and dopamine D1

receptor efficacy. Eur J Pharmacol 188:335-347.

Anttila SA and Leinonen EV (2001) A review of the pharmacological and clinical profile of

mirtazapine. CNS Drug Rev 7:249-264.

Arnt J, Bogeso KP, Christensen AV, Hyttel J, Larsen JJ and Svendsen O (1983) Dopamine receptor

agonistic and antagonistic effects of 3-PPP enantiomers. Psychopharmacology (Berl)

81:199-207.

Arnt J and Skarsfeldt T (1998) Do novel have similar pharmacological

characteristics? A review of the evidence. Neuropsychopharmacology 18:63-101.

Attardi BJ, Zeleznik A, Simhan H, Chiao JP, Mattison DR, Caritis SN and Obstetric-Fetal

Pharmacology Research Unit N (2007) Comparison of progesterone and glucocorticoid

receptor binding and stimulation of gene expression by progesterone, 17-alpha

hydroxyprogesterone caproate, and related progestins. Am J Obstet Gynecol 197:599 e591-

597.

Audinot V, Newman-Tancredi A, Gobert A, Rivet JM, Brocco M, Lejeune F, Gluck L, Desposte

I, Bervoets K, Dekeyne A and Millan MJ (1998) A comparative in vitro and in vivo

pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S

14297, nafadotride, GR 103,691 and U 99194. J Pharmacol Exp Ther 287:187-197.

Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and

beta3 adrenoceptors. Br J Pharmacol 144:317-322.

Barton ME and White HS (2004) The effect of CGX-1007 and CI-1041, novel NMDA receptor

antagonists, on kindling acquisition and expression. Res 59:1-12.

Barton ME, White HS and Wilcox KS (2004) The effect of CGX-1007 and CI-1041, novel NMDA

receptor antagonists, on NMDA receptor-mediated EPSCs. Epilepsy Res 59:13-24.

34 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Bartoszyk GD, Van Amsterdam C, Greiner HE, Rautenberg W, Russ H and Seyfried CA (2004)

Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1.

Neurochemical profile. J Neural Transm 111:113-126.

Battaglia G, Brooks BP, Kulsakdinun C and De Souza EB (1988) Pharmacologic profile of MDMA

(3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J

Pharmacol 149:159-163.

Baulieu E and Schumacher M (2000) Progesterone as a neuroactive neurosteroid, with special

reference to the effect of progesterone on myelination. Steroids 65:605-612.

Beaulieu M, Itoh Y, Tepper P, Horn AS and Kebabian JW (1984) N,N-disubstituted 2-

aminotetralins are potent D-2 dopamine receptor agonists. Eur J Pharmacol 105:15-21.

Belluzzi JD, Domino EF, May JM, Bankiewicz KS and McAfee DA (1994) N-0923, a selective

dopamine D2 receptor agonist, is efficacious in rat and monkey models of Parkinson's

disease. Mov Disord 9:147-154.

Ben-Daniel R, Deuther-Conrad W, Scheunemann M, Steinbach J, Brust P and Mishani E (2008)

Carbon-11 labeled indolylpropylamine analog as a new potential PET agent for imaging of

the serotonin transporter. Bioorg Med Chem 16:6364-6370.

Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and

therapeutics. Annu Rev Pharmacol Toxicol 49:57-71.

Bergeron R, de Montigny C and Debonnel G (1996) Potentiation of neuronal NMDA response

induced by and its suppression by progesterone: effects mediated

via sigma receptors. J Neurosci 16:1193-1202.

Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C and Sokoloff P (2003)

Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor

function. Nat Med 9:762-767.

35 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Bilsky EJ, Calderon SN, Wang T, Bernstein RN, Davis P, Hruby VJ, McNutt RW, Rothman RB,

Rice KC and Porreca F (1995) SNC 80, a selective, nonpeptidic and systemically active

opioid delta agonist. J Pharmacol Exp Ther 273:359-366.

Blaazer AR, Lange JH, van der Neut MA, Mulder A, den Boon FS, Werkman TR, Kruse CG and

Wadman WJ (2011) Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB)

receptor agonists: design, synthesis, structure-activity relationships, physicochemical

properties and biological activity. Eur J Med Chem 46:5086-5098.

Black KJ, Gado MH and Perlmutter JS (1997) PET measurement of dopamine D2 receptor-

mediated changes in striatopallidal function. J Neurosci 17:3168-3177.

Blanchet PJ, Konitsiotis S, Whittemore ER, Zhou ZL, Woodward RM and Chase TN (1999)

Differing effects of N-methyl-D-aspartate receptor subtype selective antagonists on

dyskinesias in levodopa-treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J

Pharmacol Exp Ther 290:1034-1040.

Blanpied TA, Clarke RJ and Johnson JW (2005) Amantadine inhibits NMDA receptors by

accelerating channel closure during channel block. J Neurosci 25:3312-3322.

Bonhaus DW, Flippin LA, Greenhouse RJ, Jaime S, Rocha C, Dawson M, Van Natta K, Chang

LK, Pulido-Rios T, Webber A, Leung E, Eglen RM and Martin GR (1999) RS-127445: a

selective, high affinity, orally bioavailable 5-HT2B receptor antagonist. Br J Pharmacol

127:1075-1082.

Bonhaus DW, Weinhardt KK, Taylor M, DeSouza A, McNeeley PM, Szczepanski K, Fontana DJ,

Trinh J, Rocha CL, Dawson MW, Flippin LA and Eglen RM (1997) RS-102221: a novel

high affinity and selective, 5-HT2C receptor antagonist. Neuropharmacology 36:621-629.

36 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Booth RG, Moniri NH, Bakker RA, Choksi NY, Nix WB, Timmerman H and Leurs R (2002) A

novel phenylaminotetralin radioligand reveals a subpopulation of histamine H(1) receptors.

J Pharmacol Exp Ther 302:328-336.

Brimecombe JC, Boeckman FA and Aizenman E (1997) Functional consequences of NR2 subunit

composition in single recombinant N-methyl-D-aspartate receptors. Proc Natl Acad Sci U

S A 94:11019-11024.

Burris KD, Pacheco MA, Filtz TM, Kung MP, Kung HF and Molinoff PB (1995) Lack of

discrimination by agonists for D2 and D3 dopamine receptors. Neuropsychopharmacology

12:335-345.

Burstein ES, Carlsson ML, Owens M, Ma JN, Schiffer HH, Carlsson A and Hacksell U (2011) II.

In vitro evidence that (-)-OSU6162 and (+)-OSU6162 produce their behavioral effects

through 5-HT2A serotonin and D2 dopamine receptors. J Neural Transm (Vienna)

118:1523-1533.

Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ and Lomasney JW (1992)

Pharmacological characteristics of alpha 2-adrenergic receptors: comparison of

pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol

Pharmacol 42:1-5.

Caccia C, Maj R, Calabresi M, Maestroni S, Faravelli L, Curatolo L, Salvati P and Fariello RG

(2006) Safinamide: from molecular targets to a new anti-Parkinson drug. Neurology

67:S18-23.

Cao X, Liang L, Hadcock JR, Iredale PA, Griffith DA, Menniti FS, Factor S, Greenamyre JT and

Papa SM (2007) Blockade of cannabinoid type 1 receptors augments the antiparkinsonian

action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine-treated rhesus monkeys. J Pharmacol Exp Ther 323:318-326.

37 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Carlsson ML, Burstein ES, Kloberg A, Hansson S, Schedwin A, Nilsson M, Rung JP and Carlsson

A (2011) I. In vivo evidence for partial agonist effects of (-)-OSU6162 and (+)-OSU6162

on 5-HT2A serotonin receptors. J Neural Transm (Vienna) 118:1511-1522.

Carroll FI, Blough BE, Abraham P, Mills AC, Holleman JA, Wolckenhauer SA, Decker AM,

Landavazo A, McElroy KT, Navarro HA, Gatch MB and Forster MJ (2009) Synthesis and

biological evaluation of bupropion analogues as potential pharmacotherapies for

addiction. J Med Chem 52:6768-6781.

Chae E, Shin YJ, Ryu EJ, Ji MK, Ryune Cho N, Lee KH, Jeong HJ, Kim SJ, Choi Y, Seok Oh K,

Park CE and Soo Yoon Y (2013) Discovery of biological evaluation of pyrazole/imidazole

amides as mGlu5 receptor negative allosteric modulators. Bioorg Med Chem Lett 23:2134-

2139.

Cheetham S, Butler S, Hearson M, Kerrigan F, Martin K, Needham P, Prow M, Sargent B, Slater

N and Skill M (1998) BTS 74 398: a novel monoamine reuptake inhibitor for the treatment

of Parkinson's disease. Br J Pharmacol 123 Suppl 1:224P.

Chen F, Knecht K, Birzin E, Fisher J, Wilkinson H, Mojena M, Moreno CT, Schmidt A, Harada

S, Freedman LP and Reszka AA (2005) Direct agonist/antagonist functions of

dehydroepiandrosterone. Endocrinology 146:4568-4576.

Chenard BL, Bordner J, Butler TW, Chambers LK, Collins MA, De Costa DL, Ducat MF, Dumont

ML, Fox CB, Mena EE and et al. (1995) (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-

phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-D-

aspartate responses. J Med Chem 38:3138-3145.

Chremos AN (1987) Clinical pharmacology of famotidine: a summary. J Clin Gastroenterol 9

Suppl 2:7-12.

38 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Close SP, Elliott PJ, Hayes AG and Marriott AS (1990) Effects of classical and novel agents in a

MPTP-induced reversible model of Parkinson's disease. Psychopharmacology (Berl)

102:295-300.

Cobos EJ, del Pozo E and Baeyens JM (2007) Irreversible blockade of sigma-1 receptors by

haloperidol and its metabolites in guinea brain and SH-SY5Y human neuroblastoma

cells. J Neurochem 102:812-825.

Cosford ND, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang

X, McDonald I, Rao S, Washburn M and Varney MA (2003) 3-[(2-Methyl-1,3-thiazol-4-

yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5

receptor antagonist with anxiolytic activity. J Med Chem 46:204-206.

Cussac D, Newman-Tancredi A, Sezgin L and Millan MJ (2000) The novel antagonist, S33084,

and GR218,231 interact selectively with cloned and native, rat dopamine D(3) receptors as

compared with native, rat dopamine D(2) receptors. Eur J Pharmacol 394:47-50.

Damaj MI, Carroll FI, Eaton JB, Navarro HA, Blough BE, Mirza S, Lukas RJ and Martin BR

(2004) Enantioselective effects of hydroxy metabolites of bupropion on behavior and on

function of monoamine transporters and nicotinic receptors. Mol Pharmacol 66:675-682. de Boer T (1996) The pharmacologic profile of mirtazapine. J Clin Psychiatry 57 Suppl 4:19-25. de Boer TH, Maura G, Raiteri M, de Vos CJ, Wieringa J and Pinder RM (1988) Neurochemical

and autonomic pharmacological profiles of the 6-aza-analogue of mianserin, Org 3770 and

its enantiomers. Neuropharmacology 27:399-408.

Devedjian JC, Esclapez F, Denis-Pouxviel C and Paris H (1994) Further characterization of human

alpha 2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional

selective drugs. Eur J Pharmacol 252:43-49.

39 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther DeWald HA, Heffner TG, Jaen JC, Lustgarten DM, McPhail AT, Meltzer LT, Pugsley TA and

Wise LD (1990) Synthesis and dopamine agonist properties of (+-)-trans-3,4,4a,10b-

tetrahydro-4-propyl-2H,5H-[1]benzopyrano [4,3-b]-1,4-oxazin-9-ol and its enantiomers. J

Med Chem 33:445-450.

Domino EF and Ni L (1998) Trihexyphenidyl interactions with the dopamine D1-selective receptor

agonist SKF-82958 and the D2-selective receptor agonist N-0923 in 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine-induced hemiparkinsonian monkeys. J Pharmacol Exp Ther

284:307-311.

Dowling MR and Charlton SJ (2006) Quantifying the association and dissociation rates of

unlabelled antagonists at the muscarinic M3 receptor. Br J Pharmacol 148:927-937.

Doxey JC, Lane AC, Roach AG and Virdee NK (1984) Comparison of the alpha-adrenoceptor

antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and .

Naunyn Schmiedebergs Arch Pharmacol 325:136-144.

Eden RJ, Costall B, Domeney AM, Gerrard PA, Harvey CA, Kelly ME, Naylor RJ, Owen DA and

Wright A (1991) Preclinical pharmacology of ropinirole (SK&F 101468-A) a novel

dopamine D2 agonist. Pharmacol Biochem Behav 38:147-154.

Ehrlich PP, Ralston JW and Michaelides MR (1997) An Efficient Enantioselective Synthesis of

the D1 Agonist (5aR,11bS)-4,5,5a,6,7,11b-Hexahydro-2-propyl-3-thia- 5-

azacyclopenta[c]phenanthrene-9,10-diol (A-86929). J Org Chem 62:2782-2785.

Emmerson PJ, Liu MR, Woods JH and Medzihradsky F (1994) Binding affinity and selectivity of

at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp

Ther 271:1630-1637.

Ernsberger P, Meeley MP, Mann JJ and Reis DJ (1987) Clonidine binds to imidazole binding sites

as well as alpha 2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol 134:1-13.

40 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Falkenstein E, Schmieding K, Lange A, Meyer C, Gerdes D, Welsch U and Wehling M (1998)

Localization of a putative progesterone membrane binding protein in porcine hepatocytes.

Cell Mol Biol (Noisy-le-grand) 44:571-578.

Fang X, Guo L, Jia J, Jin GZ, Zhao B, Zheng YY, Li JQ, Zhang A and Zhen XC (2013) SKF83959

is a novel triple reuptake inhibitor that elicits anti-depressant activity. Acta Pharmacol Sin

34:1149-1155.

Fariello RG (2007) Safinamide. Neurotherapeutics 4:110-116.

Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL and Mitchell RL

(1995) Comparison of the pharmacology and signal transduction of the human cannabinoid

CB1 and CB2 receptors. Mol Pharmacol 48:443-450.

Feng B, Tse HW, Skifter DA, Morley R, Jane DE and Monaghan DT (2004) Structure-activity

analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-

2-carbonyl) -2,3-dicarboxylic acid. Br J Pharmacol 141:508-516.

Fernandez J, Alonso JM, Andres JI, Cid JM, Diaz A, Iturrino L, Gil P, Megens A, Sipido VK and

Trabanco AA (2005) Discovery of new tetracyclic tetrahydrofuran derivatives as potential

broad-spectrum psychotropic agents. J Med Chem 48:1709-1712.

Fernstrom JD (1983) Role of precursor availability in control of monoamine biosynthesis in brain.

Physiol Rev 63:484-546.

Feuerbach D, Pezous N, Weiss M, Shakeri-Nejad K, Lingenhoehl K, Hoyer D, Hurth K, Bilbe G,

Pryce CR, McAllister K, Chaperon F, Kucher K, Johns D, Blaettler T and Lopez Lopez C

(2015) AQW051, a novel, potent and selective alpha7 nicotinic ACh receptor partial

agonist: pharmacological characterization and phase I evaluation. Br J Pharmacol

172:1292-1304.

41 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP and Kemp JA (1997)

Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors

containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 283:1285-

1292.

Ford AP, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD and Clarke DE (1997)

Pharmacological pleiotropism of the human recombinant alpha1A-adrenoceptor:

implications for alpha1-adrenoceptor classification. Br J Pharmacol 121:1127-1135.

Fredholm BB, AP IJ, Jacobson KA, Linden J and Muller CE (2011) International Union of Basic

and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine

receptors--an update. Pharmacol Rev 63:1-34.

Fruchart-Gaillard C, Mourier G, Marquer C, Menez A and Servent D (2006) Identification of

various allosteric interaction sites on M1 muscarinic receptor using 125I-Met35-oxidized

muscarinic toxin 7. Mol Pharmacol 69:1641-1651.

Garbarg M, Arrang JM, Rouleau A, Ligneau X, Tuong MD, Schwartz JC and Ganellin CR (1992)

S-[2-(4-imidazolyl)ethyl]isothiourea, a highly specific and potent histamine H3 receptor

agonist. J Pharmacol Exp Ther 263:304-310.

Gasparini F, Lingenhohl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H,

Heckendorn R, Urwyler S, Varney MA, Johnson EC, Hess SD, Rao SP, Sacaan AI, Santori

EM, Velicelebi G and Kuhn R (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a

potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology

38:1493-1503.

Giachetti A, Giraldo E, Ladinsky H and Montagna E (1986) Binding and functional profiles of the

selective M1 muscarinic receptor antagonists trihexyphenidyl and dicyclomine. Br J

Pharmacol 89:83-90.

42 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Gill R, A, Bourson A, Buttelmann B, Fischer G, Heitz MP, Kew JN, Levet-Trafit B, Lorez

HP, Malherbe P, Miss MT, Mutel V, Pinard E, Roever S, Schmitt M, Trube G, Wybrecht

R, Wyler R and Kemp JA (2002) Pharmacological characterization of Ro 63-1908 (1-[2-

(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol), a novel subtype-

selective N-methyl-D-aspartate antagonist. J Pharmacol Exp Ther 302:940-948.

Glennon JC, Van Scharrenburg G, Ronken E, Hesselink MB, Reinders JH, Van Der Neut M, Long

SK, Feenstra RW and McCreary AC (2006) In vitro characterization of SLV308 (7-[4-

methyl-1-piperazinyl]-2(3H)-benzoxazolone, monohydrochloride): a novel partial

dopamine D2 and D3 receptor agonist and serotonin 5-HT1A receptor agonist. Synapse

60:599-608.

Gnanalingham KK, Erol DD, Hunter AJ, Smith LA, Jenner P and Marsden CD (1995) Differential

anti-parkinsonian effects of benzazepine D1 dopamine agonists with varying efficacies in

the MPTP-treated common marmoset. Psychopharmacology (Berl) 117:275-286.

Gomora JC, Daud AN, Weiergraber M and Perez-Reyes E (2001) Block of cloned human T-type

calcium channels by succinimide antiepileptic drugs. Mol Pharmacol 60:1121-1132.

Gower AJ and Marriott AS (1982) Pharmacological evidence for the subclassification of central

dopamine receptors in the rat. Br J Pharmacol 77:185-193.

Guo L, Zhao J, Jin G, Zhao B, Wang G, Zhang A and Zhen X (2013) SKF83959 is a potent

allosteric modulator of sigma-1 receptor. Mol Pharmacol 83:577-586.

Haig G, Wang D, Othman AA and Zhao J (2016) The alpha7 Nicotinic Agonist ABT-126 in the

Treatment of Cognitive Impairment Associated with Schizophrenia in Nonsmokers: Results

from a Randomized Controlled Phase 2b Study. Neuropsychopharmacology 41:2893-2902.

Hartman GD, Halczenko W, Duggan ME, Imagire JS, Smith RL, Pitzenberger SM, Fitzpatrick SL,

Alberts AW, Bostedor R, Chao YS and et al. (1992) 3-Hydroxy-3-methylglutaryl-

43 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther coenzyme A reductase inhibitors. 9. The synthesis and biological evaluation of novel

simvastatin analogs. J Med Chem 35:3813-3821.

Hatcher JP, Slade PD, Roberts C and Hagan JJ (1995) 5-HT 1D receptors mediate SKF 99101H-

induced hypothermia in the guinea pig. J Psychopharmacol 9:234-241.

Heinrich JN, Brennan J, Lai MH, Sullivan K, Hornby G, Popiolek M, Jiang LX, Pausch MH, Stack

G, Marquis KL and Andree TH (2006) Aplindore (DAB-452), a high affinity selective

dopamine D2 receptor partial agonist. Eur J Pharmacol 552:36-45.

Herman BH, Vocci F and Bridge P (1995) The effects of NMDA receptor antagonists and nitric

oxide synthase inhibitors on opioid tolerance and withdrawal. Medication development

issues for opiate addiction. Neuropsychopharmacology 13:269-293.

Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe

M, Mitsuya M, Ohtake N, Mase T and Noguchi K (2001) Pharmacological properties of

(2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopen tyl]-

2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing

antagonistic activity. J Pharmacol Exp Ther 297:790-797.

Hirst WD, Babbs AJ, Green A, Minton JA, Shaw TE, Wise A, Rice SQ, Pangalos MN and Price

GW (2003) Pharmacological characterisation of a cell line expressing GABA B1b and

GABA B2 receptor subunits. Biochem Pharmacol 65:1103-1113.

Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S, Cohen-Williams ME,

Higgins GA, Impagnatiello F, Nicolussi E, Parra LE, Foster C, Zhai Y, Neustadt BR,

Stamford AW, Parker EM, Reggiani A and Hunter JC (2009) Characterization of the potent

and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-

difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e ][1,2,4]triazolo[1,5-

44 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J

Pharmacol Exp Ther 330:294-303.

Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR and

Humphrey PP (1994) International Union of Pharmacology classification of receptors for

5-hydroxytryptamine (Serotonin). Pharmacol Rev 46:157-203.

Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G and Bodor N (2001)

Receptor binding studies of soft anticholinergic agents. AAPS PharmSci 3:E30.

Huot P, Johnston TH, Lewis KD, Koprich JB, Reyes MG, Fox SH, Piggott MJ and Brotchie JM

(2011) Characterization of 3,4-Methylenedioxymethamphetamine (MDMA) Enantiomers

In Vitro and in the MPTP-Lesioned Primate: R-MDMA Reduces Severity of Dyskinesia,

Whereas S-MDMA Extends Duration of ON-Time. J Neurosci 31:7190-7198.

Huot P, Johnston TH, Lewis KD, Koprich JB, Reyes MG, Fox SH, Piggott MJ and Brotchie JM

(2014) UWA-121, a mixed dopamine and serotonin re-uptake inhibitor, enhances L-DOPA

anti-parkinsonian action without worsening dyskinesia or psychosis-like behaviours in the

MPTP-lesioned common marmoset. Neuropharmacology 82:76-87.

Hyttel J (1982) Citalopram--pharmacological profile of a specific serotonin uptake inhibitor with

antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry 6:277-295.

Hyttel J (1994) Pharmacological characterization of selective serotonin reuptake inhibitors

(SSRIs). Int Clin Psychopharmacol 9 Suppl 1:19-26.

Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka

Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H,

Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y and Fujino M (2003) Free

fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature

422:173-176.

45 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Iyengar S, Wood PL, Mick SJ, Dilworth VM, Gray NM, Farah JM, Rao TS and Contreras PC

(1991) (+) 3-[3-hydroxyphenyl-N-(1-propyl) piperidine] selectively differentiates effects

of sigma ligands on neurochemical pathways modulated by sigma receptors: evidence for

subtypes, in vivo. Neuropharmacology 30:915-922.

Jakubik J, Bacakova L, El-Fakahany EE and Tucek S (1997) Positive cooperativity of acetylcholine

and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol

Pharmacol 52:172-179.

Jasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SA, Daunt DA, Bonhaus DW

and Eglen RM (1998) Ligand efficacy and at recombinant alpha2 adrenergic

receptors: agonist-mediated [35S]GTPgammaS binding. Biochem Pharmacol 55:1035-

1043.

Ji J, Schrimpf MR, Sippy KB, Bunnelle WH, Li T, Anderson DJ, Faltynek C, Surowy CS, Dyhring

T, Ahring PK and Meyer MD (2007) Synthesis and structure-activity relationship studies

of 3,6-diazabicyclo[3.2.0]heptanes as novel alpha4beta2 nicotinic acetylcholine receptor

selective agonists. J Med Chem 50:5493-5508.

Johannessen M, Fontanilla D, Mavlyutov T, Ruoho AE and Jackson MB (2011) Antagonist action

of progesterone at sigma-receptors in the modulation of voltage-gated sodium channels. Am

J Physiol Cell Physiol 300:C328-337.

Johnston TH, Fox SH, Piggott MJ, Savola JM and Brotchie JM (2010) The alpha adrenergic

antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Mov

Disord 25:2084-2093.

Johnston TH, Huot P, Fox SH, Koprich JB, Szeliga KT, James JW, Graef JD, Letchworth SR,

Jordan KG, Hill MP and Brotchie JM (2013) TC-8831, a nicotinic acetylcholine receptor

46 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology

73C:337-347.

Johnston TH, Millar Z, Huot P, Wagg K, Thiele S, Salomonczyk D, Yong-Kee CJ, Gandy MN,

McIldowie M, Lewis KD, Gomez-Ramirez J, Lee J, Fox SH, Martin-Iverson M, Nash JE,

Piggott MJ and Brotchie JM (2012) A novel MDMA analogue, UWA-101, that lacks

psychoactivity and cytotoxicity, enhances L-DOPA benefit in parkinsonian primates.

FASEB J 26:2154-2163.

Jones CA, Johnston LC, Jackson MJ, Smith LA, van Scharrenburg G, Rose S, Jenner PG and

McCreary AC (2010) An in vivo pharmacological evaluation of pardoprunox (SLV308)--a

novel combined dopamine D(2)/D(3) receptor partial agonist and 5-HT(1A) receptor

agonist with efficacy in experimental models of Parkinson's disease. Eur

Neuropsychopharmacol 20:582-593.

Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y and Jenner P (2000)

Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective

D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in

MPTP-treated monkeys. Exp Neurol 162:321-327.

Kavitha CV, Gaonkar SL, Narendra Sharath Chandra JN, Sadashiva CT and Rangappa KS (2007)

Synthesis and screening for acetylcholinesterase inhibitor activity of some novel 2-butyl-

1,3-diaza-spiro[4,4]non-1-en-4-ones: derivatives of irbesartan key intermediate. Bioorg

Med Chem 15:7391-7398.

Kawamoto H, Ozaki S, Itoh Y, Miyaji M, Arai S, Nakashima H, Kato T, Ohta H and Iwasawa Y

(1999) Discovery of the first potent and selective small molecule opioid receptor-like

(ORL1) antagonist: 1-[(3R,4R)-1-cyclooctylmethyl-3- hydroxymethyl-4-piperidyl]-3-

ethyl-1, 3-dihydro-2H-benzimidazol-2-one (J-113397). J Med Chem 42:5061-5063.

47 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R and Williams

M (1992) A-77636: a potent and selective dopamine D1 receptor agonist with

antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203-209.

Kitbunnadaj R, Zuiderveld OP, De Esch IJ, Vollinga RC, Bakker R, Lutz M, Spek AL, Cavoy E,

Deltent MF, Menge WM, Timmerman H and Leurs R (2003) Synthesis and structure-

activity relationships of conformationally constrained histamine H(3) receptor agonists. J

Med Chem 46:5445-5457.

Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G and Bickerdike M (2004)

Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-

HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch Pharmacol 370:114-123.

Koe BK, Nielsen JA, Macor JE and Heym J (1992) Biochemical and behavioral studies of the 5-

HT1B receptor agonist, CP-94,253. Drug Dev Res 26:241-250.

Kooyman AR, Zwart R, Vanderheijden PM, Van Hooft JA and Vijverberg HP (1994) Interaction

between enantiomers of mianserin and ORG3770 at 5-HT3 receptors in cultured mouse

neuroblastoma cells. Neuropharmacology 33:501-507.

Koprich JB, Fox SH, Johnston TH, Goodman A, Le Bourdonnec B, Dolle RE, Dehaven RN,

Dehaven-Hudkins DL, Little PJ and Brotchie JM (2011) The selective mu-opioid receptor

antagonist adl5510 reduces levodopa-induced dyskinesia without affecting

antiparkinsonian action in mptp-lesioned macaque model of Parkinson's disease. Mov

Disord 26:1225-1233.

Koprich JB, Huot P, Fox SH, Jarvie K, Lang AE, Seeman P and Brotchie JM (2013) The effects

of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and psychosis in

parkinsonian macaques. Prog Neuropsychopharmacol Biol Psychiatry 43:151-156.

48 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Korinek M, Kapras V, Vyklicky V, Adamusova E, Borovska J, Vales K, Stuchlik A, Horak M,

Chodounska H and Vyklicky L, Jr. (2011) Neurosteroid modulation of N-methyl-D-

aspartate receptors: molecular mechanism and behavioral effects. Steroids 76:1409-1418.

Krintel C, Harpsoe K, Zachariassen LG, Peters D, Frydenvang K, Pickering DS, Gajhede M and

Kastrup JS (2013) Structural analysis of the positive AMPA receptor modulators CX516

and Me-CX516 in complex with the GluA2 ligand-binding domain. Acta Crystallogr D

Biol Crystallogr 69:1645-1652.

Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K,

Meltzer HY and Roth BL (2003) H1-histamine receptor affinity predicts short-term weight

gain for typical and drugs. Neuropsychopharmacology 28:519-526.

Kuiper GG, Carlsson B, Grandien K, Enmark E, Ha Ggblad J, Nilsson S and Gustafsson JK (1997)

Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of

Estrogen Receptors alpha and beta. Endocrinology 138:863-870.

Lahti RA, Evans DL, Stratman NC and Figur LM (1993) Dopamine D4 versus D2 receptor

selectivity of dopamine receptor antagonists: possible therapeutic implications. Eur J

Pharmacol 236:483-486.

Lampen A, Meyer S and Nau H (2001) Phytanic acid and docosahexaenoic acid increase the

metabolism of all-trans-retinoic acid and CYP26 gene expression in intestinal cells.

Biochim Biophys Acta 1521:97-106.

Lapinsky DJ, Aggarwal S, Huang Y, Surratt CK, Lever JR, Foster JD and Vaughan RA (2009) A

novel photoaffinity ligand for the dopamine transporter based on . Bioorg Med

Chem 17:3770-3774.

Lejeune F, Newman-Tancredi A, Audinot V and Millan MJ (1997) Interactions of (+)- and (-)-8-

and 7-hydroxy-2-(di-n-propylamino)tetralin at human (h)D3, hD2 and h serotonin1A

49 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther receptors and their modulation of the activity of serotoninergic and dopaminergic neurones

in rats. J Pharmacol Exp Ther 280:1241-1249.

Leysen JE, Awouters F, Kennis L, Laduron PM, Vandenberk J and Janssen PA (1981) Receptor

binding profile of R 41 468, a novel antagonist at 5-HT2 receptors. Life Sci 28:1015-1022.

Liegeois JF, Bruhwyler J, Damas J, Rogister F, Masereel B, Geczy J and Delarge J (1995)

Modulation of the clozapine structure increases its selectivity for the dopamine D4 receptor.

Eur J Pharmacol 273:R1-3.

Liu C, Ma X, Jiang X, Wilson SJ, Hofstra CL, Blevitt J, Pyati J, Li X, Chai W, Carruthers N and

Lovenberg TW (2001) Cloning and pharmacological characterization of a fourth histamine

receptor (H(4)) expressed in bone marrow. Mol Pharmacol 59:420-426.

Loschmann PA, Chong PN, Nomoto M, Tepper PG, Horn AS, Jenner P and Marsden CD (1989)

Stereoselective reversal of MPTP-induced parkinsonism in the marmoset after dermal

application of N-0437. Eur J Pharmacol 166:373-380.

Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I and Taskinen J (1995) Kinetics

of human soluble and membrane-bound catechol O-methyltransferase: a revised

mechanism and description of the thermolabile variant of the enzyme. Biochemistry

34:4202-4210.

Luo W, Yu QS, Kulkarni SS, Parrish DA, Holloway HW, Tweedie D, Shafferman A, Lahiri DK,

Brossi A and Greig NH (2006) Inhibition of human acetyl- and butyrylcholinesterase by

novel carbamates of (-)- and (+)-tetrahydrofurobenzofuran and methanobenzodioxepine. J

Med Chem 49:2174-2185.

Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A and Fuks B (2004)

The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug

levetiracetam. Proc Natl Acad Sci U S A 101:9861-9866.

50 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Lyon RA, Glennon RA and Titeler M (1986) 3,4-Methylenedioxymethamphetamine (MDMA):

stereoselective interactions at brain 5-HT1 and 5-HT2 receptors. Psychopharmacology

(Berl) 88:525-526.

Maitre M, Ratomponirina C, Gobaille S, Hode Y and Hechler V (1994) Displacement of [3H]

gamma-hydroxybutyrate binding by neuroleptics and but not

by other antipsychotics. Eur J Pharmacol 256:211-214.

Malysz J, Anderson DJ, Gronlien JH, Ji J, Bunnelle WH, Hakerud M, Thorin-Hagene K, Ween H,

Helfrich R, Hu M, Gubbins E, Gopalakrishnan S, Puttfarcken PS, Briggs CA, Li J, Meyer

MD, Dyhring T, Ahring PK, Nielsen EO, Peters D, Timmermann DB and Gopalakrishnan

M (2010) In vitro pharmacological characterization of a novel selective alpha7 neuronal

nicotinic acetylcholine receptor agonist ABT-107. J Pharmacol Exp Ther 334:863-874.

Marks MJ, Wageman CR, Grady SR, Gopalakrishnan M and Briggs CA (2009) Selectivity of ABT-

089 for alpha4beta2* and alpha6beta2* nicotinic acetylcholine receptors in brain. Biochem

Pharmacol 78:795-802.

Martin GE, Williams M, Pettibone DJ, Zrada MM, Lotti VJ, Taylor DA and Jones JH (1985)

Selectivity of (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] for dopamine receptors

in vitro and in vivo. J Pharmacol Exp Ther 233:395-401.

Mathiesen JM, Svendsen N, Brauner-Osborne H, Thomsen C and Ramirez MT (2003) Positive

allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-

1893 and MPEP. Br J Pharmacol 138:1026-1030.

Matsubayashi H, Swanson KL and Albuquerque EX (1997) Amantadine inhibits nicotinic

acetylcholine receptor function in hippocampal neurons. J Pharmacol Exp Ther 281:834-

844.

51 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Maurice T, Junien JL and Privat A (1997) Dehydroepiandrosterone sulfate attenuates dizocilpine-

induced learning impairment in mice via sigma 1-receptors. Behav Brain Res 83:159-164.

Maurice T, Urani A, Phan VL and Romieu P (2001) The interaction between neuroactive steroids

and the sigma1 receptor function: behavioral consequences and therapeutic opportunities.

Brain Res Brain Res Rev 37:116-132.

McCall RB, Lookingland KJ, Bedard PJ and Huff RM (2005) Sumanirole, a highly dopamine D2-

selective receptor agonist: in vitro and in vivo pharmacological characterization and

efficacy in animal models of Parkinson's disease. J Pharmacol Exp Ther 314:1248-1256.

Metcalf MD, Yekkirala AS, Powers MD, Kitto KF, Fairbanks CA, Wilcox GL and Portoghese PS

(2012) The delta opioid receptor agonist SNC80 selectively activates heteromeric mu-delta

opioid receptors. ACS Chem Neurosci 3:505-509.

Meyer C, Schmid R, Schmieding K, Falkenstein E and Wehling M (1998a) Characterization of

high affinity progesterone-binding membrane proteins by anti-peptide antiserum. Steroids

63:111-116.

Meyer C, Schmieding K, Falkenstein E and Wehling M (1998b) Are high-affinity progesterone

binding site(s) from porcine microsomes members of the sigma receptor family? Eur

J Pharmacol 347:293-299.

Michaelides MR, Hong Y, DiDomenico S, Jr., Asin KE, Britton DR, Lin CW, Williams M and

Shiosaki K (1995) (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-

1- ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1 agonist

that maintains behavioral efficacy following repeated administration and characterization

of its diacetyl prodrug (ABT-431). J Med Chem 38:3445-3447.

Mihalak KB, Carroll FI and Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and

a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801-805.

52 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Millan MJ, Cussac D, Gobert A, Lejeune F, Rivet JM, Mannoury La Cour C, Newman-Tancredi

A and Peglion JL (2004a) S32504, a novel naphtoxazine agonist at dopamine D3/D2

receptors: I. Cellular, electrophysiological, and neurochemical profile in comparison with

ropinirole. J Pharmacol Exp Ther 309:903-920.

Millan MJ, Di Cara B, Hill M, Jackson M, Joyce JN, Brotchie J, McGuire S, Crossman A, Smith

L, Jenner P, Gobert A, Peglion JL and Brocco M (2004b) S32504, a novel naphtoxazine

agonist at dopamine D3/D2 receptors: II. Actions in rodent, primate, and cellular models of

antiparkinsonian activity in comparison to ropinirole. J Pharmacol Exp Ther 309:921-935.

Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM, Audinot V, Dubuffet

T and Lavielle G (2000a) S33084, a novel, potent, selective, and competitive antagonist at

dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile

compared with GR218,231 and L741,626. J Pharmacol Exp Ther 293:1048-1062.

Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA and Newman-Tancredi A (2002)

Differential actions of antiparkinson agents at multiple classes of receptor.

I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human

receptor subtypes. J Pharmacol Exp Ther 303:791-804.

Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Coge F, Galizzi

JP, Boutin JA, Rivet JM, Dekeyne A and Gobert A (2000b) Agonist and antagonist actions

of yohimbine as compared to at alpha(2)-adrenergic receptors (AR)s, serotonin

(5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for

the modulation of frontocortical monoaminergic transmission and depressive states.

Synapse 35:79-95.

53 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Millan MJ, Newman-Tancredi A, Quentric Y and Cussac D (2001) The "selective" dopamine D1

receptor antagonist, SCH23390, is a potent and high efficacy agonist at cloned human

serotonin2C receptors. Psychopharmacology (Berl) 156:58-62.

Mor M, Rivara S, Lodola A, Plazzi PV, Tarzia G, Duranti A, Tontini A, Piersanti G, Kathuria S

and Piomelli D (2004) Cyclohexylcarbamic acid 3'- or 4'-substituted biphenyl-3-yl esters

as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity

relationships, and molecular modeling studies. J Med Chem 47:4998-5008.

Motter AL and Ahern GP (2012) TRPA1 is a polyunsaturated fatty acid sensor in mammals. PLoS

One 7:e38439.

Mulder AH, Stoof JC and Horn AS (1980) Activation of presynaptic alpha-noradrenaline receptors

in rat brain by the potent dopamine-mimetic N,N-dipropyl-5,6-ADTN. Eur J Pharmacol

67:147-150.

Nash JF, Roth BL, Brodkin JD, Nichols DE and Gudelsky GA (1994) Effect of the R(-) and S(+)

isomers of MDA and MDMA on phosphatidyl inositol turnover in cultured cells expressing

5-HT2A or 5-HT2C receptors. Neurosci Lett 177:111-115.

Neumeyer JL, Froimowitz M, Baldessarini RJ, Campbell A and Gao YG (1988)

Neuropharmacology and stereochemistry of dopamine receptor agonist and antagonist

enantiomeric pairs. J Recept Res 8:83-96.

Newman AH, Kline RH, Allen AC, Izenwasser S, George C and Katz JL (1995) Novel 4'-

substituted and 4',4"-disubstituted 3 alpha-(diphenylmethoxy) analogs as potent and

selective dopamine uptake inhibitors. J Med Chem 38:3933-3940.

Newman-Tancredi A, Cussac D, Audinot V, Nicolas JP, De Ceuninck F, Boutin JA and Millan MJ

(2002a) Differential actions of antiparkinson agents at multiple classes of monoaminergic

54 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther receptor. II. Agonist and antagonist properties at subtypes of dopamine D(2)-like receptor

and alpha(1)/alpha(2)-adrenoceptor. J Pharmacol Exp Ther 303:805-814.

Newman-Tancredi A, Cussac D, Quentric Y, Touzard M, Verriele L, Carpentier N and Millan MJ

(2002b) Differential actions of antiparkinson agents at multiple classes of monoaminergic

receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor

subtypes. J Pharmacol Exp Ther 303:815-822.

Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verriele L, Audinot V and

Millan MJ (1998) Agonist and antagonist actions of antipsychotic agents at 5-HT1A

receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol 355:245-256.

Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins

Slot L, Colpaert FC, Vacher B and Cussac D (2009) Signal transduction and functional

selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J

Pharmacol 156:338-353.

Nielsen EB and Andersen PH (1992) Dopamine receptor occupancy in vivo: behavioral correlates

using NNC-112, NNC-687 and NNC-756, new selective dopamine D1 receptor antagonists.

Eur J Pharmacol 219:35-44.

Owens MJ, Knight DL and Nemeroff CB (2001) Second-generation SSRIs: human monoamine

transporter binding profile of and R-. Biol Psychiatry 50:345-350.

Ozaki S, Kawamoto H, Itoh Y, Miyaji M, Azuma T, Ichikawa D, Nambu H, Iguchi T, Iwasawa Y

and Ohta H (2000) In vitro and in vivo pharmacological characterization of J-113397, a

potent and selective non-peptidyl ORL1 receptor antagonist. Eur J Pharmacol 402:45-53.

Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, Capraro D, Murphy AN,

Nechushtai R, Dixon JE and Jennings PA (2007) MitoNEET is a uniquely folded 2Fe 2S

55 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci U S

A 104:14342-14347.

Pan W and Kastin AJ (2007) From MIF-1 to endomorphin: the Tyr-MIF-1 family of peptides.

Peptides 28:2411-2434.

Patel S, Freedman S, Chapman KL, Emms F, Fletcher AE, Knowles M, Marwood R, McAllister

G, Myers J, Curtis N, Kulagowski JJ, Leeson PD, Ridgill M, Graham M, Matheson S,

Rathbone D, Watt AP, Bristow LJ, Rupniak NM, Baskin E, Lynch JJ and Ragan CI (1997)

Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine

D4 receptor. J Pharmacol Exp Ther 283:636-647.

Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM and Hermans E (2004) Involvement of the

sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J

Neurosci 19:2212-2220.

Perucca E (1997) A pharmacological and clinical review on topiramate, a new antiepileptic drug.

Pharmacol Res 35:241-256.

Philippens IH, Joosen MJ, Ahnaou A, Andres I and Drinkenburg WP (2014) Anti-Parkinson effects

of a selective alpha2C-adrenoceptor antagonist in the MPTP marmoset model. Behav Brain

Res 269:81-86.

Pilleri M and Antonini A (2015) Therapeutic strategies to prevent and manage dyskinesias in

Parkinson's disease. Expert Opin Drug Saf 14:281-294.

Porter RH, Jaeschke G, Spooren W, Ballard TM, Buttelmann B, Kolczewski S, Peters JU, Prinssen

E, Wichmann J, Vieira E, Muhlemann A, Gatti S, Mutel V and Malherbe P (2005)

Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and

noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp

Ther 315:711-721.

56 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Portoghese PS, Sultana M and Takemori AE (1988) Naltrindole, a highly selective and potent non-

peptide delta opioid receptor antagonist. Eur J Pharmacol 146:185-186.

Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier MC and Deprez B (2001) From

hit to lead. Combining two complementary methods for focused library design. Application

to mu opiate ligands. J Med Chem 44:3378-3390.

Pritchett DB, Luddens H and Seeburg PH (1989) Type I and type II GABAA-benzodiazepine

receptors produced in transfected cells. Science 245:1389-1392.

Pugsley TA, Davis MD, Akunne HC, MacKenzie RG, Shih YH, Damsma G, Wikstrom H, Whetzel

SZ, Georgic LM, Cooke LW and et al. (1995) Neurochemical and functional

characterization of the preferentially selective dopamine D3 agonist PD 128907. J

Pharmacol Exp Ther 275:1355-1366.

Purohit A, Smith C, Herrick-Davis K and Teitler M (2005) Stable expression of constitutively

activated mutant h5HT6 and h5HT7 serotonin receptors: inverse agonist activity of

antipsychotic drugs. Psychopharmacology (Berl) 179:461-469.

Quik M, Campos C, Bordia T, Strachan JP, Zhang J, McIntosh JM, Letchworth S and Jordan K

(2013) alpha4beta2 Nicotinic receptors play a role in the nAChR-mediated decline in L-

dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology 71:191-203.

Rai M, Soragni E, Chou CJ, Barnes G, Jones S, Rusche JR, Gottesfeld JM and Pandolfo M (2010)

Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation

in cells from Friedreich's ataxia patients and in a mouse model. PLoS One 5:e8825.

Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O'Dowd BF and George SR

(2007) D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled

to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 104:654-659.

57 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Regunathan S and Reis DJ (1996) Imidazoline receptors and their endogenous ligands. Annu Rev

Pharmacol Toxicol 36:511-544.

Reynolds IJ and Miller RJ (1989) Ifenprodil is a novel type of N-methyl-D-aspartate receptor

antagonist: interaction with polyamines. Mol Pharmacol 36:758-765.

Richelson E and Nelson A (1984) Antagonism by of neurotransmitter receptors of

normal human brain in vitro. J Pharmacol Exp Ther 230:94-102.

Richelson E and Souder T (2000) Binding of antipsychotic drugs to human brain receptors focus

on newer generation compounds. Life Sci 68:29-39.

Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ and Roth BL (2000)

Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy

associated with and other serotonergic . Circulation 102:2836-

2841.

Rover S, Cesura AM, Huguenin P, Kettler R and Szente A (1997) Synthesis and biochemical

evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of

kynurenine 3-hydroxylase. J Med Chem 40:4378-4385.

Rupprecht R, Reul JM, van Steensel B, Spengler D, Soder M, Berning B, Holsboer F and Damm

K (1993) Pharmacological and functional characterization of human mineralocorticoid and

glucocorticoid receptor ligands. Eur J Pharmacol 247:145-154.

Santangeli S, Sills GJ, Thompson GG and Brodie MJ (2002) Na(+) channel effects of remacemide

and desglycinyl-remacemide in rat cortical synaptosomes. Eur J Pharmacol 438:63-68.

Sautel F, Griffon N, Sokoloff P, Schwartz JC, Launay C, Simon P, Costentin J, Schoenfelder A,

Garrido F, Mann A and et al. (1995) Nafadotride, a potent preferential dopamine D3

receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther 275:1239-

1246.

58 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Scheller D, Ullmer C, Berkels R, Gwarek M and Lubbert H (2009) The in vitro receptor profile of

rotigotine: a new agent for the treatment of Parkinson's disease. Naunyn Schmiedebergs

Arch Pharmacol 379:73-86.

Schipper J, Tulp MT and Sijbesma H (1990) Neurochemical profile of eltoprazine. Drug Metabol

Drug Interact 8:85-114.

Schlesinger F, Tammena D, Krampfl K and Bufler J (2005) Two mechanisms of action of the

derivative IEM-1460 at human AMPA-type glutamate receptors. Br J

Pharmacol 145:656-663.

Schlicker E, Werner U, Hamon M, Gozlan H, Nickel B, Szelenyi I and Gothert M (1992)

Anpirtoline, a novel, highly potent 5-HT1B receptor agonist with

antinociceptive/antidepressant-like actions in rodents. Br J Pharmacol 105:732-738.

Schoepp DD, Ornstein PL, Salhoff CR and Leander JD (1991) Neuroprotectant effects of

LY274614, a structurally novel systemically active competitive NMDA receptor

antagonist. J Neural Transm Gen Sect 85:131-143.

Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K and

Leysen JE (1996) compared with new and reference antipsychotic drugs: in

vitro and in vivo receptor binding. Psychopharmacology (Berl) 124:57-73.

Seely KA, Brents LK, Franks LN, Rajasekaran M, Zimmerman SM, Fantegrossi WE and Prather

PL (2012) AM-251 and rimonabant act as direct antagonists at mu-opioid receptors:

implications for opioid/cannabinoid interaction studies. Neuropharmacology 63:905-915.

Seeman P, Guan HC and Hirbec H (2009) Dopamine D2High receptors stimulated by

, diethylamide, , and modafinil. Synapse 63:698-

704.

59 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Selkirk JV, Scott C, Ho M, Burton MJ, Watson J, Gaster LM, Collin L, Jones BJ, Middlemiss DN

and Price GW (1998) SB-224289--a novel selective (human) 5-HT1B receptor antagonist

with negative intrinsic activity. Br J Pharmacol 125:202-208.

Sethi KK, Vullo D, Verma SM, Tanc M, Carta F and Supuran CT (2013) Carbonic anhydrase

inhibitors: synthesis and inhibition of the human carbonic anhydrase isoforms I, II, VII, IX

and XII with sulfonamides incorporating 4,5,6,7-tetrabromophthalimide moiety.

Bioorg Med Chem 21:5973-5982.

Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P and Honore T (1990) 2,3-Dihydroxy-6-nitro-

7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science

247:571-574.

Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley

CW, Conn PJ, Greengard P, Bezard E, Cenci MA and Surmeier DJ (2015) M4 Muscarinic

Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced

Dyskinesia. Neuron 88:762-773.

Shiosaki K, Jenner P, Asin KE, Britton DR, Lin CW, Michaelides M, Smith L, Bianchi B,

Didomenico S, Hodges L, Hong Y, Mahan L, Mikusa J, Miller T, Nikkel A, Stashko M,

Witte D and Williams M (1996) ABT-431: the diacetyl prodrug of A-86929, a potent and

selective dopamine D1 receptor agonist: in vitro characterization and effects in animal

models of Parkinson's disease. J Pharmacol Exp Ther 276:150-160.

Singh S (2000) Chemistry, design, and structure-activity relationship of cocaine antagonists. Chem

Rev 100:925-1024.

Smith U (2001) Pioglitazone: mechanism of action. Int J Clin Pract Suppl:13-18.

60 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Sousa A and Ticku MK (1997) Interactions of the neurosteroid dehydroepiandrosterone sulfate

with the GABA(A) receptor complex reveals that it may act via the site. J

Pharmacol Exp Ther 282:827-833.

Spencer DG, Jr., Glaser T and Traber J (1987) Serotonin receptor subtype mediation of the

interoceptive discriminative stimuli induced by 5-methoxy-N,N-dimethyltryptamine.

Psychopharmacology (Berl) 93:158-166.

Stasi MA, Borsini F, Varani K, Vincenzi F, Di Cesare MA, Minetti P, Ghirardi O and Carminati P

(2006) ST 1535: a preferential A2A adenosine receptor antagonist. Int J

Neuropsychopharmacol 9:575-584.

Subramaniam S, Donevan SD and Rogawski MA (1996) Block of the N-methyl-D-aspartate

receptor by remacemide and its des-glycine metabolite. J Pharmacol Exp Ther 276:161-

168.

Sunahara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van

Tol HH and Niznik HB (1991) Cloning of the gene for a human dopamine D5 receptor with

higher affinity for dopamine than D1. Nature 350:614-619.

Tatsumi M, Groshan K, Blakely RD and Richelson E (1997) Pharmacological profile of

antidepressants and related compounds at human monoamine transporters. Eur J

Pharmacol 340:249-258.

Tice MA, Hashemi T, Taylor LA, Duffy RA and McQuade RD (1994) Characterization of the

binding of SCH 39166 to the five cloned dopamine receptor subtypes. Pharmacol Biochem

Behav 49:567-571.

Toll L, Bruchas MR, Calo G, Cox BM and Zaveri NT (2016) Nociceptin/Orphanin FQ Receptor

Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol

Rev 68:419-457.

61 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Tricklebank MD, Forler C, Middlemiss DN and Fozard JR (1985) Subtypes of the 5-HT receptor

mediating the behavioural responses to 5-methoxy-N,N-dimethyltryptamine in the rat. Eur

J Pharmacol 117:15-24.

Tsuruta K, Frey EA, Grewe CW, Cote TE, Eskay RL and Kebabian JW (1981) Evidence that LY-

141865 specifically stimulates the D-2 dopamine receptor. Nature 292:463-465.

Uhlen S, Porter AC and Neubig RR (1994) The novel alpha-2 adrenergic radioligand [3H]-MK912

is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. J

Pharmacol Exp Ther 271:1558-1565.

Van der Weide J, De Vries JB, Tepper PG and Horn AS (1986) Pharmacological profiles of three

new, potent and selective dopamine receptor agonists: N-0434, N-0437 and N-0734. Eur J

Pharmacol 125:273-282.

Van der Weide J, De Vries JB, Tepper PG, Krause DN, Dubocovich ML and Horn AS (1988) N-

0437: a selective D-2 dopamine receptor agonist in in vitro and in vivo models. Eur J

Pharmacol 147:249-258.

Vanover KE, Kleven MS and Woolverton WL (1991) Blockade of the discriminative stimulus

effects of cocaine in rhesus monkeys with the D(1) dopamine antagonists SCH-39166 and

A-66359. Behav Pharmacol 2:151-159.

Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J, Del Tredici AL, Piu F,

Schiffer HH, Ott TR, Burstein ES, Uldam AK, Thygesen MB, Schlienger N, Andersson

CM, Son TY, Harvey SC, Powell SB, Geyer MA, Tolf BR, Brann MR and Davis RE (2006)

Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-

methylpiperidin-4-yl)-N'-(4-(2-methylpropylo xy)phenylmethyl) carbamide (2R,3R)-

dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine(2A) receptor

inverse agonist. J Pharmacol Exp Ther 317:910-918.

62 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Verma V, Mann A, Costain W, Pontoriero G, Castellano JM, Skoblenick K, Gupta SK, Pristupa Z,

Niznik HB, Johnson RL, Nair VD and Mishra RK (2005) Modulation of agonist binding to

human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a

peptidomimetic analog. J Pharmacol Exp Ther 315:1228-1236.

Verrico CD, Miller GM and Madras BK (2007) MDMA (Ecstasy) and human dopamine,

norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity

and treatment. Psychopharmacology (Berl) 189:489-503.

Von Voigtlander PF and Lewis RA (1982) U-50,488, a selective kappa opioid agonist: comparison

to other reputed kappa agonists. Prog Neuropsychopharmacol Biol Psychiatry 6:467-470.

Vranesic I, Ofner S, Flor PJ, Bilbe G, Bouhelal R, Enz A, Desrayaud S, McAllister K, Kuhn R and

Gasparini F (2014) AFQ056/mavoglurant, a novel clinically effective mGluR5 antagonist:

identification, SAR and pharmacological characterization. Bioorg Med Chem 22:5790-

5803.

Wainscott DB, Sasso DA, Kursar JD, Baez M, Lucaites VL and Nelson DL (1998)

[3H]Rauwolscine: an antagonist radioligand for the cloned human 5-hydroxytryptamine2b

(5-HT2B) receptor. Naunyn Schmiedebergs Arch Pharmacol 357:17-24.

Walters MR, Dutertre M and Smith CL (2002) SKF-82958 is a subtype-selective estrogen receptor-

alpha (ERalpha ) agonist that induces functional interactions between ERalpha and AP-1.

J Biol Chem 277:1669-1679.

Wang C and Niu L (2013) Mechanism of inhibition of the GluA2 AMPA receptor channel opening

by talampanel and its : the stereochemistry of the 4-methyl group on the

diazepine ring of 2,3-benzodiazepine derivatives. ACS Chem Neurosci 4:635-644.

63 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Weinshank RL, Zgombick JM, Macchi MJ, Branchek TA and Hartig PR (1992) Human serotonin

1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D

beta. Proc Natl Acad Sci U S A 89:3630-3634.

Wichmann J, Adam G, Rover S, Cesura AM, Dautzenberg FM and Jenck F (1999) 8-acenaphthen-

1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]-4-one derivatives as orphanin FQ receptor

agonists. Bioorg Med Chem Lett 9:2343-2348.

Wong DT, Threlkeld PG, Best KL and Bymaster FP (1982) A new inhibitor of norepinephrine

uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 222:61-65.

Wood PL, Smith T, Lane N, Khan MA, Ehrmantraut G and Goodenowe DB (2011) Oral

of the ether lipid plasmalogen precursor, PPI-1011, in the : a new

therapeutic strategy for Alzheimer's disease. Lipids Health Dis 10:227.

Xiang Z, Thompson AD, Brogan JT, Schulte ML, Melancon BJ, Mi D, Lewis LM, Zou B, Yang

L, Morrison R, Santomango T, Byers F, Brewer K, Aldrich JS, Yu H, Dawson ES, Li M,

McManus O, Jones CK, Daniels JS, Hopkins CR, Xie XS, Conn PJ, Weaver CD and

Lindsley CW (2011) The Discovery and Characterization of ML218: A Novel, Centrally

Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a

Rodent Model of Parkinson's Disease. ACS Chem Neurosci 2:730-742.

Yoshio R, Taniguchi T, Itoh H and Muramatsu I (2001) Affinity of serotonin receptor antagonists

and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn J Pharmacol

86:189-195.

Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW and Quik M (2015) alpha7

nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal

damage. Mov Disord 30:1901-1911.

64 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE and Baumann

MH (2009) Evidence for the involvement of dopamine transporters in behavioral

effects of modafinil. J Pharmacol Exp Ther 329:738-746.

65 Veyres N, Hamadjida A, Huot P. Predictive value of parkinsonian primates in pharmacological studies, a comparison between the macaque, marmoset and squirrel monkey. J Pharmacol Exp Ther

66