Flood Modeling and the Influence of Digital Terrain Models: a Case Study of the Swannanoa River in North Carolina
Total Page:16
File Type:pdf, Size:1020Kb
FLOOD MODELING AND THE INFLUENCE OF DIGITAL TERRAIN MODELS: A CASE STUDY OF THE SWANNANOA RIVER IN NORTH CAROLINA A Thesis by MONICA JEAN DAVIS Submitted to the Graduate School Appalachian State University in partial fulfillment of the requirements for the degree of MASTER OF ARTS May 2015 Major Department: Geography and Planning FLOOD MODELING AND THE INFLUENCE OF DIGITAL TERRAIN MODELS: A CASE STUDY OF THE SWANNANOA RIVER IN NORTH CAROLINA A Thesis by MONICA JEAN DAVIS May 2015 APPROVED BY: ___________________________________________ Jeffrey D. Colby, Ph.D. Chairperson, Thesis Committee ___________________________________________ John C. Pine, Ph.D. Member, Thesis Committee ___________________________________________ J. Greg Dobson Member, Thesis Committee ___________________________________________ Kathleen Schroeder, Ph.D. Chairperson, Department of Geography and Planning ___________________________________________ Max C. Poole, Ph.D. Dean, Cratis D. Williams School of Graduate Studies Copyright by Monica Jean Davis 2015 All Rights Reserved Abstract FLOOD MODELING AND THE INFLUENCE OF DIGITAL TERRAIN MODELS: A CASE STUDY OF THE SWANNANOA RIVER IN NORTH CAROLINA Monica Jean Davis B.S. & B.F., Purdue University M.A., Appalachian State University Chairperson: Jeffrey D. Colby An increase in flood disasters nationally and internationally has underscored the need for accurate flood modeling regarding flood insurance and emergency response. According to the National Research Council, topographic data is the most important variable in determining flood modeling accuracy. Increasing availability of airborne light detection and ranging (LiDAR) data warrants the investigation of the optimal resolution or range of resolutions needed to represent digital terrain models (DTMs) for accurate operational flood modeling. Few studies have focused on flood modeling in mountain environments. Within the Appalachian Mountains of western North Carolina, the Swannanoa River was selected for this study based on unique physical characteristics, a substantial built environment within the 100 year (100yr) floodplain, and significant recorded levels of historical flooding. iv Flood modeling accuracy was evaluated for the Swannanoa River using elevation data from two different sources. LiDAR elevation data were represented at a range of equivalent resolutions 3.77m, 6m, 8m, 10m, 12m, 15m, 20m, 25m, and 30m, and United Stated Geological Survey (USGS) Level 2 digital elevation model (DEM) data were represented at 10m and 30m resolutions. Each elevation was combined with a series of flood recurrence intervals 10yr, 25yr, 50yr, 100yr, and 500yr for testing. A variety of descriptive and inferential statistics were used to evaluate water surface profiles and depth grids generated using the United States Army Corp of Engineer’s (USACEs) Hydrologic Engineering Centers – River Analysis System (HEC-RAS) hydraulic model and Environmental Systems Research Institute’s (ESRIs) ArcGIS software. v Acknowledgements I would like to thank my thesis chairperson, Dr. Jeffrey D. Colby, and my committee Dr. John Pine and Greg Dobson for their support, direction, and patience throughout the thesis process. I would also like to thank Brown and Caldwell for the use of their HEC-RAS hydraulic model and access to their Structure Inventory Database. Lastly, I would like to thank the National Environmental Modeling and Analysis Center in Asheville, NC for data used in this research effort. vi Dedication I dedicate this thesis to my parents Michael J. and Joyce A. Davis for their continuous encouragement, advice, and support. vii Table of Contents Page Abstract .................................................................................................................................... iv Acknowledgements .................................................................................................................. vi Dedication ............................................................................................................................... vii List of Tables ........................................................................................................................... xi List of Figures ......................................................................................................................... xii 1. Introduction ............................................................................................................................1 2. Background and Literature Review .......................................................................................4 2.1 Flood Insurance ....................................................................................................... 4 2.2 Flood Insurance Rate Maps .................................................................................... 5 2.3 Topographic Data.................................................................................................... 6 2.4 Issues of Scale ......................................................................................................... 8 2.5 Diagnostic Methods .............................................................................................. 11 2.6 HAZUS-MH & HEC-FDA ................................................................................... 11 3. Geographic Region ..............................................................................................................16 3.1 HAZUS-MH & HEC-FDA ................................................................................... 16 3.2 Built Environment ................................................................................................. 17 3.3 Historical Flooding ............................................................................................... 21 4. Methodology ........................................................................................................................24 viii 4.1 Data Acquisition ................................................................................................... 24 4.1.1 Elevation Data ....................................................................................... 24 4.1.2 Hydrologic and Hydraulic Data ............................................................ 25 4.1.3 Structure Inventory Data ....................................................................... 26 4.2 Data Processing ..................................................................................................... 27 4.2.1 Elevation Data ....................................................................................... 27 4.2.2 Hydraulic Modeling .............................................................................. 34 4.2.3 Structure Inventory Data ....................................................................... 35 4.3 Diagnostic Procedures .......................................................................................... 36 4.3.1 Water Surface Profiles .......................................................................... 36 4.3.2 Depth Grids ........................................................................................... 39 4.3.3 Damage Estimates ................................................................................. 39 5. Results ..................................................................................................................................44 5.1 Water Surface Profiles .......................................................................................... 44 5.1.1 Percent Difference in Area .................................................................... 44 5.1.2 Percent Difference in Symmetrical Difference ..................................... 46 5.1.3 Paired T-Test ......................................................................................... 48 5.2 Depth Grids ........................................................................................................... 50 5.2.1 Maximum Flood Height ........................................................................ 50 5.2.2 Percent Difference in Volume ............................................................... 52 ix 5.2.3 Root Mean Squared Error ..................................................................... 54 5.2.4 Damage Estimates ................................................................................. 56 6. Discussion ............................................................................................................................63 6.1 Trends ................................................................................................................... 63 6.2 Notable Breaks ...................................................................................................... 65 7. Conclusions ..........................................................................................................................67 Abbreviations ...........................................................................................................................69 Bibliography ............................................................................................................................70 Biographical Information .........................................................................................................76 x List of Tables Page Table 1. Physical Characteristics .............................................................................................18 Table 2. U.S. National Enhanced Elevation Assessment